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Figure 1: Anti-aliasing patterns, such as the step blue noise on the left, can generate images with clean low frequency content, and map
higher frequencies to incoherent noise. The range of clean low frequencies (determined by ν0 here) can be increased at the cost of introducing
coherent colored noise for higher frequencies (middle, stair blue noise [KTBV16a]). Our approach can generate sampling patterns with any
desired characteristics, e.g. (right) with minimal aliasing while keeping the same range of clean low frequencies (top: reconstructed zone
plate images, bottom: 1D power spectra, insets: 2D power spectra).

Abstract
In this paper, we provide a comprehensive theory of anti-aliasing sampling patterns that explains and revises known results,
and introduce a variational optimization framework to generate point patterns with any desired power spectra and anti-aliasing
properties. We start by deriving the exact spectral expression for expected error in reconstructing a function in terms of power
spectra of sampling patterns, and analyzing how the shape of power spectra is related to anti-aliasing properties. Based on this
analysis, we then formulate the problem of generating anti-aliasing sampling patterns as constrained variational optimization
on power spectra. This allows us to not rely on any parametric form, and thus explore the whole space of realizable spectra. We
show that the resulting optimized sampling patterns lead to reconstructions with less visible aliasing artifacts, while keeping
low frequencies as clean as possible. Although we focus on image plane sampling, our theory and algorithms apply in any
dimensions, and the variational optimization framework can be utilized in all problems where point pattern characteristics are
given or optimized.
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1. Introduction

Sampling patterns are fundamental for many applications in com-
puter graphics such as imaging, rendering, geometry sampling, nat-
ural distribution modeling, among others. They are of particular
importance for reconstructing functions from samples. Most real-
world or synthesized functions are not band-limited, i.e. they con-
tain frequencies higher than those that can be represented with a
finite number of samples, inevitably leading to aliasing. The chal-
lenge is avoiding aliasing artifacts that show up as secondary struc-
tures that are not present in the original function, while having
the lower frequency content cleanly reconstructed. An ideal anti-
aliasing sampling pattern thus preserves lower frequencies by intro-
ducing minimal noise, and maps all higher frequencies that cannot
be represented with the sample budget to incoherent noise, instead
of visible artifacts [DW85, Coo86].

Many techniques have been proposed to generate sampling pat-
terns for a larger range of cleanly represented frequencies, while
avoiding aliasing artifacts as much as possible [Coo86, Uli88].
Recent techniques assume provided spectra or related statistics,
and optimize locations of sampling points such that the resulting
distributions have the given statistics [ZHWW12, OG12, HSD13,
WPC∗14, AHD15, KTBV16a]. The challenge, however, is how to
specify useful shapes for power spectra P(ν) in the limited space
of realizable spectra [UST06]. Recent works have focused on gen-
erating realizable spectra with certain properties beneficial for anti-
aliasing [HSD13, KTBV16a] such as an as large as possible low-
energy low-frequency region (given by ν0, two times the effective
Nyquist frequency [HSD13], in Figure 1), while minimizing de-
viations from 1 for higher frequencies, with the intuition that the
former will ensure clean low frequencies while the latter will lead
to minimal aliasing.

These methods assume a parametric form for power spectra, and
search in the parameter space to have the least energy in the low
frequency region, and a flat high frequency region bounded from
above. Such a sampling pattern generated by a state-of-the-art tech-
nique [KTBV16a] is shown in Figure 1, middle. The ν0 is signif-
icantly larger than that of step blue noise (left), which manifests
itself as a larger range of clean low frequencies in the reconstructed
zone plate image. However, this comes at the cost of a flat peak
in the power spectrum, introducing artifacts in the zone plate im-
age for middle frequencies. In general, assuming a given paramet-
ric form limits power spectra, leading to suboptimal anti-aliasing
properties.

In this paper, we introduce a non-parametric power spectra opti-
mization framework and show how it can be used to generate point
patterns with anti-aliasing properties based on a comprehensive
theoretical analysis. We can then generate point patterns with any
desired properties such as the ones in Figure 1, spanning the whole
space of possible point patterns. In order to formulate the corre-
sponding optimization problem, we first prove an analytic form for
the spectrum of expected error introduced by sampling. Based on
this formula for error, we show how existing patterns improve anti-
aliasing, and provide new theoretical results and insights. These
are then translated into constraints and energies for formulating a
constrained variational optimization on power spectra of point pat-
terns. We show that careful selection of constraints and energies

to minimize lead to sampling patterns with improved anti-aliasing
properties. A sampling pattern generated by the proposed technique
is shown in Figure 1, right. We get the same ν0 and thus range
of noise-free lower frequencies as for the result of Kailkhura et
al. [KTBV16a], while still mapping all higher frequencies to al-
most white noise, as can be seen in the zone plate test image. The
resulting power spectrum arises from our formulation of the opti-
mization, without explicitly specifying its form.

In summary, we have the following main contributions:

• A theory of anti-aliasing with exact expressions for expected er-
ror spectrum in any dimension. This allows us to analyze de-
sirable properties for power spectra of point patterns for anti-
aliasing.
• A new formulation of the problem of generating realizable spec-

tral or spatial characteristics of point patterns based on varia-
tional optimization.
• Sampling patterns optimized for anti-aliasing with practical im-

provements over state-of-the-art patterns.

2. Related Work

Aliasing is a fundamental problem when reconstructing or syn-
thesizing functions, e.g. images, with samples, as they are typi-
cally not band-limited and we always have a finite budget of sam-
ples. It is well-known that regular sampling leads to structured
aliasing, which introduces visually distracting extra structures. A
main observation is that by injecting randomness into point dis-
tributions while satisfying certain properties, structured artifacts
can be replaced with noise that is potentially visually less distrac-
tive [DW85, Coo86]. With such random distributions, it is impor-
tant that high frequencies that cannot be represented with the sam-
ple budget are mapped to as incoherent as possible noise, ideally
white noise to avoid any extra patterns in the reconstructed image,
while keeping the important low frequency content clean.

Such sampling patterns are typically called blue noise in com-
puter graphics. Blue noise patterns are characterized by a low en-
ergy power spectrum P(ν) for ν < ν0, and a flat spectrum with
P(ν) ≈ 1 for ν > ν0 [Yel83, Mit91]. Many methods have been
proposed to generate point patterns with power spectra that ex-
hibit variations of such properties. Earlier methods propose algo-
rithms that impose certain constraints on the generated random
point distributions. Dart throwing [Coo86] (also known as simple
sequential inhibition and random sequential adsorption [IPSS08])
generates distributions where points are randomly placed in space
with the constraint that no two points are closer to each other
than a certain distance. This algorithm and the resulting distribu-
tions have been widely used and extended in many ways in the
last decades (e.g. [DH06, Bri07, Wei08, Wei10, EMP∗12, EPM∗14,
Yuk15, KTBV16b]). Other works have investigated utilizing alter-
native algorithms for improved characteristics for certain applica-
tions [KCODL06,Ost07,IPSS08,BSD09,SGBW10,Fat11,SHD11,
XLGG11, CYC∗12, dGBOD12, JZW∗15, MEA∗18]. The resulting
point distributions are then analyzed by computing characteristics
such as power spectrum, or statistics from stochastic point pro-
cesses [Mit87, LD08, WW11, OG12, HSD13], to understand their
utility in practice.
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A main limitation of the mentioned works for point pattern gen-
eration, however, is that the algorithm dictates the characteristics of
the generated point patterns. Instead, a recent body of works pro-
pose to generate point distributions with statistics matching given
ones [ZHWW12, OG12, HSD13, WPC∗14, AHD15, KTBV16a].
Once a statistic, such as the power spectrum, is defined, these meth-
ods run a routine to place sampling points such that the final con-
figuration leads to the desired form for the statistic. With this ap-
proach, Heck et al. [HSD13] could generate point distributions with
the step blue noise spectrum for the first time (Figure 1, left). How-
ever, they have also observed that such a form for the spectrum
is only possible for quite low values of ν0, leading to noisy lower
frequencies for sampled images. In general, the subspace of real-
izable power spectra is restricted, with the necessary conditions
that both power spectrum and pair correlation function, which is
related to power spectrum with a spectral transform, should be non-
negative [UST06]. Hence, a fundamental challenge is defining re-
alizable forms for power spectra with desirable properties.

This challenge has been addressed by defining parametric forms
for the power spectrum in recent works [HSD13, KTBV16a]. The
idea is then to search over the free parameters to get realizable
power spectra with anti-aliasing properties. Heck et al. [HSD13]
define the single-peak blue noise, where a Gaussian is placed at
around ν0 to trade off energy for ν < ν0 against the maximum
value m of the power spectrum. The standard deviation, and mag-
nitude of the Gaussian can then be altered to get realizable power
spectra. Kailkhura et al. [KTBV16a] have recently proposed a new
parametrized family, stair blue noise, where the peak is replaced
with a raised flat region of a certain width starting at ν0, as in Fig-
ure 1, middle. The free parameters in this case are ν0, and the width
and height of the raised flat region. By a guided search over these
parameters, spectra with a lower m than single-peak blue noise can
be obtained. However, for both methods, due to the assumed para-
metric forms, the families of power spectra considered are rather
limited, and the exact effect of the parameters on aliasing is not
clear. In contrast, we do not assume any particular form for power
spectra and instead formulate the problem of generating desirable
and realizable spectra as constraint optimization with a variational
formulation.

3. Background and Preliminaries

We utilize the theory of stochastic point processes [MW04,IPSS08]
to understand anti-aliasing properties of point patterns. Stochastic
point processes provide a principled approach for analyzing point
patterns [MW04,IPSS08]. A point process is defined as the generat-
ing process for multiple point distributions sharing certain charac-
teristics. Hence, each distribution can be considered as a realization
of an underlying point process (we use the term point pattern for
families of point distributions sharing characteristics ).

We can explain a point process with joint probabilities of having
points at certain locations in space. Such probabilities are expressed
in terms of product densities. For our application of point patterns
with optimal power spectra for anti-aliasing, it is sufficient to con-
sider first and second order product densities, as they uniquely de-
termine the power spectrum of a point process. First order product
density is given by ρ

(1)(x)dx = p(x), where p(x) is the probability

of having a point generated by the point process P in the set dx
of infinitesimal volume, and intuitively measures expected number
of points around x, i.e. local density. Similarly, second order prod-
uct density ρ

(2) is defined in terms of the joint probability p(x,y)
of having points x and y in the sets dx and dy simultaneously,
ρ
(2)(x,y)dxdy = p(x,y). It describes how points are arranged in

space, and is fundamentally related to the power spectrum of P .

As in previous works [DW85, HSD13, KTBV16a] on anti-
aliasing, we will assume that no information is given on the func-
tion to be represented, and hence consider unadaptive point pat-
terns. These patterns are generated by stationary and isotropic point
processes, where the characteristics of the generated point distri-
butions are translation invariant, or translation and rotation invari-
ant, respectively [OG12]. For both cases, ρ

(1) reduces to a con-
stant number, λ, which measures the expected number of points in
any given volume, λ =

EP [n(V)]
|V| , where EP denotes expectation

over different distributions generated by the point process P , n(V)
is the random number of points that fall into the set V , and |V|
is its volume. For stationary point processes, second order prod-
uct density becomes a function of the difference vector between
point locations ρ

(2)(x,y) = ρ
(2)(x− y), which can be expressed

in terms of the normalized pair correlation function (PCF) g as
ρ
(2)(x−y)= λ

2g(x−y). For isotropic point processes, PCF further
simplifies and becomes a function of the distance between point lo-
cations g(x−y) = g(‖x−y‖). Below we will first consider station-
ary point processes and the associated derivations, which we will
specialize to isotropic processes in the next sections.

PCF as a Distribution

The intuition behind PCF is that it can be estimated as a probability
distribution of difference vectors (for stationary point processes),
or distances (for isotropic point processes) between points. This
is possible due to the fundamental Campbell’s theorem [IPSS08]
that relates sums of functions at sample points to integrals of those
functions. For simplicity of the expressions, we assume a toroidal
domain V with unit volume as the sampled domain (e.g. the image
plane). Utilizing Campbell’s theorem, it is possible to derive the
following expression for PCF of stationary processes (Appendix A
of the supplementary material)

g(r) = 1
λ2 EP

[
∑
j 6=k

δ(r− r jk)

]
, (1)

where δ is the Dirac delta, and we defined r = x−y, r jk = x j−xk.
Note that the xk’s are from a particular distribution generated by the
point process P , and the expectation is over all such distributions.
This expression clearly shows that PCF is simply a normalized dis-
tribution of difference vectors r jk.

Power Spectrum and PCF

Power spectrum of a point process is defined in terms of the Fourier
transform S(ννν) =F [s(x)](ννν) of the function s(x) =∑ j δ(x−x j) as
follows [HSD13]

P(ννν) =
1
λ
EP
[
S(ννν)S(ννν)

]
=

1
λ
EP
[
∑
jk

e−2πiνννT r jk

]
, (2)
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with (·) denoting complex conjugate. Power spectrum P thus lacks
the phase of the Fourier transform and hence is translation invari-
ant, only depending on the difference vectors r jk. Equations 1 and 2
suggest that P and g are related by a Fourier transform. Indeed, de-
noting the Fourier transform of g with G, it is possible to derive the
following relation between them (Appendix B of the supplemen-
tary material)

P(ννν) = λG(ννν)+1. (3)

In order to state properties of power spectra for anti-aliasing, we
will work with a slightly modified form of Equation 3, where we
rewrite the relation between P and g in terms a function u we define,
and its Fourier transform U , as follows

g(r) = u(r)/λ+1, P(ννν) =U(ννν)+1+λδ(ννν). (4)

Conditions for Realizable Power Spectra

Power spectrum is non-negative by definition (Equation 2), and this
is also true for PCF as a distribution of difference vectors (Equa-
tion 1). Hence, two necessary conditions for a valid power spectrum
of a point process are

g(r)≥ 0, P(ννν)≥ 0. (5)

It is still an open question whether these are also sufficient con-
ditions, but no counterexamples have been shown in statistics
and physics (e.g. [TS02]), and these conditions have been suc-
cessfully used to generate realizable power spectra in previous
works [HSD13, KTBV16a] and also in this paper. We thus assume
that these are sufficient conditions for realizable power spectra.

Error in Sampling a Function

Sampling a function t with a point distribution generated by a point
process P can be written as s(x)t(x) in the spatial domain, or as
[S ∗ T ](ννν) in the frequency domain, where T is the Fourier trans-
form of t, and ∗ denotes convolution. This sampled representation
introduces an error. In order to analyze magnitude and distribution
of error, the expected power spectrum of error needs to be com-
puted [DW85, HSD13]

E(ννν) = EP
[
|[S∗T ](ννν)/λ−T (ννν)|2

]
, (6)

where | · | denotes magnitude of a complex number, and the sam-
pled representation is divided by λ to normalize the energy of the
sampled function [HSD13], or equivalently to have an unbiased es-
timator since EP [s(x)t(x)/λ] = t(x) (by applying Equation 3 in
Appendix A of the supplementary material). We need to relate the
error E(ννν) to P(ννν) in order to derive desired properties for this
statistic P(ννν), which we elaborate on in the next section.

Relation to integration

In this work, we are interested in error when representing a func-
tion with samples. This is fundamentally different from the error
introduced by numerically integrating a function by summing the
sample values [Dur11, SK13, PSC∗15, Ö16]. For the case of im-
ages, we can think of the sampling, filtering, and resampling of an
image as performing local integration around each pixel center. To
understand aliasing, we need to analyze the distribution of these

errors of integral estimates at all pixels. Indeed, we are interested
in the spectrum of error that encodes this distribution. This is in
contrast with analyzing error in a single integral estimate. How-
ever, some insights from integral estimation carry over to the anti-
aliasing problem, as we will see in the next section.

4. Theoretical Analysis of Sampling Error

The error spectrum E(ννν) provides how much error we get at each
frequency. In general, we need to have E(ννν) as low as possible at
each ννν, and especially for low ννν. For anti-aliasing, we need to addi-
tionally have an as uniform as possible E(ννν) to get incoherent noise
instead of colored noise [DW85, HSD13]. It is, however, not clear
how these are exactly related to the shape of the power spectrum
P(ννν) of a sampling pattern. We need this relation to be able to for-
mulate the constraints and energies for our variational formulation
of optimized sampling patterns for anti-aliasing.

4.1. Spectra of Error and Sampling Patterns

So far, relating E(ννν) to P(ννν) has only been possible for a constant
function t(x) = c [DW85], or upper bounds could be derived for a
sinusoidal wave [HSD13]. In this section, we show that it is possi-
ble to derive an exact relation between E(ννν) and P(ννν) for an arbi-
trary t(x), by utilizing the theory of point processes. This leads to
theoretical justifications of criteria used for P(ννν) in the literature,
and to novel theoretical results and insights.

We start by expanding the expression for the error spectrum in
Equation 6 (we drop ννν for brevity)

E =
1
λ2 EP

[
|S∗T |2

]
+EP

[
|T |2

]
− 1

λ
EP
[
(S∗T )T

]
− 1

λ
EP
[
(S∗T )T

]
=

1
λ2 EP

[
|S∗T |2

]
+ |T |2− 2

λ
<
{
(EP [S]∗T )T

}
,

(7)

where <(·) gives the real part of a complex number. The critical
part of the proof is deriving the forms of these expected values.
We show in Appendix A that this can be achieved by starting from
Campbell’s theorem (as defined in Appendix A of the supplemen-
tary material). The final form of the power spectrum of error is then

E(ννν) =
1
λ
[Pt ∗ (U +1)] (ννν). (8)

Here, Pt = |T |2 is the power spectrum of the function t.

Remarks

This expression immediately reveals several interesting properties
of error when sampling a function.

• The error is independent of the phase of T (ννν). This is expected
as the sampling patterns considered are translation invariant.
• It implies that error can decrease as O(λ−1) for any function

t, as observed for a sinusoidal wave previously [HSD13] (recall
that λ is proportional to the number of points). However, at the
same time, the difference vectors r jk become smaller for higher
number of points, leading to a compression of the domain of g(r)
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DS-Wave

Stair
Blue
Noise

Step
Blue 
Noise

Random

⌫c = 0.35 ⌫c = 0.50 ⌫c = 0.75 ⌫c = 0.80 ⌫c = 0.85 ⌫c = 1.5

Figure 2: Colored noise leads to visible secondary structures that are not present in original images. The function cos(2π
√

λνcy) is sampled
with different sampling patterns (with λ = 1282, and one sample per pixel). We show the resulting images as well as the error E(ννν), with the
orange circle marking the region of representable frequencies after reconstruction and resampling to the pixel grid. Stair blue noise reduces
noise levels as compared to step blue noise for lower νc = 0.35,0.50, but leads to aliasing artifacts for higher νc = 0.75,0.80,0.85 due to
the fluctuations it introduces to E(ννν) for the representable low frequencies within the orange circles. The proposed ds-wave sampling results
in less or equivalent noise levels for all νc as compared to other patterns, and less aliasing for higher νc as compared to the state-of-the-art
stair blue noise [KTBV16a] (both patterns are with ν0 = 0.8) due to lower peaks in E(ννν). For very high νc = 1.5, all patterns have noise
levels similar to random sampling.
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(Equation 1), and hence an expansion of that of U(ννν), as they are
related via a Fourier transform. Thus, the final convergence rate
depends on Pt(ννν) and U(ννν).
• The only pattern that gives a constant spectrum is random sam-

pling (Poisson point process) with U(ννν) = 0. In this case, we get
E(ννν) = 1

λ

∫∞
−∞Pt(ννν)dννν, which leads to equally noisy frequen-

cies and hence perfectly incoherent white noise.
• The DC component of sampling error given by E(0) =

1
λ

∫∞
−∞Pt(ννν)(U(ννν)+1)dννν is exactly the variance of the numer-

ical estimator 1
λ

∑ j t(x j) for the integral 1
|V|

∫
V t(x)dx [PSC∗15,

Ö16]. For the stationary point processes we consider, bias van-
ishes and hence this variance is equal to the expected error of the
numerical integral estimator [Ö16].

In practice, a function (e.g. image) sampled with an anti-aliasing
point pattern is then resampled to a regular grid after low-pass filter-
ing. This can be written as sREG(k ∗ (st)) (dropping x for brevity),
where k is a low-pass filter such as Gaussian, and the points in sREG
are regularly distributed on a grid of e.g. pixel centers. This re-
sampled function has the Fourier transform SREG ∗ (K(S∗T )) with
SREG and K the Fourier transforms of sREG and k, respectively. As
SREG is an impulse train, the result of this convolution is repeating
the same function, assuming K avoids any overlap between aliases.
Thus, only the central part around zero frequency, cut out by the
filter K, is relevant. The expected error (Equation 6) then becomes

EP
[
|K[S∗T ]/λ−KT |2

]
= |K|2E. (9)

Hence, we can consider the low frequency region of E implied by
K for most practical applications.

4.2. Analysis of Anti-aliasing Properties

The derived relation between E(ννν) and P(ννν) allows us to perform
a theoretical analysis of error in terms of the characteristics of the
power spectrum. There are established characteristics for the power
spectra P(ννν) of anti-aliasing point patterns in the literature. These
follow certain intuitions and have indeed been effective in practice.
However, how such characteristics exactly affect aliasing, and how
they can be improved, could not be analyzed since the relation be-
tween P(ννν) and E(ννν) was not known [HSD13].

There are two considerations for the error: 1) it should be low,
2) it should be as constant as possible, leading to white noise. The
latter ensures that additional visual structures will not appear due to
colored noise. We want to analyze how U(ννν) and thus P(ννν) should
be shaped to achieve such a spectral profile for noise. For brevity,
in the rest of the paper, we set P(ννν) =U(ννν)+1, ignoring the Dirac
delta at zero that does not contribute to E(ννν).

Low energy for low frequencies

A fundamental property of anti-aliasing patterns such as blue noise
patterns is that there should be a low energy low frequency re-
gion [Mit91, HSD13, KTBV16a], i.e. P(ννν) should be low and ide-
ally zero for ‖ννν‖ < ν0. This property is meant to limit the amount
of noise E(ννν) at lower frequencies. By expanding the convolution
in Equation 8, it can be easily shown for step blue-noise (Figure 1,

left) where P(ννν) = U(ννν)+ 1 = 0 for ‖ννν‖ < ν0, and 1 otherwise,
that

EST EP(ννν) =
1
λ

∫ ∞
−∞

Pt(ννν−ννν
′)PST EP(ννν

′)dννν
′

=
1
λ

∫
D{

ν0

Pt(ννν−ννν
′)dννν

′

≤ 1
λ

∫ ∞
−∞

Pt(ννν−ννν
′)dννν

′ = ERND(ννν),

(10)

where Dν0 is the d-dimensional disk of radius ν0, (·){ denotes the
complement of a set, and EST EP and ERND are the errors when
using step blue noise, and random sampling, respectively. In par-
ticular, for a band-limited function with Pt(ννν) = 0 for ‖ννν‖ > ν0,
EST EP = 0. However, in general, the difference between EST EP and
ERND may not be very large especially when the function Pt(ννν) has
significant energy at higher frequencies. This can be seen in Fig-
ure 2, where we show examples of sampled images of a cosine wave
cos(2π

√
λνcy) of different frequencies νc, and the corresponding

E(ννν), for different sampling patterns. For high frequencies such as
νc = 1.5, the low frequency region (implied by the reconstruction
kernel K, marked with orange circles in the figure) of E(ννν) for step
blue noise contains as much energy as for random sampling, lead-
ing to similar levels of error in the sampled images.

In practice, having a large ν0 is still very important even when
sampling non-band-limited functions, due to the stationarity of the
point patterns considered (Section 3). As the patterns are translation
invariant, each local patch of the function t is sampled with a point
distribution of the same characteristics. Hence, the same analysis
can be carried out for each patch. The visual quality especially for
smoother patches, where noise is visually very distractive, will thus
be improved significantly by using a step-like profile. This is illus-
trated in Figure 2 for νc = 0.35, where stair blue noise and ds-wave
sampling (a variation of our sampling patterns as we will discuss
in Section 5) with a higher ν0 than step blue noise and random
sampling, result in much cleaner image content.

Limiting the maximum of P

Another fundamental property utilized in the literature is that the
maximum m of P should be limited [HSD13,KTBV16a]. The intu-
ition is that this will also limit the magnitude of and fluctuations in
error. Indeed, we can easily show that

E(ννν)≤ m
λ

∫ ∞
−∞

Pt(ννν−ννν
′)dννν

′ =
m
λ

∫ ∞
−∞

Pt(ννν)dννν. (11)

Hence, normalized by the total energy of T (ννν), the error in this case
is bounded by m/λ at every frequency ννν.

This global maximum is also very important for limiting fluctu-
ations in E(ννν), i.e. avoiding colored noise. Example E(ννν)’s where
such maxima add up to generate significant fluctuations in error for
low frequencies are shown in Figure 2, stair blue noise sampling
with νc = 0.75−0.85. In this case, Pt(ν1,ν2) = α[δ(ν2−

√
λνc)+

δ(ν2 +
√

λνc)]δ(ν1) for a constant α, and hence the ratio of er-
ror to the total energy of the function t is E(ννν)/

∫∞
−∞Pt(ννν)dννν =

1
2λ
[P(ν1−

√
λνc)+P(ν1 +

√
λνc)]. In general for any function t,

this ratio can fluctuate between 0 and m/λ at different frequencies,
significantly disturbing the noise profile if the maximum m is high.
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Figure 3: Realizable power spectra with anti-aliasing properties
can be obtained by constrained variational optimization with con-
straints on the maximum value e0 of the low frequency region
ν < ν0, deviation from 1 for the high frequency region ν > ν0 that
implies the constraint m0 on the maximum value of the spectrum,
and an energy functional E that controls the shape of the high fre-
quency region.

Such colored noise manifests itself as visually distinguishable sec-
ondary patterns in sampled images, as can be seen in the image
reconstructions for stair blue noise with νc = 0.75− 0.85 in the
figure, instead of white noise without a clear structure.

Minimizing local maxima of P

Due to the constraints on P(ννν) (Section 3), for point patterns with a
larger ν0, P(ννν) inevitably contains local maxima of decaying mag-
nitude (as we will illustrate in Section 5). Apart from limiting m,
which determines the first maximum in P(ννν), avoiding further local
maxima is also beneficial, as these peaks can similarly sum up to
cause further fluctuations in E(ννν) due to the convolution in Equa-
tion 8, albeit all smaller than m as we illustrate in Figure 2. We will
explore how we can shape the peaks such that we get an as small
as possible global maximum m and local maxima, while ensuring
a certain ν0, by translating these into energies and constraints in
a variational optimization based formulation for P(ννν) in the next
section.

5. Optimized Anti-aliasing Patterns

The characteristics for P as elaborated on in the last section can be
imposed in addition to the realizability conditions (Equation 5), to
obtain optimal sampling patterns with respect to these criteria. In
this section, we formulate the associated variational optimization
problem. This will allow us to synthesize optimal distributions with
respect to the considered characteristics with numerical solution
methods.

5.1. Sampling as Constrained Variational Optimization

We start by making the effect of density λ on the problem ex-
plicit, and factor it out from the optimization. This can be achieved
by working with normalized spatial and frequency coordinates.
We start by defining f (r) = u(r/λ

1/d)/λ. By the scaling property
of Fourier transform, we can write F(ννν) = U(νννλ

1/d). Substitut-
ing these into the expressions for g and P (Equation 4), we get
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Figure 4: Power spectra generated with an integral-based low fre-
quency constraint can lead to spikes for low frequencies (left).
Directly limiting power for low frequencies ensures low aliasing
(right).

g(r/λ
1/d) = f (r) + 1, and P(νννλ

1/d) = F(ννν) + 1 (ignoring δ(ννν)
as before, as it does not contribute to E(ννν)). Then, in normal-
ized coordinates, we can write the conditions g(r/λ

1/d) ≥ 0 and
P(νννλ

1/d)≥ 0 as

f (r)+1≥ 0, F(ννν)+1≥ 0. (12)

Thus, the constraints become independent of the intensity λ of the
point process. We will work with g and P in normalized coordinates
unless stated otherwise, and set g(r)= f (r)+1, and P(ννν)=F(ννν)+
1. Absolute spatial coordinates are thus given by multiplying the
reported r with 1/λ

1/d , and absolute frequencies by multiplying
the reported ννν with λ

1/d .

Although the complete analysis in the rest of the paper can
be carried out for stationary point processes in Rd , we will con-
sider the important case of image sampling with non-adaptive
anti-aliasing distributions as in previous works [DW85, HSD13,
KTBV16a]. This implies that the point processes considered are
isotropic, generating rotation and translation invariant distributions.
In this case, g and thus P is radially symmetric such that g(r) =
g(‖r‖) = g(r), P(ννν) = P(‖ννν‖) = P(ν), and all Fourier transforms
in the definitions above turn into Hankel transforms H (please see
Appendix A of Heck et al. [HSD13] for the definition and prop-
erties of Hankel transforms). In particular, we have F = H [ f ], or
equivalently f = H [F ]. The Hankel transform is defined for any
dimension. For our case of sampling the image plane, we use the
Hankel transform for d = 2 dimensions.

Hence, the problem becomes finding a 1D function F with the
above non-negativity constraints in Equation 12, and additional
properties we impose. These properties can either be set as hard
inequality constraints C [F(ν)] ≥ 0, or energies that we minimize
for. We can thus formulate the following constrained variational
minimization problem on F , to find a realizable and desirable P

minE [F ]

F +1≥ 0, H [F ]+1≥ 0, C [F ]≥ 0.
(13)

5.2. Constraints and Energies for Anti-aliasing

By changing the energy functional E and constraints C , we can
tune the properties of F(ν) and thus P(ν) = F(ν) + 1. We sum-
marize the properties shaped by the constraints and energies con-
sidered in Figure 3. These closely follow the criteria analyzed in
Section 4, with a low energy low frequency region, bounded global
maximum and local maxima.
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Figure 5: Power spectra generated by minimizing oscillation (top) and total variation (bottom) energies under the low frequency constraint
(Section 5.2). Minimizing total variation provides a non-traditional spectrum with a decaying square wave form and lower maximum values
for the power spectra.

Low Frequency Constraint

We start with the property that P(ν) has small energy for ν < ν0 for
a given ν0 (we call this region as the low frequency region, and ν >
ν0 as the high frequency region). This can be imposed with a direct
constraint of the form 1

ν0

∫ ν0
0 P(ν)dν ≤ e0, for a limit e0. Similar

terms have been used to quantify the energy in the low frequency
region in previous works [HSD13, KTBV16a]. However, this does
not limit the value of P(ν) at a given frequency, and hence P(ν)
can grow very large, leading to severely high error at certain low
frequencies, and hence significant fluctuations in the spectrum. An
example spectrum generated with this integral constraint is shown
in Figure 4, left. Instead, we propose to directly limit the spectrum
for the low frequency region with

F(ν)+1≤ e0 ν < ν0. (14)

This ensures that error will be bounded at all low frequencies (Fig-
ure 4, right). Ideally, e0 = 0, and thus P(ν) = 0 for ν < ν0. We
will see in the next section that e0 and hence noise for low frequen-
cies can be traded off with aliasing at higher frequencies. For the
analysis in this section, we assume e0 = 0.

Oscillation Energy

Another desired property of P(ν) is that it should not have high
global and local maxima. This can be imposed in several ways.
Previous works [HSD13] have considered measuring squared devi-
ation of P(ν) from 1, which can be written as the following energy

E [F ] =
∫ ∞

ν0

F2(ν)dν. (15)

Minimizing this energy with the realizability constraints and the
low frequency constraint above for different ν0’s, we get the spec-
tra in Figure 5, top. We get a perfectly zero region for ν < ν0, and
peaks of decaying magnitude for higher frequencies. This is a typ-
ically encountered profile for blue noise patterns, except for two
recent works [HSD13, KTBV16a]. For ν0 <

√
1/π, which is the

theoretical limit for a step-noise profile, we get a perfect step shape.
Larger ν0 leads to oscillations, with the magnitude of the first peak

determining the global maximum of P. As ν0 is increased, the max-
imum also gets larger.

Total Variation Energy

For ν > ν0 and ν0 >
√

1/π, P will inevitably deviate from 1 with
one or more peaks, before it (possibly) converges to 1 [HSD13].
An alternative way of limiting the magnitudes of these peaks is to
minimize total variation energy. This can be visualized as minimiz-
ing the length of the path traveled by a point when projected onto
the P-axis, as it moves along the curve P(ν) from ν0 to ∞. The
resulting energy is given by

E [F ] =
∫ ∞

ν0

|F ′(ν)|dν. (16)

We show power spectra generated by minimizing this energy un-
der the low frequency constraint and realizability conditions in Fig-
ure 5, bottom. The spectra now mostly contain raised rectangular
regions instead of peaks, i.e. a decaying square wave. This is due to
the sparse gradients introduced by total variation. Heights of rect-
angular regions, and thus the maxima of P are smaller than when
minimizing the oscillation energy above.

Smoothness Energy

We further experimented with smoothness energies, the Dirich-
let energy E [F ] =

∫∞
ν0
|F ′(ν)|2dν, and Laplacian energy E [F ] =∫∞

ν0
|F ′′(ν)|2dν. We show the resulting spectra in Figure 6. The

spectra in these cases are worse with higher peaks than with oscil-
lation or total variation energy.

Maximum Constraint

Although total variation energy leads to peaks of smaller magni-
tude, it might still be possible to further reduce the global maxi-
mum m of P. The same is true for all energies. Having a small m
is an important factor to avoid colored noise and hence aliasing, as
elaborated on in Section 4.2. To achieve a smaller m, we limit the
magnitude of deviations from 1 with the following constraint

|P(ν)−1|= |F(ν)| ≤ m0−1 ν > ν0. (17)
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Figure 6: Power spectra generated by minimizing smoothness en-
ergies (left: Dirichlet, right: Laplacian energy) for ν0 = 0.9. We
get higher peaks and thus worse characteristics than other ener-
gies considered.
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minimum possible m

Figure 7: Power spectra generated by minimizing oscillation and
total variation energies without (left) and with (right) the maximum
constraint (Equation 17) for the optimal (minimum possible) m0
and thus m (ν0 = 0.85 for all cases).

In practice, this constraint is equivalent to P(ν) ≤ m0, as for all
power spectra in previous works and in this work, the first peak has
the largest |P(ν)−1|, and at that peak P(ν)> 1 (e.g. Figure 5). Of
course, not all ν0 - m0 combinations are realizable (we will elabo-
rate more on this point in the next section). In order to define the
range of possible m0 for a given ν0, we can find the minimum pos-
sible m0 by an exhaustive search. We show this constraint imposed
on the spectra for oscillation energy and total variation energy in
Figure 7. For both energies, reducing m0 comes at the cost of a
larger number of oscillations, albeit all with smaller magnitudes,
hence not leading to significant aliasing.

5.3. Optimized Sampling Patterns

The analysis above suggests that total variation energy leads to bet-
ter profiles for power spectra, with lower global and local maxima.
Without the maximum constraint (Equation 17), the maximum with
oscillation energy is larger (Figure 7, left), while imposing the max-
imum constraint results in further peaks of higher magnitudes than
those with total variation energy as in Figure 7, right (please see the
supplementary material for more spectra with total variation and
oscillation energies). Due to the flatter shape of the spectrum, noise
is introduced for a larger range of unrepresentable high frequencies
with total variation energy. However, such incoherent noise is pre-
ferred to colored noise caused by higher maxima in power spectra
with oscillation energy. Hence, we focus on total variation (Equa-
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Figure 8: Feasible regions for realizable power spectra in the ν0
- m0 space for different e0’s. No patterns can have power spectra
outside this region.

tion 16) as the energy in this paper. Due to its shape resembling
a decaying square wave, we call the resulting pattern as ds-wave
sampling.

The use of the maximum constraint depends on the gain we ob-
tain, i.e. how much lower the maximum of the power spectrum
is with this constraint. We show estimated power spectra with-
out (m0 =∞) and with the maximum constraint for m0 = 2, and
m0 = min (the minimum possible m0) in Figure 9. These are com-
puted as the empirical power spectra of generated point distribu-
tions (we elaborate more on this in the next section). As we use
total variation energy, we already get low maxima, hence see only
a marginal improvement. In general, it is possible to tune m0 de-
pending on how critical this improvement is for the application, but
this requires a search among different m0 values, and some addi-
tional local maxima appear in the spectrum.

Recent works [HSD13,KTBV16a] explore minimizing the max-
imum of power spectra for a given ν0 and e0. However, as they use
pre-defined parametric families of functions, it is not possible to
achieve the minimum possible maximum. By utilizing the proposed
optimization framework, we can derive the minimal maximum (up
to numerical accuracy). For fixed ν0 and e0, we try to optimize any
of the above energies for various m0’s, and take the minimum that
leads to a feasible solution. The resulting space of feasible ν0 -
m0 pairs are shown in Figure 8 for e0 = 0 and e0 = 0.1. Note that
these results are general and independent of the form of the power
spectrum. The minimum possible m0 stays at 1 for ν <

√
1/π as

expected, and becomes increasingly more sensitive to ν0 for large
ν0 values. It is not possible to go beyond ν0 = 1, as this is the
ν0 of regular sampling. We also observe this in practice when we
compute the feasible region. We can use the feasible region as a
benchmark for how patterns perform for anti-aliasing.

As Figure 8, right, shows, increasing low frequency noise with
e0 = 0.1 significantly reduces m0, especially for high values of ν0.
We show power spectra obtained for e0 = 0.1 and e0 = 0.2 in Fig-
ure 9. Although the constraint is P(ν) ≤ e0 for ν < ν0, the opti-
mizations result in P(ν) = e0 for all ν < ν0. For higher e0’s, power
spectra get flatter, and thus zone plate images show reduced alias-
ing artifacts for high frequencies. This comes at the cost of higher
levels of noise introduced into low frequencies, as visible in low
frequency parts of the zone plate images. The generated point dis-
tributions reveal the source of this low frequency noise: they be-
come increasingly more random for larger values of e0.
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Figure 9: Optimized power spectra with total variation energy and ν0 = 0.85, for different m0 and e0 values. From top to bottom: zone plate
image sampled with the generated point distributions, estimated 2D power spectrum, 1D power spectrum, an example distribution.

5.4. Implementation

We discretize the problem in Equation 13 with standard techniques
from numerical analysis. As the function F to optimize for is 1-
dimensional, a simple discretization with regular sampling is used.
The derivative operators are then discretized with finite differences,
and integrals in the energies are approximated with the trapezoidal
rule. Hankel transform is discretized with an accurate approxima-
tion based on the trapezoidal rule (e.g. [CB93], Equation 6).

We experimented with various ranges and sampling rates for F
and H [F ]. In all of our experiments, a sample spacing of 0.01 was
sufficient for accurate numerical results. In order to test the accu-
racy of the resulting spectra with this spacing, we take 100 spectra
with randomly chosen parameters (ν0 ∈ [0.5,1), and e0 ∈ [0,0.2]
to avoid having many step-like spectra). We then compute the av-
erage root mean squared difference between each spectrum for a
sample spacing of 0.01 and 0.001, resulting in 6.1 10−3 average
difference. For P, we sample the range ν ∈ [0,10], since well be-
fore ν = 10, F converges to 0 (and hence P = F +1 converges to 1)

for all patterns in our experiments. The average absolute deviation
of F from 0 for ν ∈ [9,10] for 100 random spectra is 7.74 10−5.
The same, however, is not true for H [F ], which determines the
PCF g. For H [F ], we thus sample almost the full range of possible
distances for the unit toroidal domain we consider, [0,0.5] in abso-
lute coordinates. Note, however, that in practice this is not strictly
needed as we only require g(r) = H [F ](r)+1≥ 0, and g(r) does
not oscillate significantly beyond a limited range of r’s.

Hankel transform is a linear operator and hence all constraints,
including the realizability conditions (Equation 12), are linear in-
equality constraints. The oscillation (Equation 15) and smoothness
energies turn into quadratic forms when discretized. For these en-
ergies, the discrete problem thus becomes quadratic programming.
Minimization with total variation energy (Equation 16) can be for-
mulated as linear programming, using well-known results from op-
timization. Both problems are thus convex and easy to solve with
any modern optimization package. We use built-in Matlab func-
tions for optimization.
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There are several techniques for synthesis of point patterns based
on PCF or power spectrum [ZHWW12, OG12, HSD13, WPC∗14,
AHD15, KTBV16a]. We experimented with several of these ap-
proaches that focus on accuracy [OG12, HSD13, KTBV16a], and
got similar results. We hence use the PCF-based matching tech-
nique of Heck et al. [HSD13] for all experiments in the paper and
the supplementary material, due to the efficient implementation
available. We use the default parameters for that algorithm, and the
same discretization for PCF as we describe above.

6. Evaluation and Analysis

To evaluate the performance of our sampling patterns in practice,
we analyze power spectra, and illustrate their anti-aliasing proper-
ties on sampled images (for more results, please see the supplemen-
tary material).

Evaluation

For estimating the power spectrum of a pattern, we generate 10
point distributions with a matching spectrum, each with 4096
points. The empirical power spectra of these distributions, com-
puted with Equation 2 and their radial averages, are averaged to
generate all estimated 2D and 1D power spectra in this paper and
the supplementary material. For other sampling patterns that start
from a theoretical power spectrum (step blue noise, single-peak
blue noise [HSD13], and stair blue noise [KTBV16a]), we use the
same point distribution synthesis algorithm [HSD13] with the same
settings as in Section 5.4.

Unless stated otherwise, we use distributions with 16384 (128×
128) points at 1 sample per pixel (spp) for all test images ex-
cept the zone plate images. We use the zone plate function ([1+
cos(α‖x‖2)]/2, x ∈ V) as a benchmark test image, since it reveals
aliasing at different frequencies without the masking effect due to
local structures [HSD13, KTBV16a]. These images are sampled at
2 spp (please see the supplementary material for zone plate im-
ages with 1,2,4 spp). All images are reconstructed with a low-pass
filter (we use the 3× 3 Gaussian filter) and resampled to a regu-
lar grid. This filter and others used in the literature retain some of
the frequencies that cannot be represented with the pixel grid, but
ensure a clear visualization of noise. In practice, we only noticed
faint and distinct secondary rings for zone plate images when using
more than 1 samples per pixel due to this filtering, as visible e.g. in
Figure 1.

Ds-wave and Stair Blue Noise

We analyze the properties of our ds-wave sampling and com-
pare them to those of the state-of-the-art stair blue noise sam-
pling [KTBV16a] in Figure 10. For stair blue noise, at each ν0,
we find the minimum value for the maximum m of the power spec-
trum with an exhaustive search over the parameters, as described by
Kailkhura et al. [KTBV16a]. Since stair blue noise has zero energy
for the low frequency region, we set e0 = 0 for all comparisons.

Figure 10, left shows that for all ν0 >
√

1/π (the theoretical limit
for step blue noise), ds-wave sampling has a lower m than stair
blue noise, with the difference getting larger for larger ν0. Ds-wave
sampling with m0 = min achieves the optimal m, by definition. But
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Figure 10: (Left) For each ν0, the maximum value of the power
spectrum for ds-wave and stair blue noise [KTBV16a] sampling.
(Right) Comparisons of spectra of stair blue noise and ds-wave
sampling at the maximum achievable ν0 = 0.81 for stair blue noise.

even without the maximum constraint (i.e. m0 =∞), ds-wave sam-
pling has m very close to the optimum. Note that the maximum ν0
we could obtain for stair blue noise sampling for m ≤ 100 is 0.81,
and thus we show the range ν0 ∈ [0.5,0.8]. In Figure 10, right,
we plot the spectra for ν0 = 0.81, illustrating the significant differ-
ence between ds-wave and stair blue noise for both m0 =∞ and
m0 = min. We show further theoretical, and estimated 2D and 1D
spectra for lower ν0’s in Figure 11 (m0 =∞). For all cases, the the-
oretical spectra of ds-wave sampling can be realized reliably, with
a lower maximum than stair blue noise, and almost no further os-
cillations. The difference is especially significant for higher values
of ν0. Please see the supplementary material for more examples of
theoretical and estimated spectra.

The practical utility of these results is illustrated in Figures 1
(ν0 = 0.80, m0 =∞), 2 (ν0 = 0.80, m0 =∞), and 12 (ν0 = 0.85,
m0 = min). In Figure 1, the zone plate image reveals frequencies
that are mapped to colored noise and hence secondary patterns due
to the high magnitude region for stair blue noise sampling. Ds-wave
sampling maps such unrepresentable high frequency content to
noise with a profile closer to that for step blue noise, while preserv-
ing the same ν0, and thus noise levels for low frequency content,
as stair blue noise. Although noise is introduced into a larger range
of higher frequencies, this noise is much less objectionable than
the patterns introduced by stair blue noise. We illustrate this further
in Figures 2 and 12 for images with repeated structures of several
frequencies. The cleaner reconstructions of repeated structures of
lower frequencies (top rows) provided by stair blue noise sampling
come at the expense of mapping repeated structures of frequencies
higher than the representable frequency to colored noise. This man-
ifests itself as secondary patterns and higher levels of noise in the
sampled images (bottom rows). Ds-wave sampling leads to as white
as possible noise for these cases, combining advantages of step and
stair blue noise sampling.

Ds-wave and Other Patterns

We compare ds-wave sampling to further patterns commonly used
for anti-aliasing in Figure 13. Dart throwing results in a relatively
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Figure 11: Estimated and theoretical power spectra for stair blue noise [KTBV16a] and ds-wave sampling for different ν0 values (e0 = 0,
m0 =∞). For all cases, ds-wave sampling results in a lower maximum for the power spectra.

small m and hence does not lead to objectionable aliasing artifacts.
However, it also leads to low frequency noise in sampled images, as
is apparent for the zone plate image. For a wider range of cleaner
low frequencies for sampled images (i.e. a larger low frequency
region in power spectrum), CCCVT centroids [BSD09] can be uti-
lized. This results, however, in higher peak values, and thus more
pronounced aliasing artifacts.

An even larger low frequency region is possible with single-peak
blue noise sampling [HSD13], as illustrated in Figure 13, middle.
Note that single-peak blue noise is not exactly zero at low frequen-
cies due to the introduced Gaussian at around the transition from
low to high frequencies, while ds-wave sampling has zero energy
in the low frequency region. We set ν0 such that both single-peak
and ds-wave reach 1 the first time at approximately the same ν.
At this size of the low frequency region, the peak has a high value
and aliasing becomes apparent as secondary patterns in the zone
plate image in Figure 13, middle, and the sampled high frequency
repeated stripe patterns (bottom rows) in Figure 12. Our ds-wave
sampling at ν0 = 0.85 and e0 = 0 has the same size of the low
frequency region, but with a lower maximum, and hence leads to
lower noise and aliasing, as visible in the same figures.

The maximum m and hence aliasing artifacts can be further re-
duced by introducing low frequency noise. With e0 = 0.1, we get
a slightly smaller m than dart throwing, while still having cleaner
and a larger range of low frequencies than dart throwing as shown
in Figure 13.

Multiple Samples per Pixel

One way of reducing noise is increasing the number of samples
per pixel. However, if P contains high peaks, for finite spp, there
will always be secondary patterns due to aliasing when sampling
image content of certain frequencies. To see this, we start by
noting that the error after resampling to a regular grid is given

by |K(ννν)|2E(ννν) = |K(ννν)|2 1
λ
[Pt ∗ (U +1)] (ννν), as derived in Sec-

tion 4.1. Increasing spp means we are keeping K the same, and
expanding P (as it is related to g with a Fourier transform, which
compresses for larger number of points due to smaller distances
among them, please see Section 3). If P has peaks, they will thus
be shifted to higher frequencies and be smoothed as a result of this
expansion. If a sampled image has local structures of those frequen-
cies, due to the convolution in the definition of E(ννν), these peaks
will then be shifted to lower frequencies that are captured by the
filter K. Hence, similar but smoothed artifacts in the form of visible
secondary patterns will appear in the final reconstructed image.

This is illustrated in Figure 14 for the cosine function in Figure 2
with νc = 0.85. We use 4 spp for the top row, and 16 spp for the
bottom row. Note that as we always normalize frequencies by the
number of sampling points, the absolute frequency shifts with the
spp. For both cases, increasing spp does not help to reduce the vis-
ible secondary structures due to aliasing. In fact, higher spp might
lead to perceptually more apparent secondary structures, e.g. for 16
spp in Figure 14.

Artifacts on Rendered Images

We illustrate such aliasing artifacts for practical rendered scenes in
Figure 15. For this figure, we sample each of the dimensions for the
light transport, except the image plane, densely. Hence, the spp re-
ported corresponds to the image plane samples. Computing each of
those image plane samples is thus a costly operation involving a nu-
merical integration for all other dimensions. We show a reference
image first, then the result of stair blue noise on a smaller image
with 1 or 2 spp on the left, and the corresponding result with ds-
wave sampling on the right. Note that we intentionally did not re-
sample the rendered small images with nearest neighbor sampling
to illustrate that applying standard filters on the images with alias-
ing artifacts does not alleviate the aliasing artifacts due to colored
noise. For certain scenes such as the top image, increasing the spp
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Peak Blue NoiseRandom Stair Blue NoiseStep Blue Noise DS-Wave

Figure 12: State-of-the-art sampling patterns such as stair blue noise [KTBV16a] and peak blue noise [HSD13] result in less noise than
random and step blue noise sampling for repeated structures with a low frequency (top rows), at the cost of introducing colored noise and
hence secondary patterns when sampling images with repeated structures of higher frequencies (bottom rows). Ds-wave sampling leads to
cleaner reconstructions, and smoothly degrades to as white as possible noise for repeated structures with high frequencies, avoiding visible
secondary patterns. (Visualizations of the original stripe patterns in sampled images are shown on the left. The patterns repeat every 1/νc
pixels, with νc = 0.5 (top rows) and νc = 0.9 (bottom rows). Peak blue noise is with an effective ν0 = 0.85 as explained in the text, stair blue
noise is with ν0 = 0.81 (maximum possible), and ds-wave is with ν0 = 0.85, m0 = min.)

from 1 to 2 makes the aliasing artifacts more apparent. In general,
we observed that ds-wave sampling makes the most difference for
directional repeated structures as exemplified in the figure.

Running Time

The formulation of the optimization problems with linear and
quadratic programming allows us to use efficient and robust
solvers. For total variation energy (linear programming), it takes 1-
5 minutes for the solver to converge on a PC with Intel(R) Xeon(R)
CPU ES-2680 v3 @ 2.5 GHz, with the running time increasing
for larger ν0. As this optimization is done once and offline, the
main computational complexity comes from the point distribution
generation procedure [HSD13], which takes about one minute to
converge for 4096 points.

7. Conclusions and Future Work

We presented a theoretical and practical framework for analyzing
aliasing, and generating sampling patterns with optimized proper-
ties for anti-aliasing via formulating the problem of generating re-

alizable spectra as variational optimization. The resulting patterns
lead to practical improvements in reducing aliasing artifacts due to
colored noise, and the proposed theoretical framework allows us to
explore and revise optimality measures used for anti-aliasing. We
see many interesting uses of this framework for future research,
some of which we summarize below.

Sampling for Integration Although we focused on anti-aliasing
when reconstructing images in the scope of this paper, a very
promising direction is to optimize power spectra for reducing er-
ror in numerical integration. Recent works [Ö16, PSC∗15] have
proved that the dependence of total error in integration on power
spectrum is given by 1

λ

∫∞
−∞Pt(ννν)(U(ννν)+ 1)dννν (which is in con-

trast with the error spectrum for representation in Equation 8 as
we also discussed in Section 4.1). Minimizing this error will turn
into a linear programming problem when formulated as variational
optimization, similar to Equation 13.

Adaptive Anti-aliasing Patterns Similar to previous works, we
considered non-adaptive anti-aliasing patterns, with no informa-
tion on the actual image to be represented. Recent works [ROG17]
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Dart Throwing CCCVT Centroids Peak Blue Noise ⌫0 = 0.85, m0 = min, e0 = 0.1DS-WaveDS-Wave ⌫0 = 0.85, m0 = 1, e0 = 0

Figure 13: Reconstructed zone plate images and estimated power spectra for different sampling patterns. Ds-wave sampling can get the
same effective range of the low frequency region as single-peak blue noise [HSD13] with significantly less aliasing artifacts, which can be
reduced even further by introducing low frequency noise with e0 = 0.1.

show that sampling patterns with adaptive second order product
densities can lead to significant accuracy improvements for im-
age representation and processing. By combining our optimization
framework with locally adaptive point distribution synthesis algo-
rithms [ROG17], we can obtain optimal adaptive sampling patterns
for image reconstruction.

Exploration of Second Order Characteristics Previous works
explore the space of valid second order characteristics either via
analysis of available point patterns [OG12], or parameterized fam-
ilies of power spectra [HSD13, KTBV16a]. Our framework can be
used to explore this space without such constraints. As an exam-
ple, we showed that optimal maximal values for power spectra for
given ν0’s can be obtained (Figure 8). Similar results can be derived
for other applications such as geometry sampling, physically-based
simulations, or natural distributions.

Higher Dimensional Sampling An interesting aspect of the op-
timization problem in Equation 13 is that it depends on the dimen-
sionality due to the Hankel transform. We will thus get different
spectra for different dimensions, as the Hankel transform takes a
different form for different dimensions. It will be interesting to ex-
plore optimal sampling patterns for higher dimensions, e.g. in the
context of rendering where the integrands can be very high dimen-
sional.

Appendix A: Derivation of Error Spectrum

We start by rewriting the form of the error in Equation 7

E =
1
λ2 EP

[
|S∗T |2

]
+ |T |2− 2

λ
<
{
(EP [S]∗T )T

}
. (18)

As defined in Section 3, s(x) = ∑ j δ(x−x j) and thus its Fourier

transform is S(ννν) =∑ j e−2πiνννT x j . Plugging this into the Campbell’s
theorem of first order (Equation 3 in Appendix A of the supplemen-

DS-WaveStair Blue Noise Step Blue Noise Random
4 

sp
p

16
 s

pp

Figure 14: Increasing number of samples per pixel does not funda-
mentally solve the aliasing problem. We illustrate this when sam-
pling the cosine function in Figure 2 with νc = 0.85 with stair blue
noise sampling (ν0 = 0.80) for 4 and 16 spp. In contrast, ds-wave
(ν0 = 0.80, m0 =∞), step blue noise, and random sampling do not
lead to secondary patterns but to incoherent noise.

tary material) we get

EP [S(ννν)] = EP

[
∑

j
e−2πiνννT x j

]
= λ

∫
V

e−2πiνννT xdx = λδ(ννν).

(19)
The last term in Equation 18 thus becomes −2[δ ∗ T ](ννν)T (ννν) =
−2|T (ννν)|2. Calculating the first term in Equation 18 is more in-
volved due to the squared magnitude. We first expand this term with
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the definition of S and utilizing properties of the Fourier transform

|[S∗T ] (ννν)|2 =

∣∣∣∣∣∑j
e−2πiνννT x j ∗T (ννν)

∣∣∣∣∣
2

= ∑
jk

(
e−2πiνννT x j ∗T (ννν)

)(
e−2πiνννT xk ∗T (ννν)

)
= ∑

jk
t(x j)t(xk)e

−2πiνννT (xk−x j)

= ∑
j

t2(x j)+ ∑
j 6=k

t(x j)t(xk)e
−2πiνννT (xk−x j),

(20)

where we used the notation a(ννν)∗b(ννν) for [a∗b](ννν), and the equiv-
alence e−2πiνννT x j ∗T (ννν) =F [δ(x−x j)t(x)] =F [δ(x−x j)t(x j)] =

e−2πiνννT x j t(x j). The expected value of the first term on the last
line can be computed with Campbell’s theorem of first order as
EP
[
∑ j t2(x j)

]
= λ

∫
V t2(x)dx. The second term involves a dou-

ble sum, and the expected value can thus be computed by utilizing
Campell’s theorem of second order (Equation 4 of Appendix A in
the supplementary material) as

EP

[
∑
j 6=k

t(x j)t(xk)e
−2πiνννT (xk−x j)

]

= λ
2
∫
V×V

t(x)t(y)e−2πiνννT (x−y)g(x−y)dxdy

= λ
2
∫
V

at(r)e−2πiνννT rg(r)dr

= λ
2F [atg] (ννν) = λ

2
[
|T |2 ∗G

]
(ννν),

(21)

with at(r) denoting the autocorrelation of t(x), and we use the
relation F [at ](ννν) = |T (ννν)|2, and the multiplication theorem of
Fourier transform. Substituting the expression for G (Equation 4),
this can also be written in terms of U as λ

2
[
|T |2 ∗ (U/λ+δ)

]
(ννν)=

λ

[
|T |2 ∗U

]
(ννν) + λ

2|T (ννν)|2. Summing the two terms in Equa-
tion 20, we thus get

EP
[
|[S∗T ] (ννν)|2

]
= λ

∫
V

t2(x)dx+λ

[
|T |2 ∗U

]
(ννν)+λ

2|T (ννν)|2.
(22)

Finally, we sum all the terms in Equation 18

E(ννν) =
1
λ2

(
λ

∫
V

t2(x)dx+λ

[
|T |2 ∗U

]
(ννν)+λ

2|T (ννν)|2
)

+ |T (ννν)|2−2|T (ννν)|2

=
1
λ

(∫
V

t2(x)dx+
[
|T |2 ∗U

]
(ννν)

)
=

1
λ

([
|T |2 ∗1

]
(ννν)+

[
|T |2 ∗U

]
(ννν)
)

=
1
λ

[
|T |2 ∗ (U +1)

]
(ννν).

(23)
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Figure 15: For each image, a reference rendering, and rendered
images with 1 or 2 spp with stair blue noise, and ds-wave sampling
are shown.
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