
Eurographics Symposium on Rendering 2020
C. Dachsbacher and M. Pharr
(Guest Editors)

Volume 39 (2020), Number 4

A Scalable and Production Ready
Sky and Atmosphere Rendering Technique

Sébastien Hillaire 1

1Epic Games, Inc

Figure 1: Rendered images of different atmospheric conditions and view points using the method presented in this article. Left to right:
ground views of an Earth-like daytime and Mars-like blue sunset, and space views of an Earth-like planet and an artistic vision of a tiny
planet.

Abstract

We present a physically based method to render the atmosphere of a planet from ground to space views. Our method is cheap to
compute and, as compared to previous successful methods, does not require any high dimensional Lookup Tables (LUTs) and
thus does not suffer from visual artifacts associated with them. We also propose a new approximation to evaluate light multiple
scattering within the atmosphere in real time. We take a new look at what it means to render natural atmospheric effects,
and propose a set of simple look up tables and parameterizations to render a sky and its aerial perspective. The atmosphere
composition can change dynamically to match artistic visions and weather changes without requiring heavy LUT update. The
complete technique can be used in real-time applications such as games, simulators or architecture pre-visualizations. The
technique also scales from power-efficient mobile platforms up to PCs with high-end GPUs, and is also useful for accelerating
path tracing.

CCS Concepts
• Computing methodologies → Rasterization; Ray tracing;

1. Introduction

Rendering natural phenomena is important for the visual simula-
tion of believable worlds. Atmosphere simulation and rendering
is important for applications requiring large open worlds with dy-
namic time of day, or viewing planets from space. Such applica-
tions include games, architectural visualization and flight or space
simulators. However, current methods have limitations: they are ei-
ther restricted to views from the ground, can only represent a sin-
gle atmosphere type, require computationally expensive updates of
lookup tables (LUTs) when atmospheric properties are changed, or
can even exhibit visual artifacts.

We present a method to render a planet’s sky and aerial perspec-

tive from a physically based representation of the atmosphere’s par-
ticipating medium in real time. Our contributions in this paper are
the following:

• We propose a sky and aerial perspective rendering technique re-
lying on LUTs to evaluate expensive parts of the lighting integral
at lower resolution while maintaining important visual features.
• We propose a novel way to evaluate the contribution of light mul-

tiple scattering in the atmosphere. It can approximate an infinite
number of scattering orders and can also be used to accelerate
path tracing.
• The technique supports dynamic time of day along with dynamic

updates of the atmospheric properties, all while rendering effi-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14050

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-4930-4334

S. Hillaire / Production Ready Atmosphere Rendering

ciently on a wide range of devices, from a low-end Apple iPhone
6s to consoles and high-end gaming PCs.

This method is used in Epic Games’ Unreal Engine†. In this pa-
per, we will be using photometric units (luminance/illuminance)
instead of radiometric units (radiance/irradiance). This due to the
prevalence of these terms in modern game engines [LdR14].

After reviewing previous work in Section 2, we briefly describe
participating media rendering (with a focus on the atmospheric
case) in Section 3. The atmospheric material model used in this
paper is presented in Section 4, and our atmosphere rendering tech-
nique is detailed in Section 5. Results and comparisons to a path-
traced ground truth and to a previous model are discussed in Sec-
tion 6. Finally, we report on performance in Section 7 and conclude.

2. Previous work

The first wave of sky rendering techniques were focused on ray
marching the atmosphere from the view point. This is what Nishita
et al. [NSTN93] first proposed as a method to render an atmosphere
from ground and space views. O’Neil [ONe07] proposed integrat-
ing the in-scattered luminance per vertex for the sake of perfor-
mance, and to render the final sky color with the phase function
applied per pixel. Wenzel [Wen07] proposes the same idea but with
in-scattered luminance stored in a texture that is updated over sev-
eral frames to amortize the cost. The major drawback of these mod-
els is that they ignore the impact that light multiple scattering can
have on the look of the sky.

In order to reduce the cost of ray marching and include multiple
scattering, analytical models fitted on real measurements [PSS99]
or on reference generated using path tracing with spectral informa-
tion [HW12] have been proposed. These models are very fast to
evaluate and benefit from a simple parameterization: for example,
a single turbidity value is used to represent the amount of aerosols
in the air, resulting in a denser looking atmosphere. However, they
are limited to views from the ground and to the single atmosphere
type the parameters have been fitted to. For example, it is not pos-
sible to render the Mars sky when the model is fitted to the Earth
sky.

More advanced models have been proposed for rendering atmo-
spheric effects with multiple scattering, for views ranging from the
ground to space. Nishita [NDN96] proposed subdivision of the par-
ticipating medium into voxels, and the simulation of energy ex-
change between them. More affordable models that remove the
voxel representation have been proposed: they store the result of
integrations that can be expensive to evaluate into lookup tables
that can be easily queried at run time on GPU. These LUTs can be
sampled per pixel at run time (according to view, sun and world
information) to compute the transmittance and in-scattered lumi-
nance. Bruneton and Neyret [BN08] proposed a 4D LUT while
Elek [Ele09] discarded one dimension, effectively ignoring the
planet’s shadowing of the atmosphere that is visible when the sun
is just below the horizon. Because, in these models, in-scattering
from the viewer to a mesh surface is evaluated as the subtraction

† https://www.unrealengine.com.

of two values sampled form a LUT, visual artifacts can appear at
the horizon due to resolution and parameterization precision is-
sues. Yusov [Yus13] improved the situation through a better pa-
rameterization, which works well for Earth-like atmospheres. How-
ever, artifacts can still be visible in cases where the atmosphere is
denser. For each of these LUT models, multiscattering is achieved
by evaluating the in-scattering LUT iteratively: sampling the scat-
tered luminance from the previous scattering order LUT to evalu-
ate the new one. When all are added together, this forms the final
in-scattering LUT with multiple scattering orders up to the itera-
tion count. However, such LUTs are cumbersome to update when
a game needs to update its atmospheric properties, e.g. due to a
change in weather conditions or to match the art direction. It is
possible to time slice updates, but this will result in a visual delay
between sun movement and sky color [Hil16]. LUT-based models
have source code available online [Bru17b; Yus13] and have been
used successfully in several games [Hil16; dCK17; Bau19]. Go-
ing further, Bruneton [Bru17a] discussed all of those models ex-
tensively, and compared their advantages and limitations.

One of the challenges when rendering an atmosphere is to repre-
sent volumetric shadowing due to hills and mountains. It is possi-
ble to rely on epipolar lines [Yus13], shadow volumes [Bru17b],
or a variant of shadow volumes extruding meshes from shadow
maps [Hoo16]. These techniques are fast but can only represent
sharp shadows from opaque meshes. They will fail to render the
soft shadows resulting from cloud participating media or sun disk
area light shadow penumbrae. This is an area where ray marching
still has a definite advantage in capturing such soft details.

3. Participating media rendering

Rendering participating media can be achieved using ray marching
or path tracing. In both cases it involves using a material parameter-
ization representing participating media as described by the radia-
tive transfer equations [FWKH17]. In this framework, for a given
position and considering a beam of light traveling in a direction,
per-wavelength absorption σa and scattering σs coefficients (m−1)
respectively represent the proportion of radiance absorbed, or scat-
tered, along a direction. The extinction coefficient σt = σa + σs
represents the total amount of energy lost due to absorption and out-
scattering. Furthermore, when a scattering event occurs, the scatter
direction needs to be decided based on a distribution represented
by a phase function p of unit sr−1.

Under strong real-time constraints, our approach relies on ray

c
p

v

t

li
Vis(li)=0

Vis(li)=1
t atmo

ϴs

Rtop

Rground

Figure 2: Sketch illustrating how light single scattering within par-
ticipating media is computed using Equation 1.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

14

https://www.unrealengine.com

S. Hillaire / Production Ready Atmosphere Rendering

marching to first evaluate single scattering, as illustrated in Fig-
ure 2. It assumes a set of Nlight directional lights, e.g. a sun and a
moon. It also takes into account a virtual planet with a pure diffuse
response of the ground according to an albedo ρ. It involves inte-
grating the luminance L scattered toward an observer as a function
of the evaluation of the medium transmittance T , shadow factor S
(Vis being shadowing from the planet and T from the atmosphere)
as well as in-scattering Lscat along a path segment using

L(c,v) =T (c,p)Lo(p,v)+
∫ ‖p−c‖

t=0
Lscat(c,c− tv,v) dt, (1)

T (xa,xb) =e−
∫ xb

x=xa
σt(x)‖dx‖, (2)

Lscat(c,x,v) =σs(x)
Nlight

∑
i=1

T (c,x) S(x, li) p(v, li) Ei, (3)

S(x, li) =Vis(li)T (x,x+ tatmoli), (4)

where c is the view camera position, v is the direction toward the
view for current position, p is the intersection surface point, tatmo
the ray intersection distance with atmosphere top boundary, and
Lo the luminance at p, e.g. lighting on the virtual planet’s ground.
li and Ei are the ith light direction and illuminance (considering
directional light sources).

In this paper, we compare our new ray-marching approach with
results from a path tracer. Our path tracer is implemented on GPU
to be able to visualize the result being refined in real time at in-
teractive frame rate. It implements Monte Carlo integration with
delta tracking and importance sampling within participating me-
dia [FWKH17]. It also leverages ratio tracking [NSJ] for faster
convergence when estimating transmittance. This is considered as
our ground truth.

4. Atmospheric model

The atmospheric material model we use has been described in pre-
vious papers [BN08; Bru17a]. We focus on the simulation of tel-
luric planets, i.e. composed of a solid part made of rock or metal
we will call the ground. The planet’s ground and atmosphere top
boundary are represented by spheres with constant radii. The vari-
able h represents the altitude above the ground. In the case of the
Earth, the ground radius is Rground = 6360km and atmosphere top
radius can be set to Rtop = 6460km, representing a participating
media layer of 100km. We consider the ground to be a purely dif-
fuse material with a uniform albedo ρ = 0.3 [NAS]. When render-
ing the atmosphere’s participating media, we do not consider a wide
spectral representation as in [Ele09]. Instead, we focus on typical
RGB-based rendering.

An atmosphere consists of several components that are all im-
portant to consider in order to achieve the look of the Earth and
other planets:

• Rayleigh theory represents the behavior of light when interact-
ing with air molecules. We assume that light is never absorbed
and can only scatter around [BN08]. The phase function describ-
ing the distribution of light directions after a scattering event is

pr(θ) =
3(1+cos(θ)2)

16π
, where θ is the angle between incident and

outgoing scattering directions.

Table 1: Coefficients of the different participating media compo-
nents constituting the Earth’s atmosphere.

Type Scattering (×10−6m−1) Absorption (×10−6m−1)

Rayleigh σ
r
s = 5.802,13.558,33.1 σ

r
a = 0

Mie σ
m
s = 3.996 σ

m
a = 4.40

Ozone σ
o
s = 0 σ

o
a = 0.650,1.881,0.085

• Mie theory represents the behavior of light when interacting
with aerosols such as dust or pollution. Light can be scat-
tered or absorbed. The phase function is approximated us-
ing the Cornette-Shanks phase function [GK99] pm(θ,g) =
3

8π

(1−g2)(1+cos(θ)2)
(2+g2)(1+g2−2g cos(θ))3/2 where g is the asymmetry parameter

in]−1,1[determining the relative strength of forward and back-
ward scattering. By default, g = 0.8. Please note that it is also
appropriate to use the simpler Henyey-Greenstein phase func-
tion.

For simplicity, we omit the parameters of these phase functions
in the remaining equations of this paper. We also represent an
isotropic phase function as pu =

1
4π

.

Table 1 represents the scattering and absorption coefficients
of each component [Bru17a]. Participating media following the
Rayleigh and Mie theories have an altitude density distribution of
dr(h) = e

h
1.2km and dm(h) = e

h
8km , respectively. Ozone is a spe-

cific component of the Earth that has been identified as impor-
tant for representing its atmosphere, since it is key to achieving
sky-blue colors when the sun is at the horizon [Kut13]. Ozone
does not contribute to scattering; it only absorbs light. Follow-
ing Bruneton [Bru17a; Bru17b], we represent the distribution as
a tent function of width 30km centered at altitude 25km, do(h) =
max(0,1− |h−25|

15).

5. Our rendering method

5.1. Discussion: observing the sky

We now describe the sky and aerial perspective visual components.
It helps to justify the choices we have made when building LUTs
and the use of ray marching.

Looking at Figure 3, it appears that an Earth-like sky is of low
visual frequency, especially during daytime:

• Rayleigh scattering is smooth.
• The halo around the sun due to the Mie scattering phase function

is also fairly smooth for realistic phase g values encountered in
nature.
• Multiple scattering is a key component for rendering realistic

images. As shown in Figure 3 (bottom row), it also has low visual
frequency.
• Higher frequencies are visible toward the horizon because the

atmosphere quickly gets denser there and thus light participates
more. We must take that into account.

The main source of high frequencies within the atmosphere is
due to the planet’s shadow (at sunset) and shadows from moun-
tains occluding single scattering events in Equation 3. The solution

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

15

S. Hillaire / Production Ready Atmosphere Rendering

Figure 3: Top: a scene with sun, sky and aerial perspective without
(left) and with (right) volumetric shadows. Bottom: images present
a ground view when multiple scattering is evaluated (right) or not
(left). Note: global illumination on the terrain is disabled to make
observations more visible.

we propose can render the atmosphere with two modes: volumetric
shadow disabled, i.e. taking advantage of the Sky-View LUT for
faster rendering (see Section 5.3) or enabled, i.e. for a more accu-
rate but also more expensive render (see Section 7).

5.2. Transmittance LUT

When ray marching is executed to integrate Lscat, the shadowing
term T — representing the atmospheric medium casting onto it-
self — must be evaluated. However, executing a second ray march
toward the sun for each single scattering sample would be expen-
sive. To accelerate that, the function T is stored as a LUT using
the same representation described in Section 4 of Bruneton and
Neyret [BN08].

5.3. Sky-View LUT

Given the overall low frequency of the participating media consti-
tuting the atmosphere (see Section 5.1), it should be enough to ray
march it with a low number of samples. However, doing so for each
pixel can be expensive, especially at high resolution such as 4K or
8K. Given the overall low visual frequency of the sky, we should
be able to render the sky at a lower resolution and upsample it to
higher resolution afterward.

For a given point of view, we propose to render the distant sky
into a latitude/longitude texture, oriented with respect to the cam-
era local up vector on the planet’s ground for the horizon to al-
ways be a horizontal line within it. For an example of this, see
Figure 4, where the upper part represents the sky and the lower
part the virtual planet ground, with the horizon in the middle.
In Section 5.1, we mentioned that higher-frequency visual fea-
tures are visible toward the horizon. In order to help better rep-
resent those, we apply a non-linear transformation to the latitude l
when computing the texture coordinate v∈ [0,1] that will compress
more texels near the horizon. A simple quadratic curve is used:

v = 0.5+0.5∗ sign(l)∗
√
|l|

π/2 , with l ∈ [−π/2,π/2].

Longitude

L
at

it
ud

e

Horizon

Planet ground

Sky

π/2

-π/2

0

Figure 4: The Sky-View LUT during daytime. The sun direction can
be seen on the left side, where Mie scattering happens.

Linear latitude parameterisation

Non-linear latitude parameterisation

Figure 5: The non-linear parameterization of the Sky-View LUT
helps to concentrate texel details at the horizon, where it visually
matters.

This effectively compresses more pixels close to the horizon and
improves the amount of detail present there. It also helps hide the
fact that the atmosphere is rendered at a lower resolution, as shown
in Figure 5. The sun disk is not rendered as part of that texture be-
cause of the low resolution and the non linear mapping. It is com-
posited after applying the Sky-View LUT.

5.4. Aerial Perspective LUT

When rendering a scene, the aerial perspective effects on opaque
structures (e.g. terrain, mountains, and buildings) and translu-
cent elements (e.g. glass, fire, or other participating media such
as clouds) must be rendered for consistency. Thus, similar to
Hillaire [Hil16], we evaluate in-scattering and transmittance to-
wards the camera in a volume texture fit to the view camera frustum
(see Figure 6). In-scattering is stored in the RGB channels while the
transmittance is stored in the A channel, as the mean of the wave-
length dependent RGB transmittance.

The default resolution used in our case is 32×32 over the screen
and 32 depth slices over a depth range of 32 kilometers, which is
enough for most applications and games. This is the case for Epic
Games’ Fortnite‡, having a world map size of 3km2 with an Earth-
like stylized atmosphere setup. If the planet’s atmosphere is really
dense up to a point where distant objects are less visible, then the

‡ https://www.epicgames.com/fortnite.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

16

https://www.epicgames.com/fortnite

S. Hillaire / Production Ready Atmosphere Rendering

depth range can be brought back closer to the view point, in order
to increase accuracy over short range.

The aerial perspective volume texture is applied on opaque ob-
jects as a post process after lighting is evaluated, at the same time as
the Sky-View LUT is applied on screen. For transparent elements
in a forward-rendering pipeline, we apply aerial perspective at the
per-vertex level. This is because transparent elements are usually
small in screen space relative to atmospheric visual variations.

5.5. Multiple scattering LUT

As described in Section 2, previous atmospheric rendering tech-
niques [BN08; Ele09; Yus13] rely on iterative methods to update
3D or 4D LUTs, with one iteration per scattering order. This is an
acceptable solution when rendering Earth-like atmospheres where
only a multiple scattering order of 5 is required to reach realistic
sky visuals. However, it quickly becomes impractical when render-
ing thicker atmosphere, i.e. when higher scattering orders are im-
portant for the atmosphere’s look and it is thus necessary to iterate
many times over the LUTs. Practically, this operation of complexity
O(n) (where n is the scattering order) is computationally too heavy.
This is especially the case when artists are constantly updating at-
mospheric properties to match art direction or weather changes at
different times of day. The computation can be time sliced [Hil16]
but this will result in update delays, which can impact the reactiv-
ity of other systems such as global illumination or reflection cube
maps captured in real time.

Our goal is to propose a cheaper and instantO(1) method that is
independent of the scattering order, to be able to evaluate the light
multiple scattering contribution each and every frame without any
delay. Maintaining correctness and believability for a wide range
of atmosphere setups is also a requirement, as well as being able
to render atmospheres across a range of devices (from mobile to
high-end PC). Last but not least, we want our approach to rely on
a physically based participating media parametrization and to be
energy conserving.

5.5.1. Building an intuition about our approximation

Given the overall large scale, long mean free path, and smooth dis-
tribution of participating media in the atmosphere, it can be consid-
ered that the illuminance E reaching a point in space is the same for
all points within a large area around it. Thus integrating luminance

Figure 6: The camera frustum aerial perspective LUT. This is a
visualization of in-scattering for a few slices.

resulting from higher-order light scattering events around a sam-
ple point can be approximated by integrating the in-scattered light
over the surrounding sphere, from neighboring points that receive
the same illuminance E, while taking into account the transmittance
between those points. This idea of using global in-scattered illumi-
nance E as the input to evaluate multiple scattering using the local
material data is inspired by the dual scattering method approximat-
ing light multiple scattering in hair [ZYWK08].

When light scatters around in a medium, the distribution of scat-
tering directions quickly becomes isotropic [JMLH01; Yan97]. For
the sake of performance, we would like our multiple scattering
LUT to have a low dimensionality. To this aim, we assume that
light bouncing around for scattering orders greater than or equal
to 2 will be achieved according to an isotropic phase function, i.e.
without any preferred directions. As such, we will ignore the Mie
and Rayleigh phase function setup as part of the multiple scattering
approximation. We feel that this an acceptable fit considering that
the Rayleigh phase function is already smooth. In order to get a bet-
ter intuition about the approximation for the case of Mie scattering,
we refer the reader to the analysis of BSDF shape with respect to
scattering orders conducted by Bouthors [Bou08].

Furthermore, it has been shown that a correlation exists be-
tween second order scattered luminance and further scattering or-
ders [HG13]. Thus we propose to evaluate the multiple scattering
contribution in the atmosphere as a function of the second order of
scattered luminance arriving at each sample point.

We build our method from these previous results, and it will be
described in depth in Section 5.5.3. Here is a summary of it, to-
gether with its approximations when evaluating multiple scattering:

• Scattering events with order greater or equal to 2 are executed
using an isotropic phase function pu.
• All points within the neighborhood of the position we currently

shade receive the same amount of second order scattered light.
• We compute the second scattering order contribution L2ndorder

Colors scaled x50

A
lt

it
ud

e

0 π

Top

Sun / Zenith angle

Colors scaled x1

Figure 7: Visualization of Equation 10 Ψms stored in multiple scat-
tering LUTs. Left: the LUT for the Earth setup. It is broadly uni-
form, and scattering dominates over transmittance. Right: 50 times
denser air, causing Rayleigh scattering with a modified distribu-
tion dr(h)= e

h
20km . The contribution of multiple scattering increases

with the density of the medium, until transmittance overtakes it, re-
sulting in a drastic reduction of light reaching the ground. This is
especially true when the sun is close to the horizon.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

17

S. Hillaire / Production Ready Atmosphere Rendering

and a transfer function fms (taking into account transmittance
and medium variation along altitude) from the participating me-
dia around the position we currently shade.
• Finally, we compute the multiple scattering contribution Ψms

from these factors, simulating the infinite scattering of the sec-
ond order light contribution isotropically with respect to the
transfer function from neighborhood points, back to the currently
shaded position.
• Visibility Vis is ignored when evaluating multiple scattering.

This relies on the fact that light will scatter around mountains
anyway, e.g. the impact of visibility is low for natural atmo-
spheres with a large mean free path.

5.5.2. LUT parameterization

For any point in space, we want to be able to store and query the
isotropic multiple scattering contribution to luminance from a LUT.
Given that we consider the virtual planet to be a perfect sphere, the
multiple scattering contribution to be isotropic, and the distribution
of medium in the atmosphere to only vary based on altitude, we
represent this LUT as a small 2D texture. The u,v parameterization
in [0,1]2 is:

• u = 0.5+ 0.5cos(θs), where θs is the sun zenith angle and ωs
represents its direction.
• v = max(0,min(h−Rground

Rtop−Rground
,1)), where the sample position xs is

at altitude h.

An example of such LUTs and their parameterization can be seen
in Figure 7.

5.5.3. High scattering order LUT evaluation

Considering a sample point at position xs and altitude h, we inte-
grate the second order scattered luminance L2ndorder towards point
xs (as illustrated in Figure 8 (left)) using

L2ndorder =
∫

Ω4π

L′(xs,−ω) pu dω, (5)

L′(x,v) =T (x,p)Lo(p,v)+∫ ‖p−x‖

t=0
σs(x)T (x,x− tv) S(x,ωs) pu EI dt.

(6)

In Equation 6, the L′ term evaluates the luminance contribution
from a single directional light with illuminance EI and with a di-
rection ωs, for a position xs matching the current LUT entry being
built. It also contains the luminance contribution reflected from the
ground through Lo (diffuse response according to albedo). L2ndorder
should give the second order scattered light towards point xs as lu-
minance. But it is evaluated using EI : it is a placeholder for what
should be light illuminance Ei. Though in this case it is a unitless
factor EI = 1 to ensure that L2ndorder does not return a luminance
value, but instead acts as a transfer function of unit sr−1, only re-
turning luminance when later multiplied with the actual directional
light illuminance. In Equation 5, Lo is also evaluated using EI but
we kept this out for simplicity.

Secondly, we integrate a unitless factor fms representing the
transfer of energy that would occur from all of the atmospheric

medium around and towards the currently shaded sample at posi-
tion xs as

fms =
∫

Ω4π

L f (xs,−ω) pu dω, (7)

L f (x,v) =
∫ ‖p−x‖

t=0
σs(x)T (x,x− tv)1 dt. (8)

This is illustrated in Figure 8 (right). The directional integration
over the sphere is computed as fms, where L f is integrated along
each ray using Equation 8. It is important to skip the sampling of
the shadowing term S and phase function in this equation because
it is already accounted for when evaluating L2ndorder. Thus fms is a
unitless normalized transfer factor of the energy integrated around
and towards xs, in the range [0,1] . To help respect that range, it
is recommended to use the analytical solution to the integration of
Equation 8 as proposed by Hillaire [Hil15].

As mentioned above, we assume that light reaching any point
around xs is the same as that reaching xs itself for scattering orders
greater than to 2. We can use this low spatial variation assump-
tion to evaluate the multiple scattering contribution analytically.
Inspired by the dual-scattering approach [ZYWK08], we approx-
imate the infinite multiple scattering light contribution factor Fms
as a geometric series infinite sum

Fms =1+ fms + f2
ms + f3

ms + ...=
1

1− fms
. (9)

Finally, the total contribution of a directional light with an infi-
nite number of scattering orders can be evaluated as

Ψms =L2ndorder Fms, (10)

where the second order scattering contribution L2ndorder is ampli-
fied by the multiple scattering transfer function Fms. The transfer
function Ψms (unit sr−1) is thus simply multiplied with any direc-
tional light illuminance (Lux as cd.sr.m−2) to retrieve the multiple
scattering contribution to a pixel as luminance (cd.m−2). Ψms is
stored in the multiple scattering LUT. For an atmosphere material
setup, this LUT is valid for any point of view and light direction
around the planet.

To conclude, the light scattering Equation 3 can now be aug-
mented with our multiple scattering approximation, which gives

Lscat(c,x,v) = σs(x)
Nlight

∑
i=1

(T (c,x) S(x, li)p(v, li)+Ψms)Ei. (11)

This simplification avoids a reliance on an iterative method to eval-
uate the multiple scattering contribution within the atmosphere. For
our real-time use case, the integration of fms and L2ndorder over the
unit sphere is achieved using 64 uniformly distributed directions.
For more performance details, please refer to Section 7.

6. Results

We validate our approach to atmosphere rendering by comparing it
to two state of the art techniques: the model proposed by Brune-
ton [Bru17a] and a volumetric path tracer. We compare various
scenarios and give the image root mean square error (RMSE) for
each of the R, G and B channels as compared to the ground truth

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

18

S. Hillaire / Production Ready Atmosphere Rendering

L'(s,v)

xs

T(xs,x)

T(xs,x)

L2ndorder

E� = 1

dωdω

T(xs,x) dω
fms

Lf(x,v)

dω fms

fms

dω
dω

dω

dω
dω

dω

dω
dω

dω

dω
dω

2
xs xs

Lf(x,v)

Lf(x,v)

Lf(x,v)

Lf(x,v)

Lf(x,v)

fms

fms

fms

fms

fms

L'(s,v)

L'(s,v)

...

Figure 8: Sketch presenting on the left how L2ndorder is computed from single scattering L′ and, on the right, how Fms approximates multiple
scattering bounces using a normalized transfer function fms, corresponding to Equation 7, and assuming a sample point neighborhood
receive the same amount of energy as the sample point itself, corresponding to Equation 9.

path tracer. We show the results on a planet with a terrain using a
pure-black albedo, and without sun disk, so as not to influence the
RMSE measure. The code for this application is open source§.

Firstly, we verify that our model can faithfully render the Earth’s
atmosphere — see Figure 9. We present views using single scat-
tering only in order to show the difference when multiple scatter-
ing is taken into account. It also shows the three models: Brune-
ton (B), our model (O) and the reference path tracer (P). At day-
time, (B) and (O) RSME are respectively (1.43,2.28,6.07).10−3

and (0.94,1.74,5.07).10−3 — both very close to the reference (P).
For the sunset case, it is important to note that (B) does not faith-
fully represent the orange color propagated by Mie scattering. This
is because we use a single RGBA 4D scattering LUT, where A
represents colorless Mie scattering, rather than a solution requiring
two RGB 4D scattering LUTs. This is the typical setup used in real-
time applications in order to allocate less memory and to increase

§ https://github.com/sebh/UnrealEngineSkyAtmosphere.

Path traced reference
Single scattering

Bruneton Ours Path traced reference
Multiple scattering

D
ay

ti
m

e
S

un
se

t
15

0°
 v

ie
w

Figure 9: Rendering Earth’s atmosphere with different techniques
under different conditions: daytime, sunset, and a 150 degree view
of the sky with sun below the horizon revealing the shadow cast by
the Earth within the atmosphere. Note: various exposures are used
in this figure to ensute that visuals are readable.

Bruneton Ours Path traced reference

E
ar

th
M

ar
s

li
ke

T
in

y
pl

an
et

Figure 10: Space view rendering of different planets: Earth, Mars
like and a fictional tiny planet with a thick and dense atmosphere.

performance (only 1 scattering LUT needs to be updated and it re-
quires less bandwidth to fetch LUT data). The Mie scattering color
is recovered using the trick discussed in Section 4 of Bruneton and
Neyret [BN08]. It is also interesting to note that both models are
able to reproduce the pale scattering color visible in the shadow
cast by the Earth within the atmosphere — see bottom of Figure 9.

We also compare the accuracy of those models to achieve
space views, see Figure 10. Both (B) and (O) models are able
to faithfully reproduce the Earth, with respective RSMEs of
(0.58,0.67,1.61).10−3 and (0.95,0.85,1.23).10−3, as well as a
Mars-like planet atmosphere, RSMEs of (0.87,0.97,0.94).10−3

and (1.99,0.91,0.56).10−3. When it comes to artistic tiny planets
with thick and dense atmospheres, it appears that (B) is not able to
reproduce the volumetric shadowing from the planet’s solid core.
This is due to the LUT parameterization, which results in a lack
of accuracy for small planets inherently featuring a high ground-
surface curvature. This limitation of model (B) could be lifted by
increasing the 4D light scattering LUT resolution, adding addi-
tional memory and computational costs.

For Earth’s atmosphere, it has been reported that computing scat-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

19

https://github.com/sebh/UnrealEngineSkyAtmosphere

S. Hillaire / Production Ready Atmosphere Rendering

Path traced reference - Single scatter Ours

Path traced reference - depth=5 Path traced reference - depth=40

Bruneton 5 iterations Bruneton 40 iterations

Path traced reference - Single scatter Ours

Path traced reference - depth=5 Path traced reference - depth=40

Bruneton 5 iterations Bruneton 40 iterations

Daytime Sunset

Figure 11: Daytime on ground (left) and sunset up in the atmosphere (right) views demonstrating that it is important to consider higher
scattering orders for denser participating media. Our approach is the only non-iterative technique that can approximate the ground truth.

Mie scattering (g = 0.0) Mie scattering (g = 0.8)

O
ur

s
P

at
h

tr
ac

in
g

(d
ep

th
=

10
0)

Earth atmosphere 55x thicker

Figure 12: Limitations of our method when the atmosphere be-
comes dense. Left and middle: the larger the phase g value, the less
accurate it is. Right: a dense atmosphere can result in a different
multiple-scattering color.

tering only up to the 5th order was enough to capture most of the en-
ergy [BN08], and we have been able to confirm this by observation.
However, when control is given to artists to setup an atmosphere,
the atmosphere may get denser and it then becomes important to
account for higher scattering orders. While our new model (O) au-
tomatically takes that into account, it is not the case for model (B).
In this case, there must be as many iterations as there are scattering
orders that need to be evaluated, which quickly becomes impracti-
cal, even with time slicing. Figure 11 demonstrates that for denser
atmospheres, higher-order scattering is crucial for faithfully pro-
ducing the correct atmospheric color. Our model is able to repre-
sent such behavior, while model (B) fails to converge to the correct
color for higher scattering orders, and even explodes numerically
(Figure 11 (right)). This is likely due to precision issues when sam-
pling the LUTs, even though we are using a 32 bit float represen-
tation for the model (B) scattering LUT, instead of a 16 bit float
representation that is enough for model (O).

As shown in Figure 12, the new model (O) does have a few issues
worth mentioning, each of which are due to the multiple scattering
approximation:

• When using very high scattering coefficients, the hue can be lost
or even start to drift as compared to the ground truth.
• We assume that the light scattering direction is isotropic right

after the second bounce. This is in fact a approximation, which is
confirmed by a comparison between our model and the reference
path tracer. For Mie scattering only, with g = 0.0 and g = 0.8,
RMSE is 0.0058 and 0.039, respectively.

7. Performance and Discussion

On a PC equipped with an NVIDIA 1080, the final on-screen ren-
dering of the sky and atmospheric perspective is 0.14 milliseconds
(ms) considering the daytime situation depicted in Figure 9. More
detailed timings and the properties of the LUTs generated by our
method are provided in Table 2. In the end, the total render time
is 0.31 ms for a resolution of 1280× 720. For the same view, the
Bruneton model [BN08] renders in 0.22ms, but this is without all
the LUTs being updated. Updating all the LUTs using the code pro-
vided [Bru17b] costs 250ms, where 99% of this cost comes from
the many iterations required to estimate multiple scattering. As al-
ready shown by Hillaire [Hil16], it is possible to time slice the up-
date over several frames. However, latency would increase when
evaluating high scattering orders, and it would take a long time be-
fore any result would be available on screen.

When viewing the planet from space, as seen in Figure 10, the
Sky-View LUT described in Section 5.3 becomes less accurate be-
cause a large part of it is wasted to render empty space. In this
case, we seamlessly switch to simple ray marching on screen. The
planet and atmosphere render time then becomes more expensive
(0.33ms) resulting in a total rendering cost of 0.5ms. But this is of-
ten acceptable as planetary views focus on the planet itself, so the
rendering budget is likely higher.

Our technique can scale from desktop PC to relatively old Apple
iPhone 6s mobile hardware. In this case, LUT resolution and sam-
ple count can be scaled down without a huge impact on the result-
ing visuals. Our setup and performance differences are illustrated

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

20

S. Hillaire / Production Ready Atmosphere Rendering

PC Mobile

Figure 13: Visual comparison between PC (NVIDIA 1080) and mo-
bile (iPhone 6s) rendering of the atmosphere. Only the sky is vis-
ible at daytime (top) and at sunset with 5× higher Rayleigh scat-
tering coefficients (bottom). Bloom, color grading and other post-
processing effects have been disabled.

in Table 2, while changes in visuals are presented in Figure 13. Vi-
sual differences, due to lower LUT quality, are not noticeable to the
naked eye. Please note that we do maintain a similar transmittance
LUT on both platforms as it is important for ensuring a matching
look. Its quality could be further reduce on mobile if more visual
differences can be traded for performance. For Epic Games’ Fort-
nite, the total sky rendering cost was roughly 1ms on iPhone 6s.

An important visual effect to reproduce is volumetric shadowing,
for example from mountains onto the atmosphere. It is not possi-
ble to use epipolar sampling [BCR*10] because the atmosphere is
not a homogeneous medium. And it is also not possible to use a
shadow volume approach [BN08; Hoo16] because our LUTs do
not allow that kind of integral sampling over view ray paths in
the atmosphere. Last but not least, these techniques cannot repre-
sent soft shadows cast by clouds: we must ray march. Similar to
Valient [Val14] and Gjoel [GS16], we recommend using per-ray
sample jittering and reprojection to combine samples from previ-
ous frames. Jittering can be done according to blue noise [GS16]

Table 2: Performance for each step of our method, as measured on
a PC (NVIDIA 1080) and a mobile device (iPhone 6s).

PC
LUT Resolution Step count Render time

Transmittance 256×64 40 0.01ms
Sky-View 200×100 30 0.05ms
Aerial perspective 323 30 0.04ms
Multi-scattering 322 20 0.07ms

Mobile (iPhone 6s)
LUT Resolution Step count Render time

Transmittance 256×64 40 0.53ms
Sky-View 96×50 8 0.27ms
Aerial perspective 322×16 8 0.11ms
Multi-scattering 322 20 0.12ms

Path traced reference Path traced reference - depth=5 Our

Figure 14: Volumetric shadows from the atmosphere, from left to
right: path-traced single scattering, path-traced multiple scattering
(depth = 5) and our real-time approach using ray marching and
cascaded shadow maps.

and reprojection can automatically be achieved via a temporal anti-
aliasing (TAA) approach [Kar14]. This is illustrated in Figure 14.
Using such an approach requires a sample count that is content de-
pendent. In this example, we use 32 samples, which causes the sky
and atmosphere rendering time to go up to 1.0ms. To reduce this
cost, it is also possible to trace at a lower resolution and temporally
reproject and upsample the result. This has already been used, with
great results, in a few game engines [Bau19; EPI18]. Results with
volumetric shadows are shown in Figure 1.

Furthermore, the multiple-scattering LUT we propose can also
accelerate path tracing of the atmosphere participating media, if
the approximations described in Section 5.5 and Figure 12 are ac-
ceptable. In this case, only single scattering events need to be sam-
pled, e.g. using delta tracking [FWKH17]. When such an event oc-
curs, the traced path can be stopped immediately, at which point the
single scattering contribution is evaluated using next event estima-
tion and the contribution from the remaining scattering orders can
be evaluated using the multiple scattering LUT. When using this
approach with our reference GPU path tracer, the cost for a 720p
frame goes down from 0.74ms to 0.29ms for daytime with 5 scat-
tering orders (path depth), as seen in Figure 9. The cost also goes
down from 7.9ms to 0.6ms for daytime with 50 scattering orders,
as seen in Figure 11.

8. Conclusion

In summary, our method can render sky and atmosphere from many
view points efficiently in real time while constantly updating the
LUTs, with light multiple scattering simulated, but without requir-
ing cumbersome iterative computations per scattering orders. This
is important for lighting artists to be able to achieve their vision and
follow a project’s art direction, while simulating time of day and
changing weather at the same time. We have shown that it gives
accurate visual results and, even when it drifts from ground truth
due to dense atmosphere or strong anisotropic phase function, the
result remains plausible. Because it is physically based and energy
conserving, it does not explode. Furthermore, it can be used to ac-
celerate path tracing applications that render sky and atmosphere.

9. Future work

Future work could involve investigating ways to improve the accu-
racy of the lookup table for anisotropic phase functions and also to
support spatially varying atmospheric conditions. We believe it is
important at some point to switch to spectral rendering in order to
improve the accuracy of the method [EK10]. Last but not least, we

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

21

S. Hillaire / Production Ready Atmosphere Rendering

believe that rendering real-time sky and atmosphere using a path
tracer coupled with a denoiser is a promising research avenue.

Acknowledgments

We would like to thank the anonymous reviewers for the useful
comments, as well as the entire rendering team at Epic Games
for reviewing and proofreading the paper, especially Krzysztof
Narkowicz, Charles de Rousiers, Graham Wihlidal and Dmitriy
Dyomin. We would also like to thank Jean-Sebastien Guay, Jor-
dan Walker, Ryan Brucks, Sjoerd de Jong and Wiktor Öhman for
providing level art and evaluating the technique. Lastly, we would
like to thank Stephen Hill for proofreading the paper.

References
[Bau19] BAUER, FABIAN. “Creating the Atmospheric World of Red Dead

Redemption 2: A Complete and Integrated Solution”. Advances in Real
Time Rendering, ACM SIGGRAPH 2019 Courses. 2019 2, 9.

[BCR*10] BARAN, ILYA, CHEN, JIAWEN, RAGAN-KELLEY, JONATHAN,
et al. “A Hierarchical Volumetric Shadow Algorithm for Single Scatter-
ing”. ACM Trans. Graph. 29.6 (2010), 178:1–178:10 9.

[BN08] BRUNETON, ERIC and NEYRET, FABRICE. “Precomputed Atmo-
spheric Scattering”. Proceedings of Eurographics. 2008, 1079–1086 2–
5, 7–9.

[Bou08] BOUTHORS, ANTOINE. “Realistic rendering of clouds in real-
time”. PhD thesis. Université Joseph Fourier, 2008. URL: http://
evasion . imag . fr / ~Antoine . Bouthors / research /
phd/ 5.

[Bru17a] BRUNETON, ERIC. “A Qualitative and Quantitative Evaluation
of 8 Clear Sky Models”. IEEE Transactions on Visualization and Com-
puter Graphics 23.12 (2017), 2641–2655 2, 3, 6.

[Bru17b] BRUNETON, ERIC. Precomputed Atmospheric Scattering. 2017.
URL: https://github.com/ebruneton/precomputed_
atmospheric_scattering 2, 3, 8.

[dCK17] De CARPENTIER, GILIAM and KOHEI, ISHIYAMA. “Decima En-
gine: Advances in Lighting and AA”. Advances in Real Time Rendering,
ACM SIGGRAPH 2017 Courses. New York, NY, USA: ACM, 2017 2.

[EK10] ELEK, OSKAR and KMOCH, PETR. “Real-time spectral scattering
in large-scale natural participating media”. Proceedings of the Spring
Conference on Computer Graphics (SCCG). 2010, 77–84 10.

[Ele09] ELEK, OSKAR. “Rendering Parametrizable Planetary Atmo-
spheres with Multiple Scattering in Real-time”. CESCG (2009) 2, 3, 5.

[EPI18] EPICGAMES. Unreal Engine 4.19: Screen percentage with
temporal upsample. March 2018. URL: https : / / docs .
unrealengine . com / en - US / Engine / Rendering /
ScreenPercentage/index.html 9.

[FWKH17] FONG, JULIAN, WRENNINGE, MAGNUS, KULLA, CHRISTO-
PHER, and HABEL, RALF. “Production Volume Rendering”. ACM SIG-
GRAPH 2017 Courses. 2017 2, 3, 9.

[GK99] GARY E., THOMAS and KNUT, STAMNES. “Radiative transfer in
the atmosphere and ocean”. Cambridge Univ. Press (1999) 3.

[GS16] GJOEL, MIKKEL and SVENDSEN, MIKKEL. “Low Complexity,
High Fidelity - INSIDE Rendering”. Game Developers Conference.
2016 9.

[HG13] HOLZSCHUCH, NICOLAS and GASCUEL, JEAN-DOMINIQUE.
“Double- and Multiple-Scattering Effects in Translucent Materials”.
IEEE Computer Graphics and Applications (2013), 66–76 5.

[Hil15] HILLAIRE, SÉBASTIEN. “Physically Based and Unified Volumet-
ric Rendering in Frostbite”. Advances in Real Time Rendering, ACM
SIGGRAPH 2015 Courses. 2015 6.

[Hil16] HILLAIRE, SÉBASTIEN. “Physically Based Sky, Atmosphere and
Cloud Rendering in Frostbite”. SIGGRAPH 2016 Course: Physically
Based Shading in Theory and Practice. 2016 2, 4, 5, 8.

[Hoo16] HOOBLER, NATHAN. “Fast, Flexible, Physically-Based Volumet-
ric Light Scattering”. Game Developers Conference. 2016 2, 9.

[HW12] HOSEK, LUKAS and WILKIE, ALEXANDER. “An Analytic
Model for Full Spectral Sky-dome Radiance”. ACM Trans. Graph. 31.4
(2012), 95:1–95:9 2.

[JMLH01] JENSEN, HENRIK WANN, MARSCHNER, STEPHEN R.,
LEVOY, MARC, and HANRAHAN, PAT. “A Practical Model for Subsur-
face Light Transport”. Proceedings of the ACM on Computer Graphics
and Interactive Techniques. 2001, 511–518 5.

[Kar14] KARIS, BRIAN. “High-Quality Temporal Supersampling”. Ad-
vances in Real-time Rendering in Games Part I, ACM SIGGRAPH 2014
Courses. 2014, 10:1–10:1 9.

[Kut13] KUTZ, PETER. The Importance of Ozone. 2013. URL: http://
skyrenderer.blogspot.se/2013/05/the-importance-
of-ozone.html 3.

[LdR14] LAGARDE, SEBASTIEN and de ROUSIERS, CHARLES. “Moving
Frostbite to PBR”. Physically Based Shading in Theory and Practice,
ACM SIGGRAPH 2014 Courses. 2014 2.

[NAS] NASA. Earth Fact Sheet. URL: https : / / nssdc . gsfc .
nasa.gov/planetary/factsheet/earthfact.html 3.

[NDN96] NISHITA, TOMOYUKI, DOBASHI, YOSHINORI, and NAKA-
MAE, EIHACHIRO. “Display of Clouds Taking into Account Multiple
Anisotropic Scattering and Sky Light”. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques. 1996, 379–386 2.

[NSJ] NOVÁK, JAN, SELLE, ANDREW, and JAROSZ, WOJCIECH. “Resid-
ual Ratio Tracking for Estimating Attenuation in Participating Media”.
ACM Trans. Graph. 33.6 (), 179:1–179:11 3.

[NSTN93] NISHITA, TOMOYUKI, SIRAI, TAKAO, TADAMURA, KAT-
SUMI, and NAKAMAE, EIHACHIRO. “Display of the Earth Taking into
Account Atmospheric Scattering”. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques. 1993, 175–182 2.

[ONe07] O’NEIL, SEAN. “Accurate Atmospheric Scattering”. GPU Gems
2. 2007 2.

[PSS99] PREETHAM, A. J., SHIRLEY, PETER, and SMITS, BRIAN. “A
Practical Analytic Model for Daylight”. Proceedings of the ACM on
Computer Graphics and Interactive Techniques. 1999, 91–100 2.

[Val14] VALIENT, MICHAL. “Making Killzone Shadow Fall Image Qual-
ity into the Next Generation”. Game Developers Conference. 2014 9.

[Wen07] WENZEL, CARSTEN. “Real time atmospheric effects in game re-
visited”. Game Developers Conference. 2007 2.

[Yan97] YANOVITSKIJ, EDGARD G. Light Scattering in Inhomogeneous
Atmospheres. Springer-Verlag Berlin Heidelberg, 1997 5.

[Yus13] YUSOV, EGOR. “Outdoor Light Scattering”. Game Developers
Conference. 2013 2, 5.

[ZYWK08] ZINKE, ARNO, YUKSEL, CEM, WEBER, ANDREAS, and
KEYSER, JOHN. “Dual Scattering Approximation for Fast Multiple Scat-
tering in Hair”. ACM Trans. Graph. 27.3 (2008), 32:1–32:10 5, 6.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

22

http://evasion.imag.fr/~Antoine.Bouthors/research/phd/
http://evasion.imag.fr/~Antoine.Bouthors/research/phd/
http://evasion.imag.fr/~Antoine.Bouthors/research/phd/
https://github.com/ebruneton/precomputed_atmospheric_scattering
https://github.com/ebruneton/precomputed_atmospheric_scattering
https://docs.unrealengine.com/en-US/Engine/Rendering/ScreenPercentage/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/ScreenPercentage/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/ScreenPercentage/index.html
http://skyrenderer.blogspot.se/2013/05/the-importance-of-ozone.html
http://skyrenderer.blogspot.se/2013/05/the-importance-of-ozone.html
http://skyrenderer.blogspot.se/2013/05/the-importance-of-ozone.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

