
EUROGRAPHICS 2019 / P. Alliez and F. Pellacini
(Guest Editors)

Volume 38 (2019), Number 2

Learning a Generative Model for Multi-Step Human–Object
Interactions from Videos

He Wang1† , Sören Pirk1† , Ersin Yumer2 , Vladimir G. Kim3 , Ozan Sener4 , Srinath Sridhar1 , and Leonidas J. Guibas1

1Stanford University, 2Uber ATG, 3Adobe Research, 4Intel Labs

Figure 1: Our generative model synthesizes plausible multi-step human–object interactions by learning the causal dependencies and phys-
ical constraints of individual actions from monocular RGB videos. (a) To encode interactions, we use an action plot that describes the
participating objects, the object states, the elementary actions, and their causal dependencies as a set of unique operations. Based on this
discretization we can efficiently learn the spatio-temporal structure of interactions to employ it for a variety of applications, including cap-
turing the observed motions as animations (b, top), synthesizing new agent–object animation sequences (b, bottom), predicting actions that
are likely to happen in the near future (c, top), and motion planning of real robotic agents (cup) in reactive environments (c, bottom).

Abstract

Creating dynamic virtual environments consisting of humans interacting with objects is a fundamental problem in computer
graphics. While it is well-accepted that agent interactions play an essential role in synthesizing such scenes, most extant tech-
niques exclusively focus on static scenes, leaving the dynamic component out. In this paper, we present a generative model
to synthesize plausible multi-step dynamic human–object interactions. Generating multi-step interactions is challenging since
the space of such interactions is exponential in the number of objects, activities, and time steps. We propose to handle this
combinatorial complexity by learning a lower dimensional space of plausible human–object interactions. We use action plots
to represent interactions as a sequence of discrete actions along with the participating objects and their states. To build action
plots, we present an automatic method that uses state-of-the-art computer vision techniques on RGB videos in order to detect
individual objects and their states, extract the involved hands, and recognize the actions performed. The action plots are built
from observing videos of everyday activities and are used to train a generative model based on a Recurrent Neural Network
(RNN). The network learns the causal dependencies and constraints between individual actions and can be used to generate
novel and diverse multi-step human–object interactions. Our representation and generative model allows new capabilities in a
variety of applications such as interaction prediction, animation synthesis, and motion planning for a real robotic agent.

1. Introduction

The generation of rich dynamic virtual environments with com-
plex human–object interactions is a common need in entertainment,
simulation, AR/VR, and robotics. Most extant scene generation

† Equal contribution.

approaches, however, have focused on modeling static interaction
snapshots [SCH∗16], and thus have limited applicability for rep-
resenting and creating dynamic scenes evolving over time. In fact,
despite recent advances in activity recognition, geometric modeling
and scene understanding, synthesizing plausible and meaningful in-
teraction sequences between humans and objects remains an open
and difficult problem.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13644

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-3365-4620
https://orcid.org/0000-0003-1937-9797
https://orcid.org/0000-0002-3245-5515
https://orcid.org/0000-0002-3996-6588
https://orcid.org/0000-0002-1542-7547
https://orcid.org/0000-0003-4663-3324
https://orcid.org/0000-0002-8315-4886

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

The goal of this work is to recognize and represent real world
human–object interactions, and to build a model that learns the spa-
tial, temporal, and physical constraints involved so that it can gen-
erate plausible novel dynamic interactions over time, interactions
that are not directly observed in the training videos. This is chal-
lenging because, first, we need to reliably recognize objects and
agent–object actions from real world observations. We use com-
puter vision and machine learning techniques to accomplish this,
learning from common RGB videos to ensure broad applicability
and easy extension to future work. A second challenge lies in the
complexity of learning to generate interactions in human activity
spaces, due to the large variety of possible objects, their states, and
their arrangements in the environment. Finally, multi-step interac-
tions are structured over time to attain specific goals, so the gener-
ative model needs to be consistent with present and past states of
the environment in synthesizing plausible action sequences.

In this paper, we present a method to automatically recognize
objects and actions in RGB videos and to learn the laws govern-
ing such interactions. Based on this knowledge, we show how to
encode human–object interactions using action plots, and how to
generate plausible and diverse multi-step interactions in a variety
of environments. Given an interactive environment, we describe it
by: the scene that supports possible interactions (a table top setup,
e.g., a kitchen table, a computer desk), the objects that occur in the
scene (e.g., bottles, cups, books), and the actions that can change
the state of the objects in the scene (e.g., grasp bottle, move cup). To
encode interactions, we use an action plot that describes the partic-
ipating objects, the object states, the elementary actions, the causal
dependencies of the involved actions and object states, and the in-
dividual motions necessary to perform the interaction (e.g., pouring
water from a bottle into a cup). Similar to a key frame in animation,
each action in the plot defines a unique phase in an interaction se-
quence, allowing us to capture its essential features. Action plots
focus on the transitions between different actions in an interaction
sequence and encapsulate its key combinatorial structure. They are
a symbolic and complete representation of the actions, abstracting
away scene and agent specific features like motion details, appear-
ance and geometry of the scene, thus enabling us to learn high-level
semantic action constraints such as the need to grasp an object in
order to move it.

We leverage state-of-the-art computer vision techniques to ef-
ficiently detect objects in videos and extend them to also detect
object states and associated hand actions. To this end, we employ
Faster R-CNN [RHGS15] and segment human hands using a Fully
Convolutional Network (FCN) [LSD15]. Additionally, we detect
state changes of objects (e.g., a cup transitioning from empty to
full), which helps to establish the causality of object changes and
the involved actions. To recognize and temporally segment actions
in videos, we employ an LSTM-based pipeline similar to Lea et
al. [LVRH16]. Moreover, we learn plausible object arrangements
and represent their distribution using Gaussian mixture models.
Our method exhibits strong generalization behavior and is able
to encode interaction in a variety of scenes with action orderings
and object arrangements different from the training data. We train
a generative model in the from of a Recurrent Neural Network
(RNN) [CVMBB14,CGCB14] using action plots as representation.
Trained using observed action plots, it can generate new plausible

action plots. The RNN learns physical constraints and the causal
dependencies of individual actions and can be used to predict fu-
ture actions either by conditioning on a partial video as a comple-
tion task or completely from scratch as a generation task.

Finally, we show various applications of generated novel multi-
step action sequences in prediction, animation synthesis, and se-
mantic planning for robots. An example is illustrated in Figure 1:
we observe hand–object interactions by capturing a video (top).
Our method detects objects, their states, and actions allowing us
to produce an action plot for reconstructing the captured motions
(middle). We also build a model which can be used to generate di-
verse and plausible multi-step interactions (bottom), enabling pre-
viously unavailable capabilities in synthesizing dynamic scenes. In
summary, our main contributions are:

• A novel representation of complex hand–object interactions as a
sequence of elementary actions, i.e., action plots,

• An automated method to segment actions, detect objects and
their states, and hands from monocular RGB videos,

• A generative model that learns physical constraints and causal
dependencies in various action sequences, and can be used to
generate plausible multi-step interactions with broad applica-
tions (e.g., interaction prediction, animation synthesis, robotic
motion planning).

The tools developed in this work can useful be in a variety of
AR/VR and robotic settings, either in isolation or as an entire sys-
tem. For example, our object state estimation can inform many
vision-based action detection tasks, as actions often aim to put ob-
jects in desired states. Our entire system can support applications
such as (1) the generation of training videos demonstrating how
certain tools can be used or complex actions performed, instanti-
ated in a specific environment of interest; (2) the inference of in-
teraction intent from observations and the offer of information of
physical assistance to complete the interaction for the elderly or
disabled; and (3) autonomous agent motion and interaction plan-
ning for specific tasks.

2. Related Work

In this section, we review related work spanning action recogni-
tion methods rooted in computer vision to activity- and animation-
centric methods in computer graphics.

Human Object Interaction Perception: In the action recognition
literature [HHP17], methods aim to encode the complexity of hu-
man activity spaces and the interactions therein. Although this liter-
ature is broad, it is largely based on fully supervised classification
of video clips [LMSR08,EBMM03,RA09] and only a few methods
exist to synthesize interactions [SPYZ11,PJZ11] or to structure the
causal dependencies of human actions [FZ16].

Only more recently has it been recognized that object state
plays an eminent role in learning about hand-object relation-
ships in terms of semantic and functional state [KGS13, SS15].
Liang et al. [LZZZ16] infer the object containment relations from
human actions in RGB-D videos, which can help to track highly-
occluded objects [LZZ18]. Zhu et al. [ZZZ15] propose a task-
oriented framework to learn the function of objects based on RGBD

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

368

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

videos that also considers physical concepts (e.g., cracking a nut
with a hammer). Several approaches examine human-object inter-
actions. For instance, Gkioxari et al. [GGDH17] identify inter-
action triplets (human, verb, object) from photos by recognizing
features in the appearance of humans interacting with everyday
objects. Wei et al. [WZZZ17] introduce a more holistic pipeline
to jointly segment objects and interaction events from video se-
quences. These approaches learn semantic and functional meaning
from data but lack models for generating interactions.

Shape Function and Affordance: Efforts on geometric model-
ing and shape understanding focus on describing object relation-
ships and object affordance through geometric features. To this
end, Sharf et al. [SHL∗14] introduce a method for the mobility
analysis of shapes by analyzing the repetitions and relations of a
shape with other objects in the scene. Bar-Avi et al. [BAR06] and
Kim et al. [KCGF14] go even further and employ humanoid agents,
fitted to objects, to analyze the function and affordance of shapes.
Yu et al. [YDY15] reason about the object affordance of contain-
ing liquid and its best filling direction for a given 3D object, and
Mottaghi et al. [MSFF17] further infer the container volume and
content. More recently,Hu et al. [HvKW∗16] learn a functionality
model based on the co-analysis of objects and Pirk et al. [PKH∗17]
introduce a general purpose descriptor for understanding object
function. The above methods reason about shapes and their func-
tionality, but do not capture or understand the time-variant proper-
ties of human-object interactions.

Automated Scene Synthesis: Plausible scene generation has re-
ceived considerable attention in the recent past due to its impor-
tance in graphics, robotics and computer vision. Existing meth-
ods produce plausible object arrangements for indoor scenes,
by employing carefully crafted heuristics [MSL∗11], automatic
optimization [YYT∗11], sketches [XCF∗13], or procedural and
probabilistic models [FRS∗12, LCK∗14]. Data-driven methods
learn object arrangements from sensor data, by either analyzing
single images [LZW∗15], exploiting hybrid 2D/3D representa-
tions [MSSH14], or RGBD point clouds [SXZ∗12]. In contrast,
our approach models realistic dynamic scenes and plausible inter-
actions jointly, which has previously not been addressed.

Activity-centric Scene Understanding: Commodity RGBD sen-
sors have enabled a variety of human- and activity-centric methods
for understanding and synthesizing scenes. Savva et al. [SCH∗14]
show that observing the behavior of humans interacting with their
environment allows the capture of action maps that can be used to
identify locations of interactions in unseen environments and even
to infer higher-level semantic meaning of interactions [SCH∗16].
Fisher et al. [FSL∗15] employ 3D scans and virtual agents to model
semantically-correct object arrangements allowing plausible scene
synthesis. Ma et al. [MLZ∗16] introduce an approach that aims
to simulate the alteration of scenes through human actions. Their
method learns object–object and human–object relationships from
annotated photos that allows to generate messy, and thereby more
realistic, yet entirely static, 3D scenes.

Human Activity Modeling and Character Animation: Due to
the complexity of human motions and the variety of object ar-
rangements, modeling human–object interactions and generating
plausible animations are both difficult tasks. Many approaches

Genera�ve ModelInput

RGB
Video

Video
Processing

Ac�on
Plot

Anima�on
Synthesis

Video Features OutputSynthesis

Object Position
GMMs

Interac�on
Predic�on

Robo�c
Agent

Ac�on Plot
RNN

Figure 2: Overview: we define an interaction model that allows
us to generate action plots, abstract descriptions of actions that to-
gether represent an interaction. We capture RGB videos and extract
features that we use to infer action labels of interaction sequences.
Features and action labels are used to train an action plot RNN that
allows us to generate action sequences to animate 3D animations.

exist to synthesize animations of humans [YKH04, LL04, LK05,
WLO∗14]. One popular approach for modeling human activities
is using stochastic grammar, as in Moore et al. [ME02] for ac-
tivity recognition, Qi et al. [QHWZ17] for action prediction, and
in Yang et al. [YLFA15] and Dantam et al. [DS13] for robot
planning and control. Motion grammar has also been used in
Hyun et al. [HLL16] for character animation. These grammar-
based methods are task-dependent and hence do not generalize to
tasks seen in human–object interactions. Other methods explicitly
define motion constraints [CH07] or physics-simulation [BSL12]
to produce natural looking animations, or use probabilistic models
that can be trained from small sets of manually defined example
motions [LWH∗12]. Agrawal et al. [AvdP16] produce high qual-
ity character locomotion by defining task-specific foot-step plans
as templates for animations. Recently, Puig et al. [PRB∗18] built a
synthetic animation dataset of household activities and use an RNN
to model and generate action programs. These approaches are sim-
ilar in that they focus on human agents performing interactions, but
do not learn interactions from real observations and therefore do
not capture the causality between actions and object state changes.

3. Overview

Our goal is to recognize and represent real world interactions, and
to use them to train a generative model that can be used to produce
plausible multi-step human–object action sequences. We introduce
a novel representation called action plots to encode interactions as
a set of discrete actions along with objects and object states that
are involved in the action. Each action in the action plot can be
seen as a key frame capturing a unique phase of the interaction.
This discretization allows us to focus on the combinatorial nature of
human–object interactions, while abstracting away the complexity
of spatio-temporal transformations.

In Section 4, we introduce action plots and propose a novel gener-
ative model, based on a state-preserving neural network, that oper-
ates on the action plot representation. The goal of this Action Plot
RNN is to predict action tuples including labels, target objects, state
changes for hand and objects, and durations, while respecting their
causal dependencies. Furthermore, we use Gaussian Mixture Mod-
els to predict object positions, while considering object-object re-
lationships, relative distance, and movement distance.

To capture realistic properties of interactions, we use videos of peo-
ple interacting with objects in common objects in indoor environ-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

369

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

ments, in particular on table-top setups (e.g., pouring water into a
cup, putting oranges in a bowl). To create action plots that can be
used to train our Action Plot RNN, we track the position, state, and
motion of objects and hands and temporally segment the videos to
infer action labels for the observed interaction sequences, as we de-
scribe in Section 5. We demonstrate the utility and capability of our
method in Section 6 by showing how action plots and our genera-
tive model can be used in animation synthesis, interaction predic-
tion, and the motion planning of robotic agents. Additionally, we
report the results a user study in Section 6.4 to evaluate our gener-
ative model. Fig. 2 summarizes the steps of our framework.

4. Method

Human activity environments and possible human–object interac-
tions that they can support span a large space of possibilities. While
object instances, their type, or even their affordances can be de-
scribed combinatorially, interacting with objects results in continu-
ous spatio-temporal transformations, which introduces a complex-
ity that is difficult to formalize. We account for these challenges,
by proposing action plots as a novel representation of interactions.
Each action plot is a sequence of actions performed by a human
hand that causes a state change in the scene. Each action defines
a unique phase in the interaction and is defined as an action tu-
ple that contains an action label, duration, and participating objects
with their end states and positions. Thus, a simple interaction, such
as pouring water into a cup, can be described by the plot contain-
ing the following atomic actions: (1) move hand (to grasp cup), (2)
move cup, (3) move hand (to grasp bottle) (4) move bottle, (5) pour
water from bottle to cup, (6) move bottle.

Note that, in this illustrative example, each of these six actions is
associated with a corresponding action tuple, where all six action
tuples make up the entire action plot. Using the action plot allows
us to abstract away the complexity of interactions in 3D spaces by
a few discrete operations.

4.1. Generative Model

In this section, we discuss the details of action plots which we use
to learn causal dependencies of action sequences and generate plau-
sible interactions. This is based on the observation that human–
object interactions can be modeled as a sequential problem. Start-
ing with an initial state and a set of actions, we are interested in
the transition probability from the given state to a subsequent state
based on an action. For instance, after moving a cup, likely subse-
quent actions are moving the hand towards a bottle and then pour-
ing a liquid. This is similar to other sequential problems, e.g., nat-
ural language processing, where state-preserving recurrent neural
networks (RNNs) have been used with success [SMH11].

Action Plots: Formally, an action tuple is defined for a single
timestep as T = (a,d,o,s, p), where a is the action label, d is the
action duration, o is the set of active objects participating, s is the
end state of o, and p is the end position of o. In other words, the
timestep spans duration d, and during this timestep, action a is per-
formed on objects o and bring them to the state s and the position
p. The duration, d ∈ R+, and end position, p ∈ R2, are continu-
ous variables in time units and 2D coordinates, respectively. The

action label, a ∈ Z|A|, participating objects, o ∈ Z|O|, object end
state, s ∈ Z|S| are defined as one-hot vectors. The size of the one-
hot vectors is determined by the dictionary of all possible options
for the corresponding variables A, O, and S (action label, partici-
pating objects, and object end-state dictionaries). We decouple the
time-varying and the time-invariant parameters in the action tuple
(T = L∪ (p) where L = (a,d,o,s)). This allows us to use different
statistical models for each type of parameters. More specifically, we
use a many-to-many the RNN to model L and time-independent
models for p. We factorize out positions from RNN because it is
very hard for RNN to encode and infer the entire 2D continuous
object arrangement through the whole action sequence.

Time-Dependent Action Plot RNN for L: We structure our Ac-
tion Plot RNN as illustrated in Fig. 3. At each timestep t, the net-
work takes the time-dependent variables Lt as input and predict
Lt+1 for next timestep. We use the Gated Recurrent Unit (GRU) as
the sequential model [CVMBB14,CGCB14]. The GRU has a latent
state ρt that captures the information about the history of the inter-
action up to timestep t. In our experiments, we use a single-layer
GRU with latent state size 16. Given the current inputs at ,ot and its
latent state ρt−1 from the previous timestep, the GRU outputs the
updated latent state ρt as

ρt = gρ (at ,ot ,ρt−1) , (1)

where g(.) is the learned GRU function [CGCB14]. We fuse the in-
formation from GRU latent state ρt and other network inputs (dt ,st)
by concatenating the features into ct . We denote the joint state of
actions, participating objects and their end object states (a, o, and
s) as z ∈ Z|Z| with the dictionary size |Z| ≤ |A| ∗ |O| ∗ |S|. The net-
work then predicts a probability distribution for next timestep over
all valid z’s as

Pt+1(z) =
exp
(

f (z)2 (ct)
)

|Z|
∑

z=1
exp
(

f (z)2 (ct)
) , (2)

where f2(.) outputs |Z| values. Finally, our network predicts a du-
ration d(z)

t+1 for each valid joint state z as

d(z)
t+1 = ln

(
1+ exp

(
f (z)3 (ct)

))
, (3)

We train the RNN using action plots extracted from real videos (see
Sec. 5) of interaction sequences by associating with their L. We use
a cross-entropy loss for the predicted one-hot vector variable z, i.e.
the joint state variable of (a,o,s), whereas an L2 loss is utilized for
penalizing the difference between the ground truth duration dt+1

and the predicted duration of next ground truth action d̂(zt+1)
t+1 . Our

training loss is the sum of these two losses with the same weight.
We implement the network using Tensorflow. We train the network
with 64K sequences with batch size 1 and sequence length 10. Note
that our RNN architecture does not take raw video frames as input
by design. The use of a compact representation at input and output
of the RNN module, compared to millions of variables of a video
frame, significantly reduces the time spent training the RNN while
increasing robustness.

RNNs are equipped with a latent state that allows them to sum-
marize past events. Commonly, this allows RNNs to compute new

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

370

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

Figure 3: Action Plot RNN: this neural network learns to predict
the next joint state consisting of action labels at+1, active objects
ot+1, and object state st+1 along with its duration dt+1. The inputs
(at ,ot ,st ,dt) at each timestep are first embedded into vectors with
the sizes illustrated in the figure. f1, f2, and f3 are fully connected
(FC) networks composed of three consecutive FC, ReLU, FC lay-
ers. We use softmax activation for discrete variables and softplus
activation for the positive continuous variable, i.e. duration.

states by accumulating past events with the inputs to the current
cell, which results in the output and the updated cell state. When
training on a small amount of data, RNNs generally tend to mem-
orize the training sequences and hence fail to generalize to new
sequences at sampling time where sequences can deviate from the
training data. We hence use a small sequence length of 10, basically
clearing the latent state of the RNN after 10 unroll steps. In other
words, the current interaction sequence does not condition on the
previous sequences and hence our RNN is free from memorizing
the whole training interaction sequence. Moreover, we augment our
data by on-the-fly randomly selecting action sequences when train-
ing the RNN. The random selection of action sequences also helps
to reduce unnecessary long-term dependencies. As we are inter-
ested in learning short term higher-level intent, i.e., one interaction
sequence consisting of up to a few actions, the RNN does not need
to memorize long sequences. For instance, to interact with a cup,
we only need to memorize 3 actions: move hand (grasp cup), move
cup, move hand (release cup). Clearing cell states and augmenting
the data in the training process allows us to infer with reasonable
accuracy when generating action sequences.

Time-Independent Object Position Models for p: Whenever the
action is a move action for an object (e.g., move a bottle, move a
book, etc.), we need to predict a new position pt+1, since it will
be different from pt . For all other actions, the object positions re-
main same (note that the object states might still be different). The
goal of our time independent object position models is to capture
the necessary information needed so as to fill-in between the begin-
ning and end of discrete timestep for the move action by predicting
a final destination, pt+1, thus completing the entire action tuple
Tt+1 = Lt+1∪ (pt+1).

We observe that the positions of objects are subject to a collec-
tion of strong physical priors. Certain objects may not overlap with
each other, e.g. one may not find a bottle on top of a laptop. It
is also common to find open bottles around cups, but uncommon

Figure 4: Distributions as log-likelihood overlays trained through
GMMs on one video. Top left: object class (cup); top right: rela-
tionship (relative distance of cup against all other); bottom left:
moving distance; bottom right: final distribution used to sample a
new position for objects of class cup.

around laptops. These observations are not strongly dependent on
the sequential order of previous actions. In addition, for moving an
object in a given duration, the destination of this action is strongly
dependent on the current object arrangement and the duration but
independent of the actions that have sequentially led to the current
move action. Therefore, we do not model these phenomena sequen-
tially and instead propose the following time-independent model
for the conditional probability distribution of the new position for
the moving object i given the current object positions

{
p j, t
}

for
each object j and the predicted duration dt+1 of the move action.
We first discretize our activity space (i.e., the table coordinate sys-
tem) into K (K = 10,000 for all results in this paper) uniformly
distributed square cells. Then the conditional probability for each
cell position x is given by the following distribution:

P
(

pi, t+1 = x
∣∣ {p j, t

}
, dt+1

)
=

1
C

Pci(x) ·Pci, speed

(∣∣∣∣x− pi, t
∣∣∣∣

dt+1

)
· Π

j 6=i
Pci, c j

(
x
∣∣ p j, t+1

)
,

(4)

where ci represents the object class of the moving object i, pt,i is
the position of the moving object i at the current timestep, dt+1 is
the duration of the move action as predicted by the RNN. C is a
normalization constant. Pci represents the position distribution of
class ci, and Pci,speed denotes the moving speed distribution of ob-
ject class ci. Pci,c j represents the conditional distribution of a can-

didate location for object class ci, given current position p(j)
t of an

object j in class c j . We use Gaussian Mixture Models (GMM) for
Pci and Pci,c j with a number of mixture components between 2 and
4, whereas only a single Gaussian distribution is used for Pci,speed .
Please see the supplementary material for analysis of these choices.
Fig. 4 shows sample distributions.

4.2. Generating Interaction Sequences

We combine the trained Action Plot RNN and Object Position
Model to generate interaction sequences. We first sample Action
Plot RNN to generate a sequence of Lt . Conditioned on each gener-
ated action and the involved objects, we use Object Position Model

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

371

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

to update the object positions pt . Finally, with consistence check,
Lt and pt are coupled together to form action plot {Tt} .

Sequential Tuple Generation, Lt+1: We use a random sampling
strategy to generate new action sequences from a trained Action
Plot RNN.Starting from a seed action plot, the RNN can iteratively
generate sequences of action plots using Eqns. 2 and Eqn. 3. At
each timestep t, we feed the output Lt from the previous iteration
as an input, generate the probability distribution of the joint states
for next timestep, and then sample the distribution to get Lt+1. The
seed tuple can be a random but valid initial tuple to perform pure
generative examples, or it can be conditioned on a few initial ac-
tions of an unseen interaction. The latter can be used to predict the
future, and consequentially the results can be compared with the
unobserved parts of the real interaction. Note that the generated ac-
tions sampled from the RNN are independent of the scene (e.g.,
number of available objects). The output of the sampling process
is a list of actions, with their associated object categories, object
states, and durations. The actions are not associated with concrete
objects in the scene and do not provide object positions.

Position Generation, pt+1: In order to generate updated object
positions, we use two modalities related to motion. First, we allow
move actions to relocate objects in the unoccupied activity space.
For a generated move action, we calculate the conditional proba-
bility at each cell position using Eqn. 4 and disable cells that are
currently occupied by other objects in the scene. Then we sample
the distribution to generate the new position. Second, we enforce
object-to-object constraints. For example, in the action sequence of
{move bottle, pour bottle cup, move bottle, ...}, due to the follow-
ing pour action, we constrain the position of the move bottle action
to be right on top of the cup. We identify these actions by scanning
the next few generated states from the RNN for action labels that
cause an object-object interaction (e.g., pour, move in). Once such
a label is detected, we select the corresponding action targets (e.g.,
random cup, random bottle) and extend the action by adding the
updated positions to the action.

Action Plot Generation, Tt+1: To couple the generated actions
with the scene, we convert the list of actions into an action plot.
Each action in the action plot needs to be associated with an action
target, the object that can be used to perform the actions, as well as a
new position and a new state. As objects can be in different states,
not all objects are valid action targets for a specific sequence of
actions. We associate an action to an object by randomly selecting
an available object in the scene that matches type and start state.
Similarly, we reject actions that do not match to the scene state. For
instance, the RNN might generate a pour action, but the scene does
not contain any available empty cups. In this case, we return to the
latest move hand action that comes before the rejected action and
designate that as the entry point for resampling the RNN.

5. Learning from Videos

In this section, we describe our automatic pipeline that processes
input RGB videos into an action plot that can then be used to train
our Action Plot RNN. Our goal is to generate action plots con-
taining plausible multi-step interactions that capture the physical
constraints and causal dependencies in the real world. We achieve

Figure 5: Top row: two results of our tracking pipeline; our method
is able to detect the type, state, and instance of objects and to seg-
ment articulated hand masks (blue overlay, green border). Bottom
row: we detect object states using SVM classifiers and represent
them as discrete stages.

this by automatically learning this from RGB videos of humans
interacting in a scene, providing a quick, inexpensive and versa-
tile acquisition setup. In order to create action plots that encode
complete interactions we need: (1) involved object instances, cat-
egories and positions, (2) hand position, (3) action detection and
segmentation—all of which are highly challenging to extract from
video. Our automatic pipeline builds upon the most recent advances
in computer vision and achieves state-of-the-art accuracy on tasks
such as action segmentation.

Data Acquisition: We acquired all videos with a GoPro Hero 5
captured at 1920×1080 px, framerate of 60 fps. In total, our dataset
consists of 75 interaction videos (of up to 2 minutes), captured at
3 different locations with 3 different users. We focused on table-
top scenes since many everyday natural interaction activities oc-
cur in desk-like setups. We split the videos into a training set with
55 videos and a validation set with 20 videos. The videos show
hand–object and object–object interactions with up to 10 objects
and complex interactions. Our pipeline does not rely on specific
lighting conditions, camera angles, or specific objects, and captures
both simple hand–object (e.g., moving a cup) as well as complex
object-object interactions, such as stacking objects or pouring liq-
uids. Since we are operating on monocular videos, we additionally
add a checkerboard in the scenes to compute a table coordinate
frame that allows us to register real world positions of tracked ob-
jects and hands with respect to the 3D environment.

5.1. Object and Instance Tracking

An important component of our action plots are object categories,
instances, locations, and states. In order to obtain these, we first
use Faster R-CNN [RHGS15] pre-trained on the Microsoft COCO
dataset [LMB∗14] to find candidate bounding boxes with corre-
sponding object category labels in every frame. For instance de-
tection, we are interested only in instances of objects that we have
detected. We therefore use frame-to-frame bipartite graph match-
ing between bounding boxes of objects in the same category. We
use the Hungarian algorithm with pairwise cost (clamped to 1)
based on distances between object bounding boxes. Since Faster
R-CNN fails to detect objects under severe occlusions, we use a
KCF tracker [HCMB12] to keep tracking these missing objects (see
Fig 5). To account for the cases when people grasp and hold objects,

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

372

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

if the hand was within 1.5 times of the object diameter, we assume
that it was grasped. In case the methods above fail to reliably detect
the object, we maintain a static bounding box.

We use the camera matrix calibrated using the checkerboard to in-
fer object position from the bottom center of its bounding box in
screen space. To infer the object state we train a classifier on the
content of each bounding box by using the fly-around sequences
that were obtained along with the videos. Each fly-around video
only shows an object in one particular state. Furthermore, we use
one of the videos where the object is shown as part of an interac-
tion, i.e., we annotate object state changes and use all intermediate
frames as training examples. In particular, we train a linear SVM
over the features of pre-trained VGG-16 convolutional neural net-
work [SZ14] to predict the object state.

5.2. Hand Detection

We assume that interactions are caused by human hands since they
are responsible for a majority of actions in typical environments.
Our goal is to infer which objects are manipulated by the hand as
well as to infer object position when it is occluded by the hand. To
this end, we detect 2D position of hands in the input videos. We
found that Faster R-CNN is not effective at detecting hands, due
to articulations, self-occlusions, and occlusions by objects. There-
fore, we use a fully convolutional neural network (FCN) architec-
ture developed for segmentation [LSD15]. We pre-train the FCN on
hand masks from the GTEA dataset [FRR11] and then fine-tune on
50 frames with segmented hands from our dataset. We then run the
FCN on every frame generating per-pixel masks of hands for every
video frame. Finally, we compute the hand position as the centroid
from the hand mask. Hand detection and object motions allow us
to infer the hand state (empty, occupied), which changes once our
tracking procedure detects that an object was grasped.

5.3. Action Segmentation

To generate action labels for each frame in our videos, we need to
identify involved actions as well as infer the start and end times
of each action (i.e., action segmentation). For action segmentation,
we adopt a two phased approach similar to Lea et al. [LVH16]:
(1) extract meaningful image features for each frame, (2) use the
extracted features to classify action labels for each frame and seg-
ment the actions. We first downsample our video data to reso-
lution 640×360 and a framerate of 12 fps. For feature extrac-
tion, we modified the VGG-16 [SZ14] network to take a pair
of RGB and motion images as the input, thereby utilizing both
spatial and temporal information [LVRH16]; we use the output
of block 5 as feature for each frame. The motion images con-
sist of the difference images of 4 adjacent frames, such that for
frame k, denoted by Ik, the motion image is the concatenation of
[Ik−1− Ik, Ik+1− Ik, Ik−2− Ik, Ik+2− Ik]. The VGG-16 network is
pretrained on the MS COCO dataset [LMB∗14] and further fine-
tuned on our videos for a frame-based action classification task. On
the per-frame action detection task, we obtain an overall 85.04 %
top-1 accuracy on our validation dataset among 22 action cate-
gories. Please see supplementary material for the details of data
annotations.

However, frame-base action classification often suffers from over-

86.9 88.6

96.1 97.0

95.4 96.9

87.4 89.2

91.8 95.8

89.1 88.7

93.4 89.7

94.6 92.6

95.5 97.1

74.1 62.8

94.3 90.7

92.3 90.7

89.1 91.7

92.4 88.0

Frame-wise
Accuracy Edit	Score

Figure 6: The result of our action segmentation for videos in our
validation set. For each row, the top half shows ground truth seg-
mentation while the bottom half shows the prediction result.

Figure 7: A generated motion path and pose change of a grasp
action: the action tuples serve as keyframes to procedurally gener-
ate motion paths based on splines (black line) and to interpolate
between different hand poses that are stored with the object.

segmentation and the lack of local temporal coherence. So, we fur-
ther feed the VGG16-B5 features to a Long Short-Term Memory
(LSTM) network with a cell size of 16 to aggregate temporal infor-
mation temporally. Our LSTM network achieves 85.02 % top -1 ac-
curacy. In addition to frame-wise accuracy, an edit score that takes
into account the number of actions and their relative orders is com-
monly used in action segmentation [LVH16]. Frame-wise classifi-
cation with our VGG-16 network gives an edit score of 52.47 while
the LSTM network achieves an improvement with an edit score
of 68.80 on the validation set. Our choice of the LSTM network
was informed by experiments that showed that even state-of-the-art
methods like Temporal Convolutional Network [LVH16] achieved
lower frame-wise accuracy than our approach.

To further prevent any residual over-segmentation artifacts, we re-
move actions that are shorter than 3 frames and filter actions that in-
volve non-existing object categories in the object detection results.
This post-processing further boosts our method to a 84.41% top-1
accuracy and an edit score of 83.57, which can both be considered
state-of-the-art (Figure 6).

6. Results, Experiments, and Applications

In this section, we show the results of our method and discuss new
applications that are enabled by action plots and our generative
model including animations synthesis, action prediction, and the
motion planning for a robot. We also report the results of a user
study to evaluate the quality of the generated interactions.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

373

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

6.1. Animation Synthesis

Fig. 14 shows the capabilities of our framework for animation syn-
thesis. We capture people interacting with similar objects in a table-
top configuration, but in different environments. We then show how
our Action Plot RNN model learns the causal dependencies of in-
dividual actions and is able to generate novel plausible action se-
quences that were never observed in the data. For the example in
Fig. 7, we show the motion path and articulations of a hand grasp-
ing an orange. Each action tuple can be seen as a key frame in
an interaction sequence, where the corresponding object positions
are used to parameterize spline functions for the animations (bot-
tom row). Furthermore, our framework allows to capture, learn, and
generate discrete state changes for various objects. While for some
objects, e.g., a phone, state changes are only binary, more complex
interactions require multiple state and position updates (e.g., put-
on, bowl, pour).

Our model focuses on learning action sequences, and does not have
a notion of concrete object instances. This allows us to use the gen-
erated action sequence for more objects than were used to train the
RNN. This is shown in Fig. 10. We use the interaction of a bot-
tle and two cups to generate a sequence of two bottles and five
cups. Our action plot RNN also generalizes to new environments
as shown in Fig. 8. Furthermore, our position generation respects
static objects in the scene. While the initial scene (left) does not
have any static objects, the other scenes (middle, right) contain a
plate with cookies, a toaster, a notebook, stacks of books, and a
fruit bowl as static objects, that block the table area for movements.

6.2. Action Prediction

As a causality-aware sequential model of interaction, our Action
Plot RNN intrinsically has the capability to predict the near future
of interactions. Fig. 11 shows an interaction prediction experiment
to showcase this capability. To continue an interaction sequence
observed in a video, we first select a timestep as the starting point
for the prediction. For the known sequence of the video, we ob-
tained the action labels and the active objects through our action
segmentation model described in Section 5 and track all objects to
store their states and positions. We then initialize the cell state of
the RNN by using the observed data as input. This conditions the
network on the action sequences and the available objects in the
video. Finally, we generate an action plot by associating the tracked
positions with the provided action labels of the known part of the
video; for the predicted action labels we generate new object po-
sitions by employing our motion model described in Section 4.2.
Fig. 11 shows the captured video (first row), the reconstructed
sequences (second row), and two generated sequences (third and
fourth row). While all sequences start with the same interactions
for the first half of the sequences (indicated by the black line), the
generated sequences diverge by showing different, but plausible in-
teractions for the scene. Fig. 12 further visualizes the probabilities
among the possible actions. Our model can give good action pre-
dictions with high confidence for consecutive relevant motions, e.g.
the sequence shown in the Fig. 12 (move bottle close to cup, pour
bottle to cup, move bottle back, then use cup).

To further evaluate the accuracy of action prediction, we evaluated

Figure 8: An example of using the same generated action plot in
multiple scenes. As the action plots only define interactions in ab-
stracted from, we can replace objects by other – semantically sim-
ilar – shapes (e.g., bottle and milk box). The position generation
respects static objects in the scene. While the initial scene (left)
does not have any static objects, the other scenes (middle, right)
contain a plate with cookies, a toaster, a notebook, stacks of books,
and a fruit bowl, that block the table area for movements.

Figure 9: State transitions for some objects: the action plot RNN
is able to learn state transitions. Depending on the object class, we
learn up to 5 different states. From left to right: cups change from
empty to full and can be stacked, phones switch on and off, books
open and close, and bowls can contain a number of objects.

Figure 10: As our model focuses on the causal dependencies of
actions, but not on concrete object instances, a generated action
sequence can be transferred to animate multiple objects of the same
type. The top right figure shows reconstruction; The bottom shows
transferred results on two bottles and five cups.

our Action Plot RNN using 3 action sequences from test videos in-
volving 113 different actions and covering all the objects and action
modalities. For each action in the action sequence, we feed the ob-
served sequence to our Action Plot RNN and forward it once more
to predict the joint label of action, active object and object state.
The dictionary size of the joint label of action, active object and
object state is 34. We obtained 56.8% on the top-1 accuracy and
88.5% on the top-5 accuracy.

6.3. Simulation and Motion Planning for Robots

Our proposed method has applications beyond generating anima-
tions. In this section, we describe a proof-of-concept investigating

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

374

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

Figure 11: We use our Action Plot RNN for continuing the interac-
tions observed in a video (top). Our model allows to reconstruct the
interaction sequence (second row) and predicts plausible actions
(third and fourth row). Colored bars show the manually labeled
interactions in the video, the result of the action segmentation, and
the generated sequences. The black line in the action plots indicates
the time before (left half) and after the sequences diverge. (right
half). The ∗ indicates the position of the frame in the sequence.

the application of our method on smart and reactive environments.
The goal of such environments is not only to detect human activi-
ties but also to react to them. An important requirement is the abil-
ity to predict time critical reactions a few seconds ahead [SS15].
To demonstrate the effectiveness of our method in these situations,
we developed a smart cup. We extended the capabilities of an ordi-
nary cup by building a robot cup which is equipped with a remote
controlled differential drive.

We implemented a simple reactive control algorithm using our
method. The physical motion of the cup is computed fast using
OpenMP [ŞMK12] framework and executed with a PID controller.
Our object detection, state estimation, and Action Plot RNN all run
at an interactive rate of 3 fps. We use the Action Plot RNN to pre-
dict future states of objects and human actions to control the robot.
If the Action Plot RNN predicts an action which uses the cup as
an object, we react to it based on the type of interaction involved
(see Fig 13). Unary interactions do not involve direct hand–object
manipulation but only describe indirect intent, binary interactions
involve direct hand–object manipulation, and ternary interactions
involve hand interacting with multiple objects.

In Fig 13, Return Home is an example of a unary interaction where
our algorithm does not predict any direct action due the hand. How-
ever, the cup is not at a highly likely position (as described by our
time-independent GMM) and therefore it moves to a higher likeli-
hood position. Summon Cup (row 2, left) is an example of binary
interaction where our method predicts a possible grasp of the cup
by the hand. Therefore, the smart cup moves in the direction of the
hand to prevent users from needing to overreach. However, if our
method detects that the hand is previously holding a book (row 2,
right), the smart cup does not reach since the physical constraint
of holding only one object at a time is implicitly learned by our

Figure 12: Based on the current scene state, the Action Plot RNN
predicts multiple possible actions that can be mapped to the de-
tected objects in the scene. The agent selects one of the possible
actions and the scene transitions to the next state, then the process
starts over.

method. Finally, Summon Cup to Pour (rows 3 and 4) show exam-
ples of ternary interactions where the hand, smart cup, and a bottle
interact in more complex ways. When a filled bottle is moved, the
smart cup automatically positions itself for easier pouring. How-
ever, when we detect that the bottle is empty, the smart cup does
not react. This level of semantic planning is only possible with an
understanding of complex human–object interactions.

6.4. User Study

Evaluating actions generated by our method presents a challenge
since there is no correct sequence of actions but only plausible
ones. Since this is subjective, we conducted a user study to eval-
uate plausibility, i.e., are the motions generated by our method
physically accurate and follow causal dependencies in actions. We
presented participants with randomly chosen animation sequences
rendered from several action plots and asked them to rate plausi-
bility in a seven-level Likert scale. The presented action plots were
randomly chosen from three conditions: (1) random action plots
with no causal dependencies and physical constraints, (2) action
plots reconstructed from real videos, and (3) action plots gener-
ated by our action plot RNN. Each user was presented with 16 an-
imations in random order chosen from a set of 24 animations (8
from each action plot type). In total, 35 users (12 female, mean
age was 27.9 with a stddev of 6.2) participated in our study which
was administered online. The mean plausibility scores (1-strongly
agree, 7-strongly disagree) were 5.1 (std=0.5, median=5.2) for
random action plots, 2.7 (std=1.3, median=2.4) for reconstructed
action plots, and 2.9 (std=0.7, median=2.6) for generated action
plots. Two two-tailed student t-tests rejected the null hypotheses
that either the reconstructed or the generated animation sequences
came from the same distribution as randomly generated animations
(p < 0.003). Furthermore, no statistically significant difference in
user preference was found between the reconstructed and gener-
ated sequences. This indicates that our method is able to generate
action plots that capture the causality and physical constraints of
real world actions.

7. Implementation and Performance

We now discuss the performance and runtime details of our imple-
mentation which will be publicly released.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

375

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

Figure 13: We use our model in order to predict future human–
object interactions and use these predictions in semantic planning
of a robot cup. In summon cup (left), our method predicts grasp-
ing action and cup moves in the direction of the hand. Although
hand does a similar motion in summon cup (right), the cup does
not move since the hand is occupied with a book and our method
does not predict grasp. In summon cup to pour (top), our method
predicts pour-to action hence cup comes near the bottle. Similarly,
in (bottom), bottle does a similar motion; however, our method does
not predict pour-to since the bottle is empty. Hence, the cup stays
put. In return home, our model does not predict an action but pre-
dicts a very low likelihood for the position of the cup; hence, cup
moves to somewhere more likely when all agents leave the scene.

Objects and Actions: We use 8 different object classes (bottle,
bowl, cup, laptop, book, phone, orange, banana) and implemented
11 action modalities (idle, move, pour, drink, open, close, turn,
turn-on, turn-off, use). In total, we have 22 unique interactions.
While the most common action modalities are important for almost
all interactions, i.e., move hand and move object, others are used
to initiate more complex state changes, e.g., pour, open, turn-off.
Please see supplementary materials for more statistics.

Scenes and Animations: Based on the scene description, we pop-
ulate a 3D environment (table-top setting) with objects as observed

in the input videos. We define scenes, by specifying the number
and class of objects and their states. Furthermore, by detecting ob-
ject type and location, we can use a scene synthesis database (e.g.,
Fisher et al. [FSL∗15] to automatically populate scenes with ob-
jects of the specified class. An action tuple describes an action to
manipulate up to two participating objects. Simple actions, such as
a move, can be resolved by selecting the object and by generating a
new position based on the GMMs. More complicated actions, such
as pour, put-on, or use, are handled individually. For a pour ac-
tion we place the end location of the bottle to the top center of the
bounding box of the participating cup and compute a rotation axis
as the cross product of the direction vector and the up-axis. Simi-
larly, we implement the other actions, e.g., for stacking objects or
moving objects into containers.

Hand Articulations: While we detect the position of the hand,
estimating hand articulation is a highly challenging problem
[SOT13] which we do not address. We instead focus on plausible
hand articulations that make the synthesized animations realistic.
To this end, we created a high resolution fully rigged and textured
model of the hand. We use a reduced set of 26 degrees of freedom
to control the articulations of the hand. For each category of object
in our database, we used the Leap Motion controller to create a few
exemplar grasps that can be used to hold the object. We then use
the action transitions in the action plot to smoothly transition from
different hand grasps using linear interpolation. The resulting ani-
mations (shown in the supplementary video) exhibit realistic hand
motion without the need for full hand pose estimation.

Action Reconstruction: To reconstruct interaction sequences
from video, we track the type, instance, and location of all objects
in the scene. We iterate over the action labels provided with the
video and keep track of state and position updates of the objects
that change their location or state. Finally, we create action tuples
and store them in a sequential order in the action plot.

Performance: For rendering animations, we implemented a frame-
work in C++ using OpenGL on a desktop computer with an Intel
Xenon CPU clocked at 3.7 GHz and 32 GB of RAM. We did not
specifically optimize our code and rendered all results in our frame-
work. We train the Action Plot RNN with 1000 epochs which allows
the loss to converge within 30 minutes. Querying the network to
generate 100 action events takes around 300 ms.

8. Limitations and Future Work

This work is the first step towards generating plausible dynamic
virtual environment where agent actions are driven by semantic
context. This problem requires jointly modeling functional and ge-
ometric aspects of the world as well as human intent, and thus
many open challenges remain. First, while our current formula-
tion of dynamic interactions into action plots makes the problem
more tractable but also prevents us from modeling explicit physical
laws. For instance, not every action in a plot might be physically
plausible. Similarly, the scene description and the involved poten-
tial state changes due interactions are also essential for long-term
planning of more structured actions. At a lower level, our method
is currently limited by the restrictions imposed by capturing data
from video. We do not include the orientation of objects in our ac-
tion plot formulation. Finally, understanding high-level human in-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

376

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

Figure 14: Two examples highlighting the capabilities of our framework for animation synthesis. We capture videos of people interacting
with objects in a table-top setup. Our method learns the causal dependencies of the individual actions from the videos (input videos) and
allows to reconstruct the observed interactions (reconstructed sequence). Moreover, we generate novel interaction sequences (generated
sequence) using similar objects. The colored bar under each sequence represents the ground truth labels of actions in the observation (input
video), the result of the action segmentation (reconstructed sequence) and the synthesized actions (generated sequence). The numbers in the
action plots indicate the frame (left to right) corresponding to this action. For the sequence at the top we also animate the hand.

tent (e.g., make breakfast) is currently not a capability we enable
because of the longer time horizons invovled in these activities.
While our model is currently not able to handle these cases, it can
enable such semantic reasoning in the future.

9. Conclusion

We introduce a new generative model that learns to synthesie plau-
sible human–object interactions that respect causal dependencies
and physical constraints in interaction sequences. We encode in-
teractions compactly using an action plot that describes a tempo-
rally sequence of atomic actions along with object positions, states
and categories. We use this representation to learn interaction se-
quences by observing real interactions from videos. Given the ini-
tial state of a scene, our Action Plot RNN allows to predict actions
by learning transition probabilities to subsequent states. By sam-
pling the latent space of the RNN, we can generate new interac-
tion sequences with similar properties as to those observed in the
videos. We animate the interactions by parameterizing their state
changes and motion transitions. This allows to generate plausible
3D animations of both hand–object and object–object interactions
useful for creating content for synthetic scenes. It also enables pre-
viously unseen capabilities in complex motion planning for a robot
in smart environments.

Acknowledgements

This research was supported by a grant from Toyota-Stanford Cen-
ter for AI Research, NSF grant CCF-1514305, a Vannevar Bush
Faculty Fellowship, and A Google Focused Research Award.

References
[AvdP16] AGRAWAL S., VAN DE PANNE M.: Task-based locomotion.

ACM Trans. Graph. 35, 4 (2016), 82:1–82:11. 3

[BAR06] BAR-AVIV E., RIVLIN E.: Functional 3d object classification
using simulation of embodied agent. BMVC, pp. 307–316. 3

[BSL12] BAI Y., SIU K., LIU C. K.: Synthesis of concurrent object
manipulation tasks. ACM Trans. Graph. 31, 6 (2012), 156:1–156:9. 3

[CGCB14] CHUNG J., GULCEHRE C., CHO K., BENGIO Y.: Empiri-
cal evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014). 2, 4

[CH07] CHAI J., HODGINS J. K.: Constraint-based motion optimization
using a statistical dynamic model. ACM Trans. Graph. 26, 3 (2007). 3

[CVMBB14] CHO K., VAN MERRIËNBOER B., BAHDANAU D., BEN-
GIO Y.: On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259 (2014). 2, 4

[DS13] DANTAM N., STILMAN M.: The motion grammar: Analysis of a
linguistic method for robot control. IEEE Transactions on Robotics 29,
3 (2013), 704–718. 3

[EBMM03] EFROS A. A., BERG A. C., MORI G., MALIK J.: Recog-
nizing action at a distance. 2

[FRR11] FATHI A., REN X., REHG J. M.: Learning to recognize objects
in egocentric activities. 7

[FRS∗12] FISHER M., RITCHIE D., SAVVA M., FUNKHOUSER T.,
HANRAHAN P.: Example-based synthesis of 3d object arrangements.
ACM Trans. Graph. 31, 6 (2012), 135:1–135:11. 3

[FSL∗15] FISHER M., SAVVA M., LI Y., HANRAHAN P., NIESSNER
M.: Activity-centric scene synthesis for functional 3d scene modeling.
ACM Trans. Graph. 34, 6 (2015), 179:1–179:13. 3, 10

[FZ16] FIRE A., ZHU S.-C.: Learning perceptual causality from video.
ACM TIST 7, 2 (2016), 23. 2

[GGDH17] GKIOXARI G., GIRSHICK R., DOLLÁR P., HE K.: Detecting
and recognizing human-object interactions. CoRR (2017). 3

[HCMB12] HENRIQUES J. F., CASEIRO R., MARTINS P., BATISTA J.:
Exploiting the circulant structure of tracking-by-detection with kernels.
In ECCV (2012), Springer, pp. 702–715. 6

[HHP17] HERATH S., HARANDI M., PORIKLI F.: Going deeper into
action recognition: A survey. IVC 60 (2017), 4 – 21. 2

[HLL16] HYUN K., LEE K., LEE J.: Motion grammars for character
animation. In CGF (2016), vol. 35, pp. 103–113. 3

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

377

He Wang et al. / Learning a Generative Model for Multi-Step Human–Object Interactions from Videos

[HvKW∗16] HU R., VAN KAICK O., WU B., HUANG H., SHAMIR A.,
ZHANG H.: Learning how objects function via co-analysis of interac-
tions. ACM Trans. Graph. 35, 4 (2016), 47:1–47:13. 3

[KCGF14] KIM V. G., CHAUDHURI S., GUIBAS L., FUNKHOUSER T.:
Shape2pose: human-centric shape analysis. ACM Trans. Graph. 33, 4
(2014), 120:1–120:12. 3

[KGS13] KOPPULA H. S., GUPTA R., SAXENA A.: Learning human
activities and object affordances from rgb-d videos. Int. J. Rob. Res. 32,
8 (2013), 951–970. 2

[LCK∗14] LIU T., CHAUDHURI S., KIM V. G., HUANG Q.-X., MITRA
N. J., FUNKHOUSER T.: Creating Consistent Scene Graphs Using a
Probabilistic Grammar. Trans. on Graph. (Proc. of SIGGRAPH Asia)
33, 6 (2014). 3

[LK05] LAU M., KUFFNER J. J.: Behavior planning for character ani-
mation. ACM, pp. 271–280. 3

[LL04] LEE J., LEE K. H.: Precomputing avatar behavior from human
motion data. pp. 79–87. 3

[LMB∗14] LIN T.-Y., MAIRE M., BELONGIE S., HAYS J., PERONA P.,
RAMANAN D., DOLLÁR P., ZITNICK C. L.: Microsoft COCO: Com-
mon Objects in Context. Cham, 2014, pp. 740–755. 6, 7

[LMSR08] LAPTEV I., MARSZALEK M., SCHMID C., ROZENFELD B.:
Learning realistic human actions from movies. 2

[LSD15] LONG J., SHELHAMER E., DARRELL T.: Fully convolutional
networks for semantic segmentation. CVPR (2015). 2, 7

[LVH16] LEA C., VIDAL R., HAGER G. D.: Learning convolutional
action primitives for fine-grained action recognition. In ICRA (2016),
IEEE, pp. 1642–1649. 7

[LVRH16] LEA C., VIDAL R., REITER A., HAGER G. D.: Temporal
Convolutional Networks: A Unified Approach to Action Segmentation.
ArXiv e-prints (2016). arXiv:1608.08242. 2, 7

[LWH∗12] LEVINE S., WANG J. M., HARAUX A., POPOVIĆ Z.,
KOLTUN V.: Continuous character control with low-dimensional em-
beddings. ACM Trans. Graph. 31, 4 (2012), 28:1–28:10. 3

[LZW∗15] LIU Z., ZHANG Y., WU W., LIU K., SUN Z.: Model-driven
indoor scenes modeling from a single image. In GI (2015), pp. 25–32. 3

[LZZ18] LIANG W., ZHU Y., ZHU S.-C.: Tracking occluded objects and
recovering incomplete trajectories by reasoning about containment rela-
tions and human actions. In AAAI Conference on Artificial Intelligence
(AAAI) (2018). 2

[LZZZ16] LIANG W., ZHAO Y., ZHU Y., ZHU S.-C.: What is where:
Inferring containment relations from videos. In IJCAI (2016), pp. 3418–
3424. 2

[ME02] MOORE D., ESSA I.: Recognizing multitasked activities from
video using stochastic context-free grammar. In AAAI/IAAI (2002),
pp. 770–776. 3

[MLZ∗16] MA R., LI H., ZOU C., LIAO Z., TONG X., ZHANG H.:
Action-driven 3d indoor scene evolution. ACM Trans. Graph. 35, 6
(2016), 173:1–173:13. 3

[MSFF17] MOTTAGHI R., SCHENCK C., FOX D., FARHADI A.: See
the glass half full: Reasoning about liquid containers, their volume and
content. arXiv preprint arXiv:1701.02718 (2017). 3

[MSL∗11] MERRELL P., SCHKUFZA E., LI Z., AGRAWALA M.,
KOLTUN V.: Interactive furniture layout using interior design guidelines.
ACM Trans. Graph. 30, 4 (2011), 87:1–87:10. 3

[MSSH14] MAJEROWICZ L., SHAMIR A., SHEFFER A., HOOS H. H.:
Filling your shelves: Synthesizing diverse style-preserving artifact ar-
rangements. TVCG 20, 11 (2014), 1507–1518. 3

[PJZ11] PEI M., JIA Y., ZHU S.-C.: Parsing video events with goal
inference and intent prediction. pp. 487–494. 2

[PKH∗17] PIRK S., KRS V., HU K., RAJASEKARAN S. D., KANG H.,
YOSHIYASU Y., BENES B., GUIBAS L. J.: Understanding and exploit-
ing object interaction landscapes. ACM Trans. Graph. 36, 3 (2017),
31:1–31:14. 3

[PRB∗18] PUIG X., RA K., BOBEN M., LI J., WANG T., FIDLER S.,
TORRALBA A.: Virtualhome: Simulating household activities via pro-
grams. In CVPR (2018). 3

[QHWZ17] QI S., HUANG S., WEI P., ZHU S.-C.: Predicting human ac-
tivities using stochastic grammar. In International Conference on Com-
puter Vision (ICCV), IEEE (2017). 3

[RA09] RYOO M. S., AGGARWAL J. K.: Spatio-temporal relationship
match: Video structure comparison for recognition of complex human
activities. 2

[RHGS15] REN S., HE K., GIRSHICK R. B., SUN J.: Faster R-CNN:
towards real-time object detection with region proposal networks. CoRR
(2015). 2, 6

[SCH∗14] SAVVA M., CHANG A. X., HANRAHAN P., FISHER M.,
NIESSNER M.: Scenegrok: Inferring action maps in 3d environments.
ACM Trans. Graph. 33, 6 (2014), 212:1–212:10. 3

[SCH∗16] SAVVA M., CHANG A. X., HANRAHAN P., FISHER M.,
NIESSNER M.: Pigraphs: Learning interaction snapshots from obser-
vations. ACM Trans. Graph. 35, 4 (2016), 139:1–139:12. 1, 3

[SHL∗14] SHARF A., HUANG H., LIANG C., ZHANG J., CHEN B.,
GONG M.: Mobility-trees for indoor scenes manipulation. CGF 33,
1 (2014), 2–14. 3

[SMH11] SUTSKEVER I., MARTENS J., HINTON G. E.: Generating text
with recurrent neural networks. In ICML (2011), pp. 1017–1024. 4

[ŞMK12] ŞUCAN I. A., MOLL M., KAVRAKI L. E.: The Open Motion
Planning Library. IEEE Robotics & Automation Magazine 19, 4 (2012),
72–82. 9

[SOT13] SRIDHAR S., OULASVIRTA A., THEOBALT C.: Interactive
markerless articulated hand motion tracking using rgb and depth data.
In ICCV (2013), pp. 2456–2463. 10

[SPYZ11] SI Z., PEI M., YAO B., ZHU S.-C.: Unsupervised learning of
event and-or grammar and semantics from video. pp. 41–48. 2

[SS15] SENER O., SAXENA A.: rcrf: Recursive belief estimation over
crfs in rgb-d activity videos. Citeseer. 2, 9

[SXZ∗12] SHAO T., XU W., ZHOU K., WANG J., LI D., GUO B.: An
interactive approach to semantic modeling of indoor scenes with an rgbd
camera. ACM Trans. Graph. 31, 6 (2012), 136:1–136:11. 3

[SZ14] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. CoRR (2014). 7

[WLO∗14] WON J., LEE K., O’SULLIVAN C., HODGINS J. K., LEE
J.: Generating and ranking diverse multi-character interactions. ACM
Transactions on Graphics (TOG) 33, 6 (2014), 219. 3

[WZZZ17] WEI P., ZHAO Y., ZHENG N., ZHU S.-C.: Modeling 4d
human-object interactions for joint event segmentation, recognition, and
object localization. IEEE Trans. Pattern Anal. Mach. Intell. 39, 6 (2017),
1165–1179. 3

[XCF∗13] XU K., CHEN K., FU H., SUN W.-L., HU S.-M.:
Sketch2scene: Sketch-based co-retrieval and co-placement of 3d mod-
els. ACM Trans. Graph. 32, 4 (2013), 123:1–123:15. 3

[YDY15] YU L.-F., DUNCAN N., YEUNG S.-K.: Fill and transfer: A
simple physics-based approach for containability reasoning. In Proceed-
ings of the IEEE International Conference on Computer Vision (2015),
pp. 711–719. 3

[YKH04] YAMANE K., KUFFNER J. J., HODGINS J. K.: Synthesiz-
ing animations of human manipulation tasks. ACM Trans. Graph. 23, 3
(Aug. 2004), 532–539. 3

[YLFA15] YANG Y., LI Y., FERMÜLLER C., ALOIMONOS Y.: Robot
learning manipulation action plans by" watching" unconstrained videos
from the world wide web. In AAAI (2015), pp. 3686–3693. 3

[YYT∗11] YU L.-F., YEUNG S.-K., TANG C.-K., TERZOPOULOS D.,
CHAN T. F., OSHER S. J.: Make it home: Automatic optimization of
furniture arrangement. ACM Trans. Graph. 30, 4 (2011), 86:1–86:12. 3

[ZZZ15] ZHU Y., ZHAO Y., ZHU S.-C.: Understanding tools: Task-
oriented object modeling, learning and recognition. pp. 2855–2864. 2

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

378

http://arxiv.org/abs/1608.08242

