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RGB2AO: Ambient Occlusion Generation from RGB Images
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Figure 1: Ambient Occlusion (AO) generation from a single image with our RGB2AO framework. Given an RGB image (left), our model
automatically generates an ambient occlusion map (center). We show two applications of applying the generated AO map effect: image
composition (in the first row) and geometry-aware contrast enhancement (in the second row) on the right. The input images are from Adobe
Stock. (best viewed with zoom.)

Abstract

We present RGB2AO, a novel task to generate ambient occlusion (AO) from a single RGB image instead of screen space buffers
such as depth and normal. RGB2AO produces a new image filter that creates a non-directional shading effect that darkens
enclosed and sheltered areas. RGB2AO aims to enhance two 2D image editing applications: image composition and geometry-
aware contrast enhancement. We first collect a synthetic dataset consisting of pairs of RGB images and AO maps. Subsequently,
we propose a model for RGB2AO by supervised learning of a convolutional neural network (CNN), considering 3D geometry
of the input image. Experimental results quantitatively and qualitatively demonstrate the effectiveness of our model.

CCS Concepts
e Computing methodologies — Image-based rendering;

1. Introduction the regions in the image where the local scene geometry is concave,

where neighboring surfaces shadow or occlude part of the ambient
Ambient occlusion (AO) [CT82,ZIK98] is an important rendering lighting. AO-based rendering is highly effective in adding realistic
technique in 3D computer graphics that significantly improves the shading to renders that otherwise often look flat due to the lack

visual quality of renders. Ambient occlusion works by darkening
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of physically accurate global illumination effects. This technique
has thus received much attention in the graphics community since
its inception. It has benefited from multiple improvements to its
efficiency, leading to its widespread use in real-time applications
such as video games [Fer04, AMHHOS].

Interestingly, the idea of applying ambient occlusion has been
appreciated in other areas beyond 3D computer graphics. Profes-
sional artists working with 2D content have also developed creative
techniques leveraging AO-like information to enhance the realism
and impression of their artworks, such as photographs, painting,
and illustrations. In particular, it has been demonstrated that ap-
plying AO-like shading effect in RGB images in the wild would
enable multiple practical applications [Lan09, Sam10], such as the
ones shown in Fig. 1:

e 2D image composition: simply pasting an object (e.g., cars,
boxes, and bottles) onto a background image (e.g., road and ta-
ble) would look like the object is floating mid-air in the image.
Adding AO around the inserted object would make the compos-
ite visually pleasing.

e Geometry-aware contrast enhancement: it can be used to
(de)emphasize or exaggerate the geometry in a photograph, pro-
viding a user control on perceivable depth.

Conventional techniques for computing AO, however, require 3D
information about the scene such as depth buffers, surface normals,
or even the whole scene geometry [AMHHO08, HSK16, BSDO0S].
As such, these AO techniques are limited to the rendering of 3D
scenes and cannot generate AO from RGB images. To achieve
the aforementioned effects for 2D image composition and con-
trast enhancement, artists often need to manually construct the AO
information themselves through a tedious AO map painting pro-
cess [Sam10,Marl8, Dorl6].

This paper introduces the novel task of AO generation from a sin-
gle RGB image, so that it applies to 2D image editing applications
that we have described above. One possible approach to this task
would be to compute depth information from the input image with
monocular depth estimation methods [CFYD16, LS18, LRSK19]
and apply conventional screen-space AO generation from it to ob-
tain the AO map. In our experiments, however, we found this simple
approach fails to generate sound AO maps. We observe that while
state-of-the-art depth prediction performance has rapidly improved
recently, the depth prediction results are still coarse and not accu-
rate enough to be used with existing screen-based approaches that
typically assume ground-truth depth values.

In this paper, we present RGB2AO, a learning-based AO genera-
tion framework that learns to generate the AO map directly from the
input image. Users can then use the generated AO map for editing
tasks such as compositing or contrast enhancement. We develop our
RGB2AO framework with an image-to-image translation model
based on a convolutional neural network. In addition, our model ex-
tends a recent image-to-image translation model to account for the
3D geometry of scenes. We also explore data augmentation strategy
that is specific and beneficial to AO generation. Our contributions
encourage the network to learn to predict an accurate AO map from
an RGB input alone.

A key challenge for single image AO generation is the lack of

data with ground-truth AO maps for training. To address this chal-
lenge, we contribute a large-scale synthetic dataset with thousands
of RGB-AO pairs. We construct our dataset from a large number
of high-quality 3D scenes that we render realistically. Experimen-
tal results show that our model can produce more favorable results
compared to existing methods quantitatively.

In summary, our contributions are as follows:

e We introduce the novel task of image-based ambient occlusion
generation. To this end, we develop a CNN-based AO generation
model considering the 3D geometry of the scenes. To the best of
our knowledge, we provide the first approach to infer AO from a
single RGB image automatically.

e We contribute a large-scale dataset dedicated to AO generation.
This dataset consists of a large number of images with associated
accurate ground-truth AO maps.

e We demonstrate the effectiveness of our RGB2AO framework
in the application of our AO generation as a filter for 2D image
composition and geometry-aware contrast enhancement.

2. Related Work
2.1. Ambient Occlusion

Ambient occlusion (AO) [CT82, ZIK98] is a fast global illumi-
nation model that approximates the amount of light reaching a
point on a surface considering occlusion by objects and surfaces
around them. With reduced computational cost compared to ray-
tracing, AO can produce realistic lighting effects such as soft shad-
ows around objects. Real-time AO computation usually requires
2D depth and normal buffer input with respect to the camera view-
point. AO generation algorithms usually randomly sample nearby
pixels and infer AO for each pixel independently. Many algorithms
have been proposed to achieve a good tradeoff between accuracy
and speed, such as SSAO [Mit07,SA07], HBAO [BSDOS], and AS-
SAO [MOBHI11]. AO was generalized to directional occlusion by
Ritschel et al. [RGS09], adding directional shadows and color to
the original AO darkening effect. Other similar perceptual effects
using only the depth buffer were proposed, such as the unsharp
masking operator [LCDO6].

Recently, data-driven methods using neural networks have been
proposed for AO generation, e.g., NNAO [HSK16] and Deep Shad-
ing [NAM™17]. They perform better than classical AO computation
methods in the same runtime. In NNAO, the authors first collected
a large number of paired depth/normal buffers and AO maps and
trained a multi-layer perceptron (MLP). Deep Shading [NAM™17]
confirms that CNN is better than MLP or classical methods for AO
generation, in that it allows larger receptive fields through a stack
of convolution and down-sampling layers. Our approach and those
approaches are similar in spirit in employing neural networks for
predicting the screen-space AO effect. However, those methods as-
sume access to accurate screen-space buffers such as depth and nor-
mal. In contrast, our RGB2AO directly generates screen-space AO
without an accurate estimation of normal and depth.

2.2. Intrinsic Image Decomposition

Intrinsic image decomposition [LM71] separates an image into
a reflectance layer and a shading layer. Recent methods such
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as [BBS14,YYS*17] show promising results on real-world scenes.
However, there is no clear way to extract AO from their shading
estimation. Although shading and AO have an almost similar look
under spatially uniform and non-directional lighting, our focus is
on AO generation in real-world scenes that contain a diverse set
of materials and objects lit by complex illumination. [HWBS15]
detects AO from multiple images captured with varying illumina-
tion. [BM14] detects normal, reflectance, and illumination from
shading. In comparison, our proposed method focuses on gener-
ating the AO of a whole scene from a single image.

Most related to our work, Innammorati et al. [IRWM17] decom-
poses a single RGB image into diffuse albedo, diffuse illumination,
and specular shading and ambient occlusion. Their method aims to
estimate AO that is already present in an image. In contrast, we gen-
erate reasonable AO that is not present by inferring geometry and
semantics. We emphasize that estimation and generation are en-
tirely different tasks. This difference becomes clear in applications
such as image composition, where there is no AO present between
the foreground and background in the image, as shown in Sec. 6.1.

2.3. Image Editing

Image Composition Image composition is one of the most com-
mon tasks in image editing. In image composition, a foreground
region of one image is extracted and pasted to a background re-
gion of another image. Generating realistic composited images
requires a plausible match for both contexts and appearances.
Given a composited image and a mask to identify the foreground,
image harmonization methods try to match the appearance of
the foreground to that of the background (or vice versa) using
global statistics [RAGS01,LE07,SIMP10, XADR12], gradient do-
main [PGBO03, TJP10], or supervised learning [ZKSE15, TSL*17,
Z71.19]. However, these approaches only modify inside the fore-
ground region and do not consider the effect of placement, such
as occlusion by the placed foreground region itself. For example,
those methods cannot produce the soft shadow underneath a car on
a sunny day. To the best of our knowledge, our RGB2AO is the first
attempt to produce such an effect in image composition.

Image Relighting Lighting estimation from a single image has
long been studied [LENI12]. There has been much progress
in this field thanks to data-driven approaches for both out-
door scenes [HGSH* 17, HGAL19] and indoor scenes [GSY*17,
GSH*19]. Estimated lighting condition is used to photo-
realistically render 3D objects into background images with many
lighting conditions. However, our RGB2AO aims for inserting 2D
objects, and these approaches cannot be applied.

2.4. Depth Estimation

Monocular depth estimation from a single RGB image is a funda-
mental task and has long been studied [SCNO5, EPF14, LSLR15,
LRB*16]. Recent methods try to encourage smoother gradient
changes and sharp depth discontinuities [L.S18] or obtain a model
that generalizes well on datasets unseen during training [LRSK19].
However, estimating depth that is accurate enough to generate AO
on top of it is very hard, as we will later show in Sec. 5.3.
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Figure 2: Overview of how AO is computed. A hemisphere of rays
® is constructed for a given point p on a surface. Red (blue) arrows
are rays that are (not) occluded by surrounding surfaces.

AO map

RGB image (AO off) RGB image (AO on)

Figure 3: Ambient occlusion effect applied to an RGB image. Am-
bient occlusion works by darkening the regions in the image ac-
cording to the local scene geometry. This effect is achieved by mul-
tiplying the AO map (left) to the RGB image (middle) to obtain the
enhanced render (right).

3. AO Formation Model

We briefly summarize how AO is typically computed and used
to approximate global illumination in computer graphics. Given a
surface point p shown in Fig. 2, ambient occlusion illumination
AO(p, i) is defined as follows [SAQ7]:

A0(p.i) = - [ V(@.pymax (0.8 7). ()

where 7 is the surface normal at point p, and V(®, p) € {0,1} is
the visibility function over the normal-oriented hemisphere €, and
V (@, p) is one if a ray starting from p intersects an occluder within
some fixed distance from p and otherwise zero. The range of AO(p)
is 0 <AO(p) < 1, where p is zero when p is fully visible, and p is
one when the whole hemisphere at p is occluded.

Computing integrals in Eq. (1) for each point of a 3D scene is
requires excessive computational cost for real-time rendering. To
generate a plausible AO efficiently for a specific camera viewpoint,
most approaches use information from the screen-space buffers
such as depth and normal of neighboring pixels to speed up the
computation [Mit07, SA07, BSDOS].

Let x € R¥>*#*W pe an RGB image, where H and W represent
height and width of the image. Applying Eq. (1) on each pixel of x,
we obtain its corresponding grayscale AOy € RV An example
of the generated y is shown in Fig. 3. Here, we instead plot the
values of 1 —y for the purpose of intuitive visualization. We call
1 —y the AO map. When applying the AO effect to create a new
image x’ € R¥>*#*W each pixel in x’ is computed by multiplying
its color value by the corresponding pixel in the AO map:

xie=(1—a-yu) xiji . 2
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where i is the index for the channel dimensions, and j, k are the
indices for the pixel dimensions, 0 < a <1 is an arbitrary chosen
scaling factor. When a = 0, the image is not modified (x; ik = Xijk)-
When a = 1, Eq. (2) is reduced to x; . = (1 =) - X;jx-

In the following sections, we describe how we approxi-
mate Eq. (1) by using only RGB information.

4. Proposed Method

We propose an end-to-end trainable neural network model for AO
generation from a single image. First, we describe the baseline ap-
proach following recent conditional GAN methods for image-to-
image translation in Sec. 4.1. We subsequently describe our AO
generation model in Sec. 4.2. We propose two extensions: (i) multi-
task learning of AO and depth prediction (in Sec. 4.2.1) and (ii) data
augmentation that is specific to AO generation (in Sec. 4.2.2).

4.1. Baseline Model

Here we briefly introduce a recent image-to-image translation
model for our baseline. Given a set of images {..., (x;,y;)}, the ob-
jective is to obtain a generator G that converts x to y. To obtain a
better G, conditional GAN methods for image-to-image translation
such as Pix2pix [IZZE17] introduce a discriminator D that aims to
distinguish real images from generated images. Conditional GANs
model the conditional distribution of real images by the following
minimax game:

i D),
me max Lean(G,D), (3)

where the objective function LG4y (G, D) is defined as
L6an(G,D) = E(y y) [logD(x,y)] 4+ Ex[log(1 — D(x,G(x)))], (4)

a
where we use Ex = Ex"‘l’dam X,¥)~ Pdata(X,y)*

To have larger and better receptive field, Pix2pixHD [WLZ* 18]
uses multi-scale discriminators Dy, ..., Dy. An input to D, is down-
sampled by a factor of 2"~! Then, Eq. (3) becomes as follows:

(v and By ) £ B

N

min max L G,Dy). 5
i D]’.“,DNI; 6an (G, Dy) &)

Pix2pixHD [WLZ*18] also introduces a feature matching loss
that matches an intermediate representation of a discriminator from
the real and the synthesized image. Given the i-th layer feature

(@)

extractor of discriminator Dy as Dk'
Lru(G,Dy) is as follows:

, the feature matching loss

T
1 B .
Len(6:D0) =By Y. i (10 x9) = 0 (5,611 ] ©)
i=
where N; indicates the total number of elements in each layer and T’
is the total number of layers. Thus, the full objective is as follows;

N
i D
min << max Z Lean (G, k)) + (xk

N
Dy,....Dy = —

[/FM(Gka)) , (D

where o is a hyper-parameter to balance the two terms.

@ /:\ddition @ Up-sampling  ® Down-sampling

Figure 4: RGB2AO model overview. We develop a fully convo-
lutional network for AO map generation from an input RGB im-
age. We extend a variant of the Hourglass network to enable multi-
task learning, so as to encourage the learned feature to capture
geometry-aware information relevant to the AO generation task.

4.2. AO Generation Model

In this paper, we have a set of triplets {...,(x;,y;,d;)}, where
x; € RI>HXW gy e RUHXW g e RUHXW jndicate an RGB
image, an AO map, and a depth map, respectively. Our objective
is to obtain a best generator G that converts x to y. We extend the
baseline model in Sec. 4.1 in two points that are specific to AO
generation: (i) multi-task learning of AO and depth and (ii) data
augmentation by randomizing AO distribution.

4.2.1. Multi-task Learning of AO and Depth

Simultaneously inferring both AO and depth is beneficial because
ambient occlusion is closely related to 3D geometry of a scene. As
shown in Fig. 4, we introduce a depth estimation model F that takes
x and generates the depth F (x) € RV >W>H For F, we use a similar
CNN with G and share the encoder part for multi-task learning. For
loss functions, we adopt loss functions used in MegaDepth [LS18].

Lp (F) = Liata (F) +Y£gmd (F)v 3

where v is a hyper-parameter and L4 (F) and L4 (F') are called
scale-invariant data term and multi-scale scale-invariant gradient
matching term, respectively.

Scale-Invariant Data Term Let r; be the residual of values
between predicted and ground truth log-depth at pixel position i,
Lara(F) is defined as follows:

2
LiaralF) = % Y ()’ - n% (Zn) : )

i=1 i=1

where 7 is the number of valid depth values in the ground truth
depth maps.

Multi-Scale Scale-Invariant Gradient Matching Term
Leraq(F) is defined as follows:

1
Lyraa(F) = = Y Y (192 + |97}, (10)
ki
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Table 1: Dataset statistics.

Subset #3D scenes  # images
Train 21 7188
Validation 3 397
Test 4 1005

where r{-‘ is the log-depth residual at position i and scale k.

Therefore, the full objective is as follows:

Lyees”N -1 =
an

Here, P is a hyper-parameter to balance the multi-task learning.

4.2.2. AO augmentation

Our synthetic dataset used for training contains RGB images de-
void of AO-like effects. However, those effects are already present
to some unknown extent on real-world images. In order for our
method to generalize to real captured images, we propose to aug-
ment the input RGB images by adding some AO darkening during
training. Formally, we use Eq. (2) to generate a new image, with the
scaling factor a taken from the uniform distribution U (amin , amax)-
We empirically set (@min, dmax) = (0.0,0.5). This AO augmentation
is applied on each image with probability p = 0.75, leaving 25% of
the images without AO effects during training.

4.3. Dataset

To train our data-driven RGB2AO model, triplets of RGB-AO-
depth data are required. We have collected a synthetic dataset since
there is no dataset available. The dataset consists of 8590 triplets
of RGB-AO-depth data in a resolution of 1920 x 1120. The dataset
is rendered from 3D scenes using Maya [Inc19] with Arnold ren-
derer for ray-tracing. Each rendered data has its unique view, and
we manually sample the view to cover a broad range of situations,
as shown in Fig. 5. Most of the scenes come from typical indoor
scenes such as kitchen, living room, and bedroom while we include
some outdoor scenes and non-photorealistic scenes. We also man-
ually compose some scenes that contain objects on the floor or cars
on the synthetic ground to cover possible situations.

For rendering, we use a perspective camera with the focal length
of 18 to make the view wide enough for indoor situations. We set
the “falloff” parameter for the AO in Arnold to 0.2. We found that
using larger values caused the AO to spread very far from the ob-
jects making it harder for the model to infer. In addition to RGB and
AO, we also rendered a screen-space depth buffer to see whether si-
multaneously estimating 3D geometry information benefits the AO
generation.

5. Experiments
5.1. Network Architecture

For the generator G, we used a variant of a hourglass network
used in monocular depth estimation [CFYDI16]. The hourglass

(© 2020 The Author(s)
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N N
min (( max Y EGAN(G,Dk)) +a ) Lru(G,Dy)+ 5ED(F)> :
: =1

network consists of multiple convolutions by a variant of incep-
tion [SLJ*15] and down-sampling, followed by multiple convolu-
tions and up-sampling, interleaved with skip connections. We du-
plicate skip-connection parts and decoder parts for multi-task learn-
ing, as shown in Fig. 4. Since it is a fully convolutional network, it
can be applied to images with arbitrary sizes during the test phase.
For the discriminator D, we used a discriminator which is identical
to the one used in Pix2pixHD [WLZ*18].

5.2. Training

G and D were trained for 100 epochs starting with a learning rate
of 2.0 x 10~* and a batch size of 6 with Adam optimizer [KB15].
We kept the learning rate for the first 50 epochs and then lin-
early decay the rate to zero over the next 50 epochs. It took about
a day for the training to finish. For the hyper-parameters we set
(o, B,y) =(1.0,1.0,0.5) in all the experiments. Since the number of
samples in the dataset is limited, we also performed massive stan-
dard data augmentation to enhance the generalization capability of
our model. We changed contrast, brightness, saturation, and hue of
each image. All the images were resized to 384 x 224. During train-
ing, the images were randomly flipped and cropped to 352 x 192.
During testing, images were center-cropped to 352 x 192 for the
quantitative evaluation.

5.3. AO Generation Performance

We performed the quantitative evaluation on our synthetic dataset
to prove the validity of our model for AO generation. We split the
images in our dataset into train, validation, and test subsets so that
each does not share the same 3D scenes, as shown in Table 1. The
quantitative evaluation was performed on the images with no AO
applied in the test subset.

5.3.1. Evaluation Metrics

We evaluated the performance of AO generation methods by com-
paring the generated AO maps with the corresponding ground-truth
AO maps over the whole testing set. In addition to mean absolute
error (MAE) and mean squared error (MSE), we used the following
evaluation metrics:

e SSIM: Structural similarity (SSIM) index [WBS*04] is widely
used in quantifying the perceptual similarity between two im-
ages. Higher is better.

e [ PIPS: Learned Perceptual Image Patch Similarity (LPIPS) met-
ric [ZIE*18] is a recently developed measure for perceptual
similarity assessment. LPIPS uses features extracted from CNN
trained on a dataset of human perceptual similarity judgments on
image pairs. Lower is better.

5.3.2. Compared Methods

To the best of our knowledge, there is no existing image-based AO
generation method in the literature. In this experiment, we eval-
uated the AO generation performance of our method and com-
pared it with the following methods: (i) screen-space AO methods
on top of monocular depth estimation results or (ii) Innamorati et
al. [IRWM17]’s model originally for AO estimation.
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| e .

Figure 5: Dataset for image-based AO generation. We show some samples from our large-scale synthetic data for AO generation. From top
to bottom: RGB images, AO maps, and depth maps. The data is created from high-quality 3D scenes covering a wide range of scene content.
The images as well as the corresponding AO maps and depth maps are rendered using Maya with the Arnold ray-tracing based renderer.

Depth Estimation + Screen-Space AO We first trained a
monocular depth estimation network, which we call RGB2D for
short, using the same dataset. We further improved the quality of
the generated depth map by applying bilateral filter [TM98] to
smooth the predicted depth values. For training the RGB2D model,
we used the same network with F' to extract depth. Second, we ap-
plied different screen-space AO generation methods on top of the
resulting depth estimation results to obtain the final AO map. We
experimented with the following three variants.

o RGB2D+SSAOQO: We used a traditional AO generation method,
SSAO [SAO07].

o RGB2D+CNN: We used a CNN that is almost similar to G for a
fair comparison. Only the difference is changing the input from
a three-channel RGB image to a one-channel depth map.

o RGB2D (fixed) + CNN: One may argue that monocular depth
estimation methods trained on a mixture of various datasets can
be used to extract fine depth without training on our dataset. We
tested a pre-trained monocular depth estimation method TM-
RDE [LRSK19], which generalizes well to an unseen dataset,
without training.

Innamorati ef al. We compare three methods derived from In-
namorati et al. [IRWM17]’s model.

e Innamorati-est: We directly run publicly available In-
namorati et al.’s model which is trained on their own dataset.

o Innamorati-ft-est: We finetuned Innamorati et al.’s model on
our dataset for AO estimation. Because the task is AO estimation,
we used pairs of RGB with AO and AO as the input and the target
of the model, respectively.

e Innamorati-ft-gen: For a fairer comparison, we finetuned the
model on our dataset for AO generation. We applied the L2

Table 2: Experimental results of AO generation on our synthetic
dataset. | and 1 indicate that lower and higher is better, respec-
tively.

MAE|] MSE| SSIM{T LPIPS |
RGB2D+SSAO 0.0848 0.0193 0.611 0.524
RGB2D+CNN 0.0785 0.0181 0.687 0.484
RGB2D(fixed)+CNN  0.0797 0.0186 0.689 0.549
Innamorati-est 0.0952  0.0215 0.671 0.423
Innamorati-ft-est 0.0655 0.0120 0.764 0.311
Innamorati-ft-gen 0.0668  0.0107 0.763 0.329
Ours 0.0589  0.0103 0.767 0.235

loss to the occlusion output only. We ignored the other outputs
and losses because they are irrelevant or detrimental. For exam-
ple, the reconstruction loss forces the network to detect the AO
present and thus unfairly hurt the network’s ability to generate
missing AO.

5.3.3. Results

Accuracy Quantitative results are shown in Table 2. Our model
outperforms both types of approaches in each metric by a signifi-
cant margin. We show generated AO on an excerpt of the test set
in Fig. 6. The Screen-Space AO approaches fail to capture many of
the details on real images, because they rely heavily on monocular
depth estimation results, which does not capture the high-frequency
details for accurate SSAO computation. This demonstrates the im-
portance of learning a direct RGB-to-AO mapping.

Innamorati et al.-based approaches produce very blurry outputs

(© 2020 The Author(s)
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Figure 6: Comparison of AO generation methods on the test subset of our collected synthetic dataset with no AO present in the input image.
(best viewed with zoom.)

even if the model is finetuned for AO generation. This demonstrates randomly and show the average time on 100 runs on a TITAN V
the importance of the choice of the networks and loss functions GPU. Our model runs at about 15 FPS and 8 FPS for 384 x 224
specialized for AO generation. and 768 x 448 inputs, respectively.

Speed We benchmarked our model on several image resolutions.
Since our model is a fully convolutional network, it can take images
with arbitrary aspect ratios as input. We tested images initialized
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Table 3: An ablation study on our proposed components. (i) and
(ii) indicate AO augmentation (Sec. 4.2.2) and multi-task learning
of AO and depth prediction (Sec. 4.2.1), respectively. |. and 1 indi-
cate that lower and higher is better, respectively.

() (i) MAEJ MSEJ] SSIMt LPIPS ]
0.0622 00110 0748  0.243
v 0.0600 0.0103 0760  0.235
v 00607 00107  0.755 0.241
v v 0058  0.0103 0767  0.235

Table 4: An ablation study on changing amayx in our AO augmen-
tation (Sec. 4.2.2) during training.

Amax 0.0 0.25 0.5 0.75 1.0
SSIM1  0.755 0.762  0.767 0.764 0.762

5.4. Ablation Study
5.4.1. Contribution of Proposed Components

We performed quantitative evaluation by changing components of
our model and the result is shown in Table 3. Both of the two com-
ponents are essential to achieve the best result. Surprisingly, the
model without both AO augmentation and multi-task learning al-
ready clearly surpasses all the compared methods in Table 2. This
is due to our choice of networks and loss functions specific to AO
generation. We performed an ablation study about these choices in
the supplementary material.

5.4.2. AO Augmentation

AO augmentation that we propose in Sec. 4.2.2 has one hyper-
parameter amax, where 0.0 < amax < 1.0, to control the strength
of the AO effect that we apply during training. Bigger amax leads
to include images with much AO effect during training. We tested
different amqx and the result is shown in Table 4. As we increase
amax from 0.0 (no AO effect applied) to increase the AO effect, the
performance was steadily improved until amax = 0.5. However, it
decreased when amqx > 0.5. This indicates that including images
with excessive AO effect is harmful to improve the performance.

6. Applications

AO generation is useful for many image editing and enhancement
tasks. We demonstrate its ability to improve 2D image composi-
tion and for increasing contrast in a geometry-aware manner. We
edit the input RGB image using the generated AO by the simple
element-wise multiplication following Eq. (2). We set the scaling
factor a = 1.0 in Eq. (2) to show all the results in this section. The
experiments are performed on images of size 384 x 224. Larger
input images can be handled by (i) resizing the image to a lower
resolution, (ii) estimating AO, (iii) resizing it back to the original
resolution, and (iv) multiplying the generated AO with the input.
We show some examples of processing high-resolution images in
the supplementary material.

6.1. 2D Image Composition

For image composites to look realistic, the lighting of the in-
serted object must match the background scene. Prior harmoniza-
tion methods such as [TSL*17] have been developed to address
this. Additionally, the object will cast shadows or otherwise affect
the lighting of the scene around it. While lighting estimation meth-
ods have been used to insert 3D objects, inserting 2D objects is
more complicated. With our AO generation, we can address this.
Given a composited image, we can apply the generated AO to make
it look more realistic as the AO will darken the contact regions
around the composited object to simulate the shadows and help
ground the object in the scene.

User Study To evaluate the effectiveness of our image compo-
sition results on real images quantitatively, we performed a user
study. We created a set of 26 images that covers a wide variety
of real examples, where some objects are composited (e.g., cups,
cars, and chairs). Some of the images were taken from the eval-
uation set of Deep Image Harmonization (DIH) [TSL*17]. Some
example results are shown in Fig. 7. To show that our method is
complementary to existing image harmonization methods, we used
the harmonized image by DIH as an input to our RGB2AO model.
We showed the two images to the subject and asked which one
looks more realistic. As a result, a total of 9 subjects participated in
this study, with a total of 324 votes. Our method obtained 80% of
the votes (260 votes) over the compared method, showing a clear
preference for our method on this composition task.

Discussion One limitation of RGB2AO applied to 2D image
composition is that our composition sometimes changes some re-
gions of the background image, where compositing the foreground
region should not affect. For example, in the third and fourth row
of Fig. 7, boundaries between walls and floors were exaggerated
apparently, but the composition of objects should not affect those
regions. A practical solution is to let users choose the region where
the generated AO is multiplied. Extending the current AO genera-
tion to automatically propose regions is a promising research direc-
tion for future work.

6.2. Geometry-Aware Image Contrast

We can apply the generated AO map as an image filter for RGB
images in order to improve image contrast in such a way as to em-
phasize the depth in the image. We enumerate some usages:

Avoiding Flat Look Images without sufficient contrast appear
flat and dull. Applying pixel-level contrast enhancement meth-
ods can improve the image appeal, but might break its overall
coherence. For example, shadows may become either over- or
under-exposed. Instead, our method allows applying contrast in
a geometry-aware manner by using AO to darken the right areas
based on the scene geometry. Some example results are shown in
Fig. 8. For comparison, we also tested an auto-contrast enhance-
ment method, Auto Contrast in Adobe Photoshop. We can see that
our geometry-aware image contrast behaves entirely differently
from Auto Contrast from the second and third columns in Fig. 8.

One may argue that AO estimation can perform similarly on real
photos where no AO is missing. We drop AO augmentation part

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.



N. Inoue & D. Ito & Y. Hold-Geoffroy & L. Mai & B. Price & T. Yamasaki / RGB2AO: Ambient Occlusion Generation from RGB Images

459

|
® 5
N N ]
y_ = P ﬁ%’ — —
- - \ 7
[
A== s
Input (RGB) DIH [TSL*17] DIH [TSL"17] Generated AO

Input (mask)

+ AO magnification

Figure 7: Example results on 2D image composition. Our method adds a plausible shadow-like effect on both the foreground and background
region using the generated AO. Our method is complementary to DIH [TSL* 17], which only changes the appearance inside the foreground
region. Images in the second and third row are from DIH. Images in the first and fourth row from Adobe Stock. (best viewed with zoom.)

from our model and train it for AO estimation using pairs of RGB
with AO on and AO map. We show the result of AO generation and
estimation in the fourth and fifth columns in Fig. 8, respectively.
Real photos can contain full AO if the scenes are lit only by spa-
tially uniform and non-directional lighting. However, real scenes
are usually lit by complex illumination, making the visible AO re-
duced and making the AO estimation difficult, as we can see. Thus,
we believe that AO generation is different from AO estimation even
in real photos, and it is suitable for our downstream application,
geometry-aware contrast enhancement.

Manipulating Non-Photorealistic Images The usage of our
RGB2AO model is not limited to photorealistic RGB images. Some
artists have tried to depict AO-like soft shadows on illustrations
manually by brush or some other tools. In contrast, our RGB2AO
model can do it in a fully-automatic way. Results of manipulated
non-photorealistic illustration images are shown in Fig. 9. We can
see that our model can generate plausible AO on everyday objects
(e.g., chairs, plants, and pots) and scenes (e.g., room).

7. Limitations

One limitation of our RGB2AO model is that the model struggles
on families of objects and scenes that are not under-represented
in the dataset for training. Some examples of the failure cases
are shown in Fig. 10. Collecting larger datasets with more diverse
scenes would alleviate this type of errors.

(© 2020 The Author(s)
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Another limitation is that our RGB2AO can only handle non-
directional shadow-like effects. Augmenting our AO generation
framework with lighting prediction in addition to geometry under-
standing can potentially handle such directional shadow or inter-
reflection. We hope our proposed method paves the way for future
work in this direction.

8. Conclusion

We present RGB2AO, a novel task that generates AO from a sin-
gle RGB image with arbitrary size. Our model for RGB2AO is a
fully convolutional CNN specially designed for this task by extend-
ing an image-to-image translation in two points: data augmentation
specific for AO and joint inference of 3D-geometry information
by multi-task learning. We show that our model can generate AO
adequately. We also apply the generated AO to two image mod-
ification tasks, contrast enhancement and 2D image composition,
and show remarkable results that would not be possible without
our AO-based modification.
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Figure 8: Comparison between our AO-based contrast enhancement and Auto Contrast in Adobe Photoshop. Note how Auto Contrast
changes the global appearance of the image while our technique focuses on darkening object boundaries such as the bottles (red) and under
the sofa (blue) in the first row. AO estimation struggles to detect AO under real photos with complex illumination, such as the boundary
between the wall and the ceiling in the third row. Images in the first and second rows from Adobe Stock. (best viewed with zoom.)
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Figure 9: Results of our RGB2AO on non-photorealistic images.
Images from Adobe Stock.
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