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Interpolated corrected curvature measures for polygonal surfaces
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Figure 1: Left: mean curvature estimation. Middle left: convex, concave and saddle parts estimation on noisy data. Middle right: second
principal curvature and direction estimation on coarse “Lion” mesh. Right: mean curvature extraction on the same “Lion” mesh geometry
but with normal vector field given by normal map.

Abstract
A consistent and yet practically accurate definition of curvature onto polyhedral meshes remains an open problem. We pro-
pose a new framework to define curvature measures, based on the Corrected Normal Current, which generalizes the normal
cycle: it uncouples the positional information of the polyhedral mesh from its geometric normal vector field, and the user can
freely choose the corrected normal vector field at vertices for curvature computations. A smooth surface is then built in the
Grassmannian R3× S2 by simply interpolating the given normal vector field. Curvature measures are then computed using
the usual Lipschitz–Killing forms, and we provide closed-form formulas per triangle. We prove a stability result with respect
to perturbations of positions and normals. Our approach provides a natural scale-space for all curvature estimations, where
the scale is given by the radius of the measuring ball. We show on experiments how this method outperforms state-of-the-art
methods on clean and noisy data, and even achieves pointwise convergence on difficult polyhedral meshes like digital surfaces.
The framework is also well suited to curvature computations using normal map information.

CCS Concepts
• Computing methodologies → Shape analysis; Mesh geometry models; • Theory of computation → Computational geom-
etry;

1. Introduction

Context. This paper presents a new approach to define and estimate
the curvatures over triangulated or polygonal meshes. Curvature is

† This work has been partly funded by COMEDIC ANR-15-CE40-0006
research grant.

a differential property of 2-manifolds embedded in the usual 3D
space, and is well defined for smooth enough surfaces. More pre-
cisely, we are interested in estimating at any position on the mesh
its mean and Gaussian curvatures, but also its two principal curva-
tures and principal directions.

It is well known that curvature carries many information about
the local shape geometry: convexity, concavity and saddle regions,
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unfoldability, approximation, sharp features, umbilics, etc. Sev-
eral geometry processing applications exploit heavily curvature in-
formation, for instance shape matching, surface parameterization,
classification, or artistic representation.

Although well-defined for C2-smooth surfaces, extending cur-
vature to polyhedral surface is not trivial, and certainly not unique.
This has led to a considerable number of techniques to approximate
curvature information on such data. We can roughly divide them
into two categories: local fitting of a smooth simple surface, and in-
tegration of a local quantity related to some curvature integral. We
discuss some representative approaches in the related works para-
graph. We can already point out that few of them present theoretical
guarantees, and even less offer quantified guarantees in the case of
position/normal/sampling perturbations. Furthermore, as demon-
strated by the extensive experimental evaluation of [VVP∗16], their
respective practical accuracy depend on the shape type, mesh sam-
pling, alignment of edges, noise in position, normal accuracy and
estimation, neighborhood size; and none of them is a clear winner
as is.

In contrast, few approaches have tried to define curvature in a
consistent way on more general subsets of the space than smooth 2-
manifolds, exploiting a kind of natural continuity between smooth
shapes and their polygonal approximation. Such works were car-
ried in the mathematical community and lead essentially to two
different models: the normal cycle [Win82, Fu93] and the vari-
fold [Alm66]. These approaches were used concretely in computer
science for curvature estimation much later (see related works be-
low). Their common theoretical feature is to define curvature as
measures instead of trying to define curvature pointwise. From a
practical point of view, they require at least a radius parameter for
integrating measures, they are more robust to noise than former
methods but tend to be less accurate on “good” data.

Contribution. We propose here to exploit an extension of the nor-
mal cycle, called corrected normal current [LRT19], and to define
classical curvature quantities as ratios of the induced corrected cur-
vature measures. This generic framework defines curvatures over
piecewise smooth surfaces, with a corrected unitary normal vector
field that is smooth over smooth parts and may not be continuous on
discontinuity parts. This framework was proven stable wrt curva-
ture measures on smooth surfaces under hypotheses. To get easily
computable formulas [LRT19] focused on the case of polyhedral
mesh with constant per face corrected normals.

The present paper brings this idea one step forward by consider-
ing linearly interpolated corrected normal vector field and presents
the following features:

• a new formalism and definitions of curvatures measures / quan-
tities from uncoupled geometry/tangent bundle information;
• stability results with respect to noise either in the geometry or

the normal vector field;
• closed form formulas for triangles and quads allowing fast esti-

mation on meshes, with more accurate estimates than the state-
of-the-art approaches;
• with adequate corrected normal vector field, this method

achieves convergence on difficult data like Schwarz lantern or
digital surfaces.

Related works. We review here representative methods to extract
the whole curvature information, and not approaches devoted to
only mean curvature information (like the ones using the Lapla-
cian) or Gaussian curvature (like angle defect). A lot of methods fit
or approximate locally the discrete data with a smooth enough sur-
face, and deduce the local curvature information from the smooth
surface. We can cite [GI04], where circles and parabola are fitted,
and local polynomial approximation using points (and sometimes
normals) like jet fitting [CP05]. These approaches have very limited
accuracy results and are very sensitive to bad input. A closely re-
lated approach is to estimate locally the second fundamental form.
[Rus04] estimates it per triangle with some linear regression and
average it per vertex. Results are accurate where edges are well
aligned with principal curvatures. The method is however too local
to be useful on noisy data or to identify convex or concave features.
It is also possible to reweigh how second fundamental forms are av-
eraged with a statistical predictor [KSNS07], but this reweighting
does not always improve results (see [VVP∗16]).

Another group of methods rely on integral properties related to
curvature information. Integral invariants [PWY∗07] study the lo-
cal Taylor expansion of several integral quantities when comput-
ing the intersection of a ball with the volume shape. Besides being
only valid for closed surfaces, it is unclear how to choose the ra-
dius on a mesh: it cannot be reduced to zero and must be at least
the size of a vertex umbrella while the Taylor expansion error hints
towards an as small as possible radius. The Voronoi covariance
measure [MOG11] exploits the distance transform to the surface to
achieve a measure with stability guarantees. Eigendecomposition
of the local covariance matrices provides unsigned curvature infor-
mation, but the accuracy and convergence of such curvature esti-
mates remain to be established. Pointwise approximations of the
shape operator for polygonal meshes were proposed in [HP11] by
convolution with r-local functions. They are proven convergent for
a mesh with maximal edge length h when the normals of the poly-
hedral surface approximate the smooth normals with order O(h)
(hence vertex positions with O(h2)), which is rather restrictive and
difficult to achieve in practice.

There is a long history on the generalization of the curva-
tures in non-smooth geometry, from the seminal paper of H. Fed-
erer [Fed59]. Further works [Win82, Fu94] extended these no-
tions of curvature measures to a wider class of objects includ-
ing triangulations. Curvature measures of a smooth object can be
approximated by the ones of a triangulation, provided that the
points and the normals of the triangulation are close to the ones
of the smooth object [Fu93, CSM03, CSM06]. Anisotropic mea-
sures were introduced to estimate principal curvatures and direc-
tions [CSM06,Mor08]. The normal cycle has also been extended to
cloud of points using offsets in [CCSLT09], with some stability re-
sults. However these approaches do not provide a sound definition
of curvatures when naive normals do not converge toward smooth
normals [CCSLT09, HPW06]. This is the case for instance for the
famous counterexample of the Schwarz lantern, or for digital sur-
faces that are boundary of voxel sets in 3D images (see discussion
below).

Varifolds constitute another approach to define a geometry on a
wide class of objects, e.g. it includes cloud of points with normals,
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and were first introduced to solve shape optimization problems
[Alm66]. One can extract mean curvature information [BLM17]
and recently a weak second fundamental form [BLM18]. This gen-
eral framework does not yet provide easy and explicit stability or
convergent rates.

Finally Váša et al. performed an extensive set of numerical ex-
periments for many different curvature estimators [VVP∗16], and
their conclusion is that no curvature estimator outperforms all the
others. On the contrary, analyzing some mesh property and choos-
ing an estimator provides a much better estimator on average. Ac-
cording to us, such works show the need to develop a curvature
theory with stability properties.

As mentioned earlier, the strength of our approach is to decouple
the geometry from the normal vector field in the curvature com-
putation, allowing us to prescribe a good normal vector field when
the trivial one (e.g. orthogonal unit vectors to surface elements)
is either noisy or irrelevant. This is exactly the case when dealing
with digital surface (boundaries of subsets of Z3) where trivial nor-
mal vectors do not converge to the expected one when digitizing a
smooth manifold on a finer and finer grid. On this kind of data, the
Integral invariants approach [PWY∗07] has led to multigrid con-
vergent curvature estimators [CLL14], but it is shown in [LRT19]
that our method is more accurate in practice.

Outline. In Section 2, we present how our corrected curvatures
have simple expressions on polyhedral surfaces. Then in Section 3
we explain how our corrected curvature measures are built and we
detail the computations that led to the closed-form formulas pre-
sented in the previous section. In Section 4 we prove the stability
of our measures with respect to perturbation in geometry and nor-
mals. Section 5 provides experimental results on synthetic and real
data, as well as some comparisons with classical methods. Finally,
we conclude in Section 6.

2. Corrected curvature measures on meshes

We denote by (xi)i=1...n the positions of the n vertices of some
polygonal mesh. Let also (ui)i=1...n be some normal vector field
prescribed at these vertices. Before presenting the formal definition
of our curvature measures, we first give their simple closed-form
expressions on an arbitrary triangle of the input mesh.

Property 1 [Interpolated corrected curvature measures] The inter-
polated corrected curvature measures take the following values on
a triangle τi jk, with vertices i, j, k:

µ(0)(τi jk)=
1
2
〈
ū |(x j−xi)×(xk−xi)

〉
,

µ(1)(τi jk)=
1
2
〈
ū |(uk−u j)×xi+(ui−uk)×x j+(u j−ui)×xk

〉
,

µ(2)(τi jk)=
1
2
〈
ui |u j×uk

〉
,

µ(X,Y)(τi jk)=
1
2
〈
ū | 〈Y |uk−ui〉X×(x j−xi)

〉
− 1

2
〈
ū |
〈
Y |u j−ui

〉
X×(xk−xi)

〉
,

where 〈· | ·〉 denotes the usual scalar product, ū = 1
3 (ui +u j +uk).

Measure µ(0) is the corrected area density of the given triangle,
µ(1) its corrected mean curvature density, µ(2) its corrected Gaus-
sian curvature density. The (anisotropic) measure µ(X,Y) is the trace
of the corrected second fundamental form along directions X and
Y. While the smooth second fundamental form is naturally a sym-
metric 2-tensor, there is no easy way to define tangent directions
at a vertex, so the anisotropic measure depends on two 3D vectors;
when X and Y are tangent, µ(X,Y) is close to the second fundamen-
tal form applied to these vectors, while its value along normal di-
rection tends to zero asymptotically. See Section 4 for more details
about the link with the second fundamental form.

Property 2 (Corrected curvature measures) Measures are ex-
tended to arbitrary subset of R3 as follows. Let symbol (k) be any
of {(0),(1),(2),(X,Y)}. If B is any Borel set of R3 (any ball for in-
stance), then the k-th corrected curvature measure on mesh M with
triangles (τm)m=1...t is:

µ(k)(B) =
t

∑
m=1

µ(k)(τm)
Area(τm∩B)

Area(τm)
, (1)

where Area is the 2-dimensional Hausdorff measure.

In this paper, for simplicity, general polygonal meshes are im-
plicitly triangulated before taking the measures, simply by splitting
each non triangular face into triangles at its barycenter, and tak-
ing as normal the normalized average of the normals at the face
vertices. We provide closed form formulas for generic quads in
Appendix B, and digital surface quads in Appendix C. Note that
our general framework allows more advanced implicit triangulation
strategies such as the one described in [BHKB20], or other normal
vectors interpolation schemes.

Definition 1 (Corrected mean and Gaussian curvatures) Let
Bρ(x) be the ball of center x and radius ρ, then the corrected mean
curvature Ĥcnc at x, the corrected Gaussian curvature Ĝcnc at x are
respectively defined as:

Ĥcnc(x,ρ) :=µ(1)(Bρ(x))/µ(0)(Bρ(x)), (2)

Ĝcnc(x,ρ) :=µ(2)(Bρ(x))/µ(0)(Bρ(x)). (3)

For any point x within some face of M, the limits of the above
quantities when ρ tends toward 0 are well defined (except in the
unlikely event that every vertex normal is parallel to the face) and
Ĥcnc(x,0) and Ĝcnc(x,0) are defined accordingly.

The anisotropic measures µ(X,Y) are parametrized by two 3D
vectors, but can be summed up into one 3× 3 matrix µ(M) using
the three basis vector (ei)i=1...3 as follows:

µ(M) :=

µ(e1,e1) µ(e1,e2) µ(e1,e3)

µ(e2,e1) µ(e2,e2) µ(e2,e3)

µ(e3,e1) µ(e3,e2) µ(e3,e3)

 .
The anisotropic measure µ(M) is a 3×3 tensor which tends toward
the second fundamental form, in the sense that two of its eigenvec-
tors, resp. eigenvalues, tend to the principal directions, resp. princi-
pal curvatures. However, the matrix is not always symmetric (when
u 6= n) and the last eigenvalue tends to zero while its eigenvector
tends toward the normal vector u(x) at point x. To obtain reliable
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directions even on flat parts, it is easier to extract the second fun-
damental form information by first symmetrizing the anisotropic
measure and then adding a term Ku(x)⊗u(x), for some big con-
stant K, to force tangency of principal direction eigenvectors.

Definition 2 (Principal curvatures and directions) Letting

Mρ(x) :=
1
2

(
µ(M)(Bρ(x))+(µ(M)(Bρ(x)))

ᵀ)
+Ku(x)⊗u(x),

then the corrected first and second principal curvatures, κ̂
cnc
1 and

κ̂
cnc
2 at x, and their associated corrected principal directions v̂cnc

1
and v̂cnc

2 at x are respectively defined as:

κ̂
cnc
1 (x,ρ) :=−λ2(Mρ(x))/µ(0)(Bρ(x)), (4)

v̂cnc
1 (x,ρ) := z2(Mρ(x))/µ(0)(Bρ(x)), (5)

κ̂
cnc
2 (x,ρ) :=−λ1(Mρ(x))/µ(0)(Bρ(x)), (6)

v̂cnc
2 (x,ρ) := z1(Mρ(x))/µ(0)(Bρ(x)), (7)

where λ1(M) ≤ λ2(M) ≤ λ3(M) are the eigenvalues of M and
(z1(M),z2(M),z3(M)) their associated eigenvectors.

The constant K should be chosen significantly greater than the
maximal curvature and was set to 1000 in all our experiments.

3. Theory of corrected curvature measures

Let us recall briefly the ideas behind the corrected normal current
framework presented in [LRT19], and explain why it is more flexi-
ble and more accurate than other approaches. Starting with any sur-
face S, be it (piecewise-)continuous or discrete or even digital, we
attach a normal cone at each point, and consider the corresponding
set of points in the Grassmann bundle R3×S2. Under mild regu-
larity assuptions (see [LRT19, Definition 1]), this set is a piecewise
continuous integral current N, which allows to define the curva-
ture measures and to prove the stability. Various ways of defin-
ing this normal cone are possible, either from the geometric data
(such as the normal bundle for a smooth surface, or, more gener-
ally, the normal cycle for a smooth or polyhedral surface [Win82]),
or from algorithmically- or user-prescribed normals (including nor-
mal maps). (Note that the way to prescribe the normals will impact
the quality of the final estimate.) Our framework allows to define
normals that are constant or not on the faces, continuous or not
across edges and vertices. The face-constant, edge-discontinuous
case typical of digital surfaces was described in [LRT19], and we
focus here on the edge-continuous, smoothly varying normal field
defined by interpolating vertex-based data.

In the following, we formally define invariant forms and asso-
ciated curvature measures. For a more complete overview in the
smooth setting, please refer to J.M. Morvan’s textbook “General-
ized cruvatures” [Mor08].

Invariant and anisotropic forms. Curvature measures µ(k) are
obtained by integrating a normal current against canonical invari-
ant 2-forms ω

(k) defined on R3× S2 (for k ∈ {0,1,2}). For any
point (x,u) ∈ R3×S2 and tangent vectors ξξξ,ννν ∈ T(x,u)(R3×S2),
we write ξξξ = (ξξξp,ξξξn) and ννν = (νννp,νννn) in R3×R3 (separating po-

sition and velocity). Then the invariant forms are given by:

ω
(0)
(x,u)(ξξξ,ννν) = det(u,ξξξp,νννp), ω

(2)
(x,u)(ξξξ,ννν) = det(u,ξξξn,νννn)

ω
(1)
(x,u)(ξξξ,ννν) = det(u,ξξξp,νννn)+det(u,ξξξn,νννp)

Similarly, the anisotropic curvature form (for the directions X,Y)
is given by [CSM06]

ω
(X,Y)
(x,u) = (u×X,0)[∧ (0,Y)[,

where w[ denotes the linear map 〈w | ·〉 dual to vector w.

Corrected curvature measures. Fig. 2 illustrates the geometric
idea of our approach in the 2D case. Curvature measures are de-
fined by integration of invariant forms of the smooth object surface
lifted in the Grassmannian (Fig. 2a). Polyhedral surfaces are lifted
as the normal cycle (Fig. 2b), and if naive normals are not represen-
tative of the smooth surface, integration of invariant forms will not
be precise or even close to expected. Our corrected curvature mea-
sures use an external vector field u for lifting the polyhedral mesh,
which can be constant per face (Fig. 2c) as in [LRT19] or linearly
interpolated (Fig. 2d) as we propose in the present paper.

More formally, in our case, since there is a unique vector u(x)
associated to every point x ∈ S, the corrected normal cycle is a cur-
rent that is characterized by its support spt(N) = {(x,u(x)),x ∈ S}
and the corrected curvature measures are defined by µ(k)(B) =∫

π−1(B) ω
(k), where π : spt(N)→ S is the projection, and B is any

Borel set B on S. In the smooth case, when the current is exactly the
normal bundle, we derive the Lipschitz–Killing curvature forms,
which measure area, mean curvature density and Gaussian curva-
ture density and also a form that measure the anisotropic curvature
(see next section). In all other cases, we have closed form formulas,
which are proven to be stable w.r.t. deformations, and hence con-
verge to corresponding curvatures when S and the corrected normal
u tends to a smooth limit.

In this section we prove the formulas given in Prop. 1, corre-
sponding to the case when u is linearly interpolated over triangular
faces from prescribed unitary vector data at vertices. Obviously, u
is not in general unitary on the faces, so the formulas are not exact,
and u ought to be replaced by ◦u = u/‖u‖. However, linear interpo-
lated expressions allows to quickly derive simple closed formulas,
which are asymptotical to the exact expression, as ‖u‖ tends to 1.

We parametrize the triangle τ by affine coordinates s, t. (but
the interpolation could be quadratic (for quadrangular faces), or
more general, e.g. splines, see appendices). So the position point
is x(s, t) = x0 + s(x1 − x0) + t(x2 − x0) for (s, t) in the standard
2-simplex ∆, and the xi are the triangle vertices (following the ori-
entation). The corrected normal is interpolated on the triangle as
u(s, t) = u0 + s(u1− u0)+ t(u2− u0), where ui is the prescribed
normal at xi.

Because u is continuous, the measures are diffuse and localized
on the faces, and are obtained as the pullbacks Γ

∗
uω

(k) of the canon-
ical invariant 2-forms, where Γu is the map x 7→ (x,u(x)). There-
fore, on a triangle τ,

µ(0)(τ) =
∫

τ

Γ
∗
uω

(0) =
∫

∆

det
(

u, ∂x
∂s

,
∂x
∂t

)
dsdt
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R 2

θ θ θ θ

(a) (b) (c) (d)

Figure 2: Various approximations of the normal bundle of a planar curve. The Grassmann bundle R2× S1 is represented as R3 where
the third coordinate is the circular angle θ. The target is a smooth circular arc lifting (a) to R2× S1 as a piece of a helix (in black). Its
approximation by a digital curve can be lifted either as (b) the normal cycle, in which case the normal on each edge follows the axes (hence
lies at height kπ/2 for some integer k); therefore the extra circular arcs at the vertices are vertical edges of length ±π/2; (c) corrected
normals as in [LRT19] which are constant on the edges and interpolated at the vertices ; (d) corrected normals that are set at the vertices
and interpolated along the edges. Obviously the green curve lies far away from the smooth helix, no matter the discretization step, which may
induce errors in the curvature estimates, since it is an integral along the curve. The blue curve fares better, because the estimated normals
are closer to the smooth curve’s normals, but being constant along the edges creates a distance between the curve and the helix. Finally, the
last interpolation along the edges fits the helix more closely, further improving the estimate.

=
∫

∆

〈u | (x1−x0)× (x2−x0)〉dsdt

=
〈∫

∆

(u0 + s(u1−u0)+ t(u2−u0))dsdt

| (x1−x0)× (x2−x0)
〉

=
1
2
〈ū | (x1−x0)× (x2−x0)〉 .

Recall that ū = 1
3 (u0 +u1 +u2). Using pullback Γ

∗
uω

(1), we get

µ(1)(τ)=
∫

∆

(
det
(

u, ∂x
∂s

,
∂u
∂t

)
+det

(
u, ∂u

∂s
,
∂x
∂t

))
dsdt

=
∫

∆

〈u |(x1−x0)×(u2−u0)

+(u1−u0)×(x2−x0)〉dsdt

=
1
2
〈ū |(x1−x0)×(u2−u0)+(u1−u0)×(x2−x0)〉

=
1
2
〈ū |(u2−u1)×x0+(u0−u2)×x1+(u1−u0)×x2〉 .

And using pullback Γ
∗
uω

(2), we get

µ(2)(τ) =
∫

∆

det
(

u, ∂u
∂s

,
∂u
∂t

)
dsdt

=
∫

∆

〈u | (u1−u0)× (u2−u0)〉dsdt

=
1
2
〈ū | (u1−u0)× (u2−u0)〉 .

Similarly we show that the anisotropic measure is, for given vec-
tors X,Y:

µ(X,Y)(τ) =
∫

∆

(u×X,0)[∧ (0,Y)[
(

∂Γu
∂s

,
∂Γu
∂t

)
dsdt

=
1
2
〈ū | 〈Y | u2−u0〉X× (x1−x0)

−〈Y | u1−u0〉X× (x2−x0)〉 .

Computations are detailed in Appendix A. As expected, all the
above expressions are invariant by circular permutation of the in-
dices.

4. Stability of corrected curvature measures

We show in this section that the corrected curvatures of (M,u) ap-
proximate well the curvature measures of a surface S of class C2

provided that the mesh M is close to S in the Hausdorff sense, that
the vector field u approximates well the normal nS of S and that the
length of the edges of M are small.

4.1. Stability result

We first need to recall the notion of reach introduced by Fed-
erer [Fed59] as well as the notion of curvature measures for a
smooth surface.

Sets with positive reach. The distance function dK of a com-
pact set K of Rd associates to any point x of Rd its distance
to K, namely dK(x) := miny∈K d(x,y), where d is the Euclidean
distance on Rd . For a given real number ε > 0, we denote by
Kε := {x ∈ Rd ,dK(x)≤ ε} the ε-offset of K. The Hausdorff dis-
tance dH(K,K′) between two compact sets K and K′ is the mini-
mum number ε such that K ⊂ K′ε and K′ ⊂ Kε.
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The medial axis of K is the set of points x ∈ Rd such that the
distance d(x,K) is realized by at least two points y and y′ in K. The
reach of K, denoted by reach(K), is the infimum distance between
K and its medial axis. As a consequence, whenever the reach is
positive and ε < reach(K), the projection map

πK : Kε→ K

is well-defined. It is well know that smooth compact submanifolds
have positive reach [Fed59].

Curvature measures of a smooth surface. When S is an oriented
surface of class C2, and u is the unit normal vector field, the cor-
rected curvature measures coincide with the curvature measures
and satisfy for any Borel set B of R3

µ(0)(B∩S) =
∫

B∩S
dx,

µ(1)(B∩S) =
∫

B∩S
H(x)dx,

µ(2)(B∩S) =
∫

B∩S
G(x)dx,

where H and G denote the mean and Gaussian curvature. The sec-
ond fundamental form at a point x ∈ S is a bilinear form defined
on the tangent space TxS⊂ R3. We denote by IIx : R3×R3→ R
its bilinear extension to R3 by imposing that IIx(X,Y) = 0 if either
X or Y is orthogonal to TxS. The anisotropic curvature form in the
direction (X,Y) satisfies [CSM03]

µ(X,Y)
S (B∩S) =

∫
B∩S

IIx(X,Y)dx =

(∫
B∩S

IIxdx
)
(X,Y).

We can now state a stability result for corrected curvature mea-
sures. We denote by µ(k)S the curvature measure of a smooth surface

S and by µ(k)M,u the corrected curvature measures of a compact mesh
M with a vector field u which is unitary on the vertices and defined
by linear interpolation on each triangle.

Theorem 1 Let S be a compact surface of R3 of class C2 with no
boundary, M be a compact mesh with no boundary and u : M→ R3

a normal vector field which is unitary on the vertices and defined
by linear interpolation on each triangle. We assume that:

• there exists a non-empty open set U of S such that
πS : π

−1
S (U)∩M→ S is injective;

• ε := dH(S,M)< reach(S)/2.

Then the corrected curvature measures of (M,u) are close to the
curvature measures of S. More precisely for any unit vector X and
Y, for any (k) ∈ {(0),(1),(2),(X,Y)} and any connected union
B = ∪i∈Iτi of triangles of M one has

|µ(k)M,u(B)−µ(k)S (πS(B))|

≤16max(1,κ2
max)(1+L4

u)
[
(η+ε)(Area(B)+Length(∂B))+δ

4NB

]
where η := supx∈M ‖u(x)−n(πS(x))‖ is the normal error, δ is the
length of the longest edge of M, n is the unit normal vector field
of S, ◦u = u/‖u‖, NB is the number of triangles in B, κmax is the
maximum of the absolute value of the principal curvatures of S and
Lu is the Lipschitz constant of ◦u.

In the bound of the theorem, the error term NBδ
4 comes from the

fact that the curvature measures rely on a piecewise linear vector
u while the theory of corrected normal cycle was developed for
unitary vectors. Note that if B is large, the term NB might be large
but is asymptotically compensated by the factor δ

4.

4.2. Proof of Theorem 1

It is known that the corrected curvature measures are stable when
the corrected normal is unitary [LRT19]. It is therefore sufficient to
show that the numerical error induced by replacing the unit vector
field ◦u by the piecewise linear vector field u is controlled, which is
done in Proposition 1.

Let us first recall that Theorem 1 of [LRT19] implies that for
every (k) ∈ {(0),(1),(2)}

|µ(k)
M,

◦u
(B)−µ(k)S (πS(B))|

≤ 16max(1,κ2
max)(1+L2

u)(η+ ε) (Area(B)+Length(∂B)).

This theorem can be easily adapted to the anisotropic curvature
measures by using the fact that the form ω

(X,Y) and its exterior
derivative dω

(X,Y) are bounded.

The proof then directly follows from the following proposition.

Proposition 1 The error related to the fact that the interpolated u is
generally not unitary is given by

|µ(k)
M,

◦u
(B)−µ(k)M,u(B)| ≤

δ
4

2
max(1,L4

u) NB.

Proof Let τ be a triangle of B whose vertices are denoted by x0, x1
and x2. Let us denote by h1 = x1−x0, h2 = x2−x0, v1 = u1−u0
and v2 = u2−u0. Note that ‖hi‖ ≤ δ and since ◦u is Lu -Lipschitz
‖vi‖ ≤ Lu‖hi‖ ≤ Luδ. Furthermore for every x ∈ τ a calculation
shows that

‖◦u(x)−u(x)‖ ≤ (δ Lu)
2

2
.

From the formula of the previous section, one has

|µ(0)M,u(τ)−µ(0)
M,

◦u
(τ)|

≤
∫

∆

∣∣det(u,h1,h2)−det
(◦u,h1,h2

)∣∣dsdt

=
∫

∆

|
〈
u− ◦u | h1×h2

〉
|dsdt

≤ δ
4L2

u
4

.

Similarly

|µ(2)M,u(τ)−µ(2)
M,

◦u
(τ)| ≤

∫
∆

|
〈
u− ◦u | v1×v2

〉
|dsdt ≤ δ

4 L4
u

4
.

For the mean curvature, one has

|µ(1)M,u(τ)−µ(1)
M,

◦u
(τ)|

≤
∫

∆

|
〈
u− ◦u | h1×v2 +h2×v1

〉
|dsdt

≤ δ
4 L3

u
2

.
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For the anisotropic curvature, on has

µ(X,Y)
M,u (τ)−µ(X,Y)

M,
◦u

(τ)

=
∫

∆

∣∣∣∣〈u×X | h1〉 〈u×X | h2〉
〈Y | v1〉 〈Y | v2〉

∣∣∣∣dsdt

−
∫

∆

∣∣∣∣〈◦u×X | h1
〉 〈◦u×X | h2

〉
〈Y | v1〉 〈Y | v2〉

∣∣∣∣dsdt

=
∫

∆

∣∣∣∣〈u− ◦u | X×h1
〉 〈

u− ◦u | X×h2
〉

〈Y | v1〉 〈Y | v2〉

∣∣∣∣dsdt

Since X and Y are unit vectors, we deduce that

|µ(X,Y)
M,u (τ)−µ(X,Y)

M,
◦u

(τ)| ≤ 1
2

δ
2L2

u
2

2Luδ
2 =

δ
4 L3

u
2

.

We get the result by summing over the triangles of B.

5. Experimental evaluation

As noted by Váša et al. [VVP∗16], it is difficult — and often biased
— to perform a full set of experiments to show that some curvature
estimator is better than others in most of the cases. However, as said
above, our approach does not estimate curvatures of an undefined
underlying smooth object. It defines a concrete C1,1-smooth surface
X in the Grassmannian R3×S2, and then computes a close approx-
imation of its curvature measures. It follows that surfaces close to
X in the Grassmannian have indeed close measures.

For instance, on a triangle, we are not estimating the curvatures
as some variation of normals between its vertices, we are com-
puting the curvatures of a curved bend triangle patch whose nor-
mals are aligned with any user-prescribed interpolated normal vec-
tor field.

Corrected normal vector field u. In our experiments we will
use different vector fields u prescribed at vertices (assuming n is the
canonical geometric normal vector field — orthogonal to faces —):
u=GEOM means that vertex normals are averaged from surround-
ing n face normals. u=GEOM-MAX means that vertex normals are
averaged from surrounding n face normals with Max’s weights
[Max99]. u=TRUE means that vertex normals are the ground truth
normals. When processing a digital surface digitized with sampling
h (see discussion below), u=II means that vertex normals are com-
puted with digital Integral Invariant method with r = 3h

1
2 [CLL14].

In supplementary material, we consider additional normal vector
fields given by some regularization of above-mentioned ones.

Pointwise convergence of curvatures. First, we numerically
verify the convergence of our curvature estimators. We compare
our approach with two representative methods of the literature. The
first one is Rusinkiewicz’s method [Rus04], which is local and pre-
cise for rather clean meshes. The second one is Cohen-Steiner and
Morvan’s normal cycle approach [CSM03], which requires a mea-
suring ball and is more stable for noisy data. We slightly adapt it to
use a prescribed normal vector field u and not only the canonical
normal vector field n. Since we observed similar behaviors between
estimators whether we look for mean, Gaussian and principal cur-
vatures, we will plot only results for one estimator at a time.

We first run experiments on very specific generated meshes pre-
sented on Figure 3, where convergence is achievable. As seen on

“lantern” “torus” “twisted torus”

Figure 3: Generated meshes whose sampling is parameterized by
two parameters m and n, the number of vertices along transversal
and longitudinal slices.

Figure 5, Rusinkiewicz estimator κ̂
rz
1 [Rus04] performs best on

“torus” shape, but this is not true anymore on twisted torus or
Schwartz lantern. In fact, this estimator is very good when principal
directions are aligned with edges, but becomes much less accurate
otherwise. Normal cycle estimator κ̂

nc
1 [CSM03] requires a mini-

mal radius ρ and, even with this averaging, it is systematically less
accurate than the others. Our estimator κ̂

cnc
1 is competitive with κ̂

rz
1

and can achieve similar accuracy on “torus” with an appropriate ra-
dius, while it can outperform it on more generic shapes. On the spe-
cific “lantern” shape, with true normals, our estimator outperforms
by several orders of magnitude the other ones. Note that our mean
and Gaussian curvature estimations are exact on the “lantern”, up
to numerical precision, and are hence not plotted.

We look now at more general polyhedral shapes whose edges are
not so regular and not nicely aligned with principal directions. We
recall that polygonal faces are simply triangulated at their barycen-
ter with a normal equal to the average of surrounding vertex nor-
mals. Figure 4 shows how we built polyhedral meshes approximat-
ing a polynomial surface S. If h is a gridstep, then its h-digitized
shape Zh is defined as {x ∈ hZ3,S(x)≤ 0}. The “PRIMAL” sur-
face is the topological boundary of the voxels of Zh, seen as a
union of cubes with side length h, generally called a digital sur-
face. It does not sample S and its canonical normals are bad what-
ever h. The “DUAL” surface is the dual mesh to “PRIMAL”. The
“PDUAL” surface is obtained by projecting “DUAL” vertices and
cell combinatorics onto S and corresponds to the “Marching-cubes”
surface of the polynomial implicit function.

Such surfaces are particularly challenging because for “PRI-
MAL” and “DUAL” surfaces, their canonic geometric normal vec-
tors do not converge to the expected ones when digitizing a smooth
manifold as h tends to zero. Even if we consider multigrid con-
vergent normal vector estimators (e.g. u =II [CLL14]), there is
no bijection between such surfaces and their underlying smooth
manifolds [LT16]. In that setting, no pointwise convergence can be
expected from local curvature estimation method where normals
are deduced from vertex positions [HPW06]. Even for “PDUAL”
surface, convergence of normals is too slow to expect point-
wise convergence of a local estimator that exploits information
on a bounded number of triangles [HP11]. Hence, Ruzinkiewicz’s
method [Rus04] is doomed to fail at high resolution/sampling, even
when using Max’s method [Max99] for estimating normals at ver-
tices. This is illustrated on Figure 6 (left), where we check point-
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(a) Goursat surface (b) “PRIMAL” Goursat

(c) “DUAL” Goursat (d) “PDUAL” Goursat

Figure 4: Possible input shapes for convergence tests, given input
polynomial Goursat surface 3(x4 + y4 + z4)−200(x2 + y2 + z2) =
800 digitized at gridstep h = 1: (a) continuous polynomial surface,
(b) digital surface bordering interior voxels, (c) dual surface to
“PRIMAL” surface, (d) projection of “DUAL” vertices onto con-
tinuous surface.

wise convergence on “PDUAL” goursat with finer and finer grid
step h (graphs to be read from right to left), which is a rather nice
sampling of the true Goursat surface. It shows that one need true
normals to get pointwise convergence of curvatures, while geomet-
ric normals are not enough. Max’s weighting scheme only improves
the constant (in this case), but does not ensure convergence. Esti-
mations of Ĥrz and Ĥcnc are indistinguishable. However, as shown
by Figure 6 (middle), if one uses a radius ρ for the mesure such
that ρ/h increases as h tends toward zero, the normal cycle estima-
tor Ĥnc can achieve better results than estimator Ĥrz. Even better
our corrected mean curvature Ĥcnc converges toward the true mean
curvature for ρ = Θ(h

1
2 ) and is much more accurate than the others.

Finally, on Figure 6 (right), we test mean curvature estimators on
the more difficult “PRIMAL” digital surface, but we provide as in-
put normal field u the result of the digital Integral Invariant normal
estimator [CLL14], known to be convergent. Our stability result
guarantees convergence of measures, but convergence of curvatures
is not obvious. We indeed observe convergence with speed Θ(h

2
3 ),

although only O(h
1
3 ) has been proven in [LRT19]. Both estima-

tors Ĥrz and Ĥnc fail for that kind of data. Other graphs showing
`∞-convergence or on “DUAL” surface, or measuring Gaussian or
principal curvatures can be found in supplementary. All of them
show a similar behavior for all three estimators.

Experiments on classic datasets. We test our estimators on the
Stanford “Armadillo” shape, which is a mesh of good quality with

regular sampling but rich geometrical details. As shown on Figure 7
and Figure 8, our estimator resembles Rusinkiewicz’s method for
ρ = 0 while for greater ρ it provides results visually similar to nor-
mal cycle approach. Our method thus encompasses the two previ-
ous ones, with a clear scale-space starting from ρ = 0 till∞.

Furthermore, as shown on Figure 9, it is often difficult to find a
correct radius for normal cycle method, especially when the mesh
is coarse at certain places and precise at others. The normal cycle
cannot set its radius close to 0 and requires to average computa-
tions made on edges and faces (for H and principal and curvature
directions) or vertices (for G). This is because the shape of the nor-
mal cycle in the Grassmannian is piecewise planar, cylindrical or
spherical, instead of the C2-flexibility like in our method.

On the contrary, our approach works well on that kind of data
mixing coarse and fine sampling, as seen on Figure 10. It can also
be seen on Figure 11 and Figure 12 that our approach gives very
similar results for principal curvatures and principal directions on a
nice polygonal mesh (“Octaflower”), using its geometric normals,
and its voxel digitization, using digital Integral Invariant normal
estimations. Note that Rusinkiewicz estimators are too unstable on
“Octaflower” mesh and meaningless on its voxel digitization, while
the normal cycle is incorrect on the voxel digitization.

We can also decompose a shape into its concave, convex, hyper-
bolic/saddle and flat parts using principal curvatures, as illustrated
on Figure 13. A zero-radius measure is generally meaningless on
a polyhedral mesh, even on a nice mesh like “Octaflower”. This
makes Ĥrz not useful for this task since it is purely local. Increasing
measure radius gives more meaningful results, but clearly estima-
tor Ĥcnc better estimates principal curvatures than Ĥnc. This comes
from the better estimation of the adequation between normals and
differential of positions in our anisotropic measure.

Robustness to noise and tests on LIDAR data. We tested also
the robustness of principal curvatures estimators κ̂

cnc
1 and κ̂

cnc
2 with

respect to a uniform random perturbation of positions of radius
nē(p), where ē(p) is the average length of edges incident to p. Re-
sults are displayed on Figure 14 and Figure 15, with noise increas-
ing from n = 0% to n = 90%. The corrected normal vector field u is
computed from the geometric normals n by averaging it four times.
As expected, concave, convex, hyperbolic/saddle and flat parts are
stable for our method, if the measure radius is adapted. Note the
consistency throughout the scales. On the contrary, Rusinkiewicz
approach is not useful for noisy data, while normal cycle anisoto-
pric measure has a tendency to overestimates curvatures, making
hyperbolic zones disappear.

We show how our estimator behaves on real LIDAR data on
Figure 16. It is clearly an advantage that our method works on
polyhedral meshes without manifold topology, since this input data
presents many manifold inconsistencies. More experiments on ro-
bustness or LIDAR data can be found in supplementary.

Curvature extraction on normal map textures. Since normals
and positions are decoupled in our framework, it is straightforward
to compute all curvature information at the precision of a given
normal map. Positions are given by the barycentric coordinates of
vertices, while normals u are given by the normal map given a
2D parametrization of the mesh. An example of mean and Gaus-
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Figure 5: Pointwise convergence for first principal curvature: in abscissa, parameter m giving the number of transversal slices, in ordinate
`2-error estimation of first principal curvature. Left: torus with n = m. Middle: 4-twisted torus with n = m. Right: Schwarz lantern with
n =
√

m.
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‖Ĥnc−H‖∞, u=Geom, ρ = 3h

3
4
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‖Ĥcnc−H‖2, u=II, ρ = 3h
1
2
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Figure 6: Pointwise convergence for mean curvature H on (left and middle) “PDUAL” Goursat and (right) “PRIMAL” Goursat : in abscissa,
parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Left: `∞-error for estimator Ĥrz and estimator Ĥcnc with
ρ = 0 on “PDUAL” Goursat. Middle: `∞-error for estimator Ĥcnc and estimator Ĥnc with varying radii ρ on “PDUAL” Goursat. Right:
`2-error for estimator Ĥcnc and estimator Ĥnc with varying radii ρ on “PRIMAL” Goursat.
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Figure 7: Mean curvature estimation on Armadillo dataset. In magenta, a ball of the same radius as the measuring ball.
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Figure 8: Gaussian curvature estimation on Armadillo dataset. In magenta, a ball of the same radius as the measuring ball.

Figure 9: It is difficult to find a correct measuring ball radius ρ for
normal cycle estimator Ĥnc [CSM03], to be compared with Ĥcnc

result on Figure 10.

sian curvature computation is shown on Figure 17 for the “Lion”
dataset, which has a very coarse geometry. Tiny details correspond-
ing to the normal map are naturally extracted with our framework.

Timings and implementation. Computing local measures on
triangles is linear with the number of triangles and takes less
than 200ms for 1 million faces, while computing measures within
a ball radius ρ is linear with the number of faces within the
ball. We provide an interactive application to test our method, as
well as its source code at https://github.com/dcoeurjo/
CorrectedNormalCurrent.

6. Conclusion

We have presented a new definition of curvatures for polygonal
meshes, based on a generalization of the normal cycle and with
easy to compute closed form formulas. The user can prescribe any
normal vectors at vertices to get a very close approximation of the
curvatures of the smooth surface in the Grassmaniann that has these
interpolated normal vectors. We have shown a stability property

Ĝcnc,ρ = 0 Ĥcnc,ρ = 0

-12.5

0

12.5

-5

0

5

κ̂
cnc
1 , v̂cnc

1 ,ρ = 0 κ̂
cnc
2 , v̂cnc

2 ,ρ = 0

-5

0

5

-5

0

5

Figure 10: Gaussian, mean and principal curvatures and direc-
tions with our method on Lion dataset.

for these curvature measures with respect to Hausdorff and normal
perturbations. Numerically our method is at least as good as the
state-of-the-art on clean data and outperforms other approaches on
noisy mesh or mesh with bad geometric normals. Our estimators in-
clude an intrinsic scale parameter (measure radius ρ), which builds
a smooth curvature scale space: measures are continuous with re-
spect to ρ ∈ [0,+∞[.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

50

https://github.com/dcoeurjo/CorrectedNormalCurrent
https://github.com/dcoeurjo/CorrectedNormalCurrent


J.-O. Lachaud & P. Romon & B. Thibert & D. Coeurjolly / Corrected curvature measures

κ̂
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1 , v̂cnc

1 , u=GEOM, ρ = 0.1 κ̂
cnc
1 , v̂cnc

1 , u=II, ρ≈ 0.1

-4

0

4

Figure 11: First principal curvatures and directions on polyhedral
mesh “Octaflower” and its digitization.
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2 , u=GEOM, ρ = 0.1 κ̂
cnc
2 , v̂cnc

2 , u=II, ρ≈ 0.1

-4

0

4

Figure 12: Second principal curvatures and directions on polyhe-
dral mesh “Octaflower” and its digitization.

In this paper, we have demonstrated the strength and the numer-
ical efficiency of the new curvature measures when normal vectors
are linearly interpolated within triangles. The general framework of
corrected normal current is more versatile and would support other
interpolating schemes (e.g. bilinear interpolation for quad mesh,
splines) and could also handle piecewise smooth schemes (with dis-
continuity at edges). These specific challenging cases would lead to
more complex formulas for the measure computation, but may be
interesting for geometry processing applications.

For further studies, we wish to focus on the pointwise conver-
gence of our curvature estimates. Such results can be obtained for
digital surface with an appropriate corrected normal vector field
[LRT19], but for polygonal surfaces the optimal radius remains to
be found, and may depend on other parameters than the maximum
edge length.
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Figure 13: Extraction of convex (red), concave (blue), hyperbolic (green), concave/convex cylindric (cyan/yellow) and flat parts (white) on
“Octaflower” dataset. Colors are computed as explained by the right diagram, with κmax = 4, and κ1 ≤ κ2.
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Figure 14: Stability of convex (red), concave (blue), hyperbolic
(green), concave/convex cylindric (cyan/yellow) and flat parts
(white) on “Skull” dataset with increasing noise (0%, 30%, 60%,
90%) using κ̂

cnc
1 and κ̂

cnc
2 . (See explanation of colors on Figure 13.)

Corrected field u is obtained from geometric normals n by four av-
eraging passes.
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Figure 15: Stability of convex (red), concave (blue), hyperbolic
(green), concave/convex cylindric (cyan/yellow) and flat parts
(white) on “Skull” dataset with increasing noise (0%, 30%, 60%,
90%) using κ̂

rz
1 and κ̂

rz
2 or κ̂

nc
1 and κ̂

nc
2 . (See explanation of colors

on Figure 13.) Corrected field u is obtained from geometric nor-
mals n by four averaging passes.
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Ĥcnc,ρ = 0 Ĥcnc,ρ = 0.05 Ĥcnc,ρ = 0.1

Figure 16: Mean curvature estimation on LIDAR data according
to measure radius ρ.

Figure 17: Mean (left) and Gaussian (right) curvatures mapped
onto “Lion” dataset, using Ĥcnc and Ĝcnc with corrected vector
field u given by its normal map (first row).
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Appendix A: Computation of anisotropic measure on a triangle

The computation of the anisotropic measure (a.k.a. second funda-
mental measure of [CSM06]) on a triangle τ (last relation of Prop-
erty 1) can be computed in a similar manner as the other measures.
For given vectors X,Y, we use the pullback Γ

∗
uω

(X,Y) as follows:

µX,Y(τ) =
∫

τ

Γ
∗
uω

(X,Y)

=
∫

∆

(u×X,0)[∧ (0,Y)[
(

∂Γu
∂s

,
∂Γu
∂t

)
dsdt

=
∫

∆

∣∣∣∣∣∣
〈

u×X | ∂x
∂s

〉 〈
u×X | ∂x

∂t

〉〈
Y | ∂u

∂s

〉 〈
Y | ∂u

∂t

〉 ∣∣∣∣∣∣dsdt

=
∫

∆

(
〈X | (x1−x0)× (u0 + s(u1−u0)

+ t(u2−u0))〉〈Y | u2−u0〉
−〈X | (x2−x0)× (u0 + s(u1−u0)

+ t(u2−u0)〉〈Y | u1−u0〉
)
dsdt

=
∫ 1

0

∫ 1−s

0

(
〈X | (x1−x0)×u0〉〈Y | u2−u0〉

−〈X | (x2−x0)×u0〉〈Y | u1−u0〉
+ s
(
〈X | (x1−x0)× (u1−u0)〉〈Y | u2−u0〉
−〈X | (x2−x0)× (u1−u0)〉〈Y | u1−u0〉

)
+ t
(
〈X | (x1−x0)× (u2−u0)〉〈Y | u2−u0〉

−〈X | (x2−x0)× (u2−u0)〉〈Y | u1−u0〉
))

dtds

=
1
6

(
〈X | (x1−x0)× (u0 +u1 +u2)〉〈Y | u2−u0〉

−〈X | (x2−x0)× (u0 +u1 +u2〉〈Y | u1−u0〉
)

=
1
2
〈ū | 〈Y | u2−u0〉X× (x1−x0)

−〈Y | u1−u0〉X× (x2−x0)〉 .

Appendix B: Closed form for quads with bilinear interpolation

Let x00, x10, x01, x11 be the coordinates of the vertices of a quad
q and u00, u10, u01, u11 the corrected normals at these vertices.
Positions and normals are linearly interpolated as

x(s, t) := (1− s)(1− t)x00 + s(1− t)x10 +(1− s)tx01 + stx11,

u(s, t) := (1− s)(1− t)u00 + s(1− t)u10 +(1− s)tu01 + stu11.

for all (s, t) is the standard unit square. The quad may thus not be
planar. Similar computations to the ones made for triangles give the
corrected area measure µ(0):

µ(0)(q) :=
1

36
[
〈4u00 +2u10 +2u01 +u11 | (x10−x00)× (x01−x00)〉

+ 〈2u00 +4u10 +u01 +2u11 | (x10−x00)× (x11−x10)〉
+ 〈2u00 +u10 +4u01 +2u11 | (x11−x01)× (x01−x00)〉
+ 〈u00 +2u10 +2u01 +4u11 | (x11−x01)× (x11−x10)〉

]
.

The computation of the corrected mean curvature measure µ(1) is a
little bit more involved and leads to the following formula:

µ(1)(q) :=
1

12
[
〈u00 | 2(u01−u10)×x00− (u01 +u11)×x10

+(u10 +u11)×x01 +(u10−u01)×x11〉
+ 〈u10 | 2(u00−u11)×x10− (u00 +u01)×x11

+(u01 +u11)×x00 +(u11−u00)×x01〉
+ 〈u11 | 2(u10−u01)×x11− (u00 +u10)×x01

+(u00 +u01)×x10 +(u01−u10)×x00〉
+ 〈u01 | 2(u11−u00)×x01− (u10 +u11)×x00

+(u00 +u10)×x11 +(u00−u11)×x10〉
]
.

The corrected Gaussian curvature measure µ(2) on q is:

µ(2)(q) :=
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1
36
[
〈4u00 +2u10 +2u01 +u11 | (u10−u00)× (u01−u00)〉

+ 〈2u00 +4u10 +u01 +2u11 | (u10−u00)× (u11−u10)〉
+ 〈2u00 +u10 +4u01 +2u11 | (u11−u01)× (u01−u00)〉
+ 〈u00 +2u10 +2u01 +4u11 | (u11−u01)× (u11−u10)〉

]
.

Last the anisotropic measure µ(X,Y) can be written as:

µ(X,Y)(q) :=
1

72
[
〈Y | u00〉(〈u00×X | (−x00−11x10 +13x01−x11)〉

+ 〈u10×X | (−5x00−7x10 +11x01 +x11)〉
+ 〈u01×X | (x00−7x10 +11x01−5x11)〉
+ 〈u11×X | (−x00−5x10 +7x01−x11)〉)

+〈Y | u10〉(〈u00×X | (13x00−x10−7x01−5x11)〉
+ 〈u10×X | (17x00−5x10−5x01−7x11)〉
+ 〈u01×X | (5x00 +x10 +x01−7x11)〉
+ 〈u11×X | (7x00−x10 +5x01−11x11)〉)

+〈Y | u01〉(〈u00×X | (−11x00 +5x10−x01 +7x11)〉
+ 〈u10×X | (−7x00 +x10 +x01 +5x11)〉
+ 〈u01×X | (−7x00−5x10−5x01 +17x11)〉
+ 〈u11×X | (−5x00−7x10−x01 +13x11)〉)

+〈Y | u11〉(〈u00×X | (−x00 +7x10−5x01−x11)〉
+ 〈u10×X | (−5x00 +11x10−7x01 +x11)〉
+ 〈u01×X | (x00 +11x10−7x01−5x11)〉
+ 〈u11×X | (−x00 +13x10−11x01−x11)〉)

]
.

Appendix C: Closed form for digital surfaces

We may also consider a digital surface where the corrected normal
vector field u is known at vertices and linearly interpolated over
each quad surfel (axis aligned unit square). The formulas above can
be simplified since the geometry of quad surfels is simpler. Indeed
let (11,12,13) be the canonical basis of R3 and (x,y,z) an even
permutation of (1,2,3). The corrected measures over a surfel f of
naive geometric normal 1z with boundary vertices x00,x10,x01,x11
such that x10 = x00 +1x, x01 = x00 +1y, x11 = x00 +1x +1y have
the following form

µ(0)( f ) =
1
4
[az +bz + cz +dz] ,

µ(1)( f ) =
1
6
[(2bx +dx +2cy +dy)az− (ax +2cx +ay +2by)dz]

+
1
6
[(bx +2dx−2ay−by)cz− (2ax + cx− cy−2dy)bz] ,

µ(2)( f ) =
1
4
[(cx−bx)ay +(ax + cx)by− (ax +bx)cy]dz

− 1
4
[(bx +dx)ay− (ax−dx)by− (ax +bx)dy)]cz

+
1
4
[(cx +dx)ay− (ax−dx)cy− (ax + cx)dy)]bz

− 1
4
[(cx +dx)by− (bx +dx)cy +(cx−bx)dy)]az,

with the notations a := u00,b := u10,c := u01,d := u11.
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