
Eurographics Symposium on Geometry Processing 2020
Q. Huang and A. Jacobson
(Guest Editors)

Volume 39 (2020), Number 5

A Laplacian for Nonmanifold Triangle Meshes

Nicholas Sharp and Keenan Crane

Carnegie Mellon University

Abstract
We describe a discrete Laplacian suitable for any triangle mesh, including those that are nonmanifold or nonorientable (with
or without boundary). Our Laplacian is a robust drop-in replacement for the usual cotan matrix, and is guaranteed to have
nonnegative edge weights on both interior and boundary edges, even for extremely poor-quality meshes. The key idea is to build
what we call a “tufted cover” over the input domain, which has nonmanifold vertices but manifold edges. Since all edges are
manifold, we can flip to an intrinsic Delaunay triangulation; our Laplacian is then the cotan Laplacian of this new triangulation.
This construction also provides a high-quality point cloud Laplacian, via a nonmanifold triangulation of the point set. We validate
our Laplacian on a variety of challenging examples (including all models from Thingi10k), and a variety of standard tasks
including geodesic distance computation, surface deformation, parameterization, and computing minimal surfaces.

CCS Concepts
•Mathematics of computing → Discretization; Partial differential equations;

1. Introduction

The Laplacian ∆ measures the degree to which a given function
u deviates from its mean value in each local neighborhood; it
hence characterizes a wide variety of phenomena such as the dif-
fusion of heat, the propagation of waves, and the smoothest inter-
polation of given boundary data. Such phenomena play a central
role in algorithms from geometry processing and geometric learn-
ing [BKP∗10, BBL∗17]. However, it remains challenging to con-
struct discrete Laplacians that are accurate, efficient, and reliable—
especially since contemporary data often fails to satisfy the precon-
ditions of classical geometric algorithms (e.g., being well-sampled,
manifold, or exhibiting good triangle shape) [ZJ16, QSMG17].

Nonmanifold Laplacian. Though the Laplacian is often formally
defined in local coordinates on a manifold, there is no fundamen-
tal reason why the manifold assumption is necessary. Physically,
for instance, one can weld together metal plates in a nonmanifold
fashion—here, one can still view the Laplacian as the time derivative
of a heat diffusion process: ∆u := d

dt |t=0u(t) (reversing the usual
heat equation). Likewise, one can take any nonmanifold domain and
“thicken” it by a tiny radius ε > 0, so that it becomes a manifold of
one dimension higher (Figure 1); here again the Laplacian is well-
defined. Alternatively, one can still think of the Laplacian as giving
the deviation from the average in a small metric ball, or relate it to
the variation of total area [PP93]—both of which are meaningful for
nonmanifold domains. And so on. For us, it will be natural to view
the Laplacian as the Hessian of the Dirichlet energy—different tri-
angulations of the input then just provide different piecewise linear
basis functions for approximating the underlying continuous energy.

Discrete Laplacians. For triangle meshes, the de facto standard is
the cotan Laplacian (Section 3.3), equivalent to the usual linear finite
element stiffness matrix. This operator is very sparse, easy to build,
and generally works well for unstructured meshes with irregular
vertex distributions. It can also be used on nonmanifold meshes by
just summing up per-triangle contributions (as famously done by
Pinkall & Polthier for minimal surfaces [PP93]). However, cotan-
Laplace has well-known problems, chiefly that it does not provide a
maximum principle [WMKG07], which can lead to severe defects
in common algorithms. An important development was the intrinsic
Laplacian of Bobenko & Springborn [BS07], obtained by flipping

manifold
Laplacian

(tetrahedral mesh)

nonmanifold
Laplacian

(triangle mesh)

Figure 1: We define a Laplacian for nonmanifold triangle meshes,
which generally behaves like the Laplacian on a slightly thickened
domain. Here for instance we get a near-identical harmonic interpo-
lation of boundary values using our Laplacian on a triangle mesh
(left) or with the standard Laplacian on a tetrahedral mesh (right).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI:10.1111/cgf.14069

https://diglib.eg.orghttps://www.eg.org

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

Figure 2: A nonmanifold mesh (left) and its tufted cover (right).
Since the cover is edge-manifold, we can freely flip edges in order
to improve the Laplacian. (Note that we draw curved triangles only
to help visualize connectivity; actual triangles remain flat.)

edges to an intrinsic Delaunay triangulation (iDT) before building
cotan-Laplace (Section 3.2). This operator retains most properties of
cotan-Laplace, but guarantees a maximum principle, and improves
the accuracy and reliability of many geometric algorithms [FSSB07,
LFXH17, SSC19b, SSC19a]. However, the original construction
applies only to manifold meshes, limiting its practical use.

Approach. Our key observation is that the intrinsic Laplacian can
be constructed as long as all edges are manifold, since edge flips
then remain well-defined. We therefore build a “tufted” version of
the input, where all edges are manifold—and all interior vertices are
nonmanifold (Figure 2). Though it may seem strange to intentionally
introduce nonmanifold vertices, they ultimately have no effect on
the definition of our Laplacian: we simply flip to Delaunay, then
build cotan-Laplace as usual (Section 4).

Contributions. Overall, our contributions are as follows:

• We extend the notion of intrinsic Delaunay triangulations to non-
manifold geometry.
• We define a discrete Laplacian that exhibits all the same properties

as the intrinsic Laplacian but (i) can be used with triangle meshes
of arbitrary connectivity and (ii) has nonnegative weights even at
boundary edges.
• Finally, we define a new point cloud Laplacian which inherits key

properties of the intrinsic Laplacian.

In particular, both our mesh and point cloud Laplacian satisfy all
the criteria for a “perfect” discrete Laplacian outlined by Wardetzky
et al. [WMKG07], except for locality (though see Section 3.3). For
inputs where no Delaunay flips are needed, our Laplacian is identical
to summing up the per-triangle cotan Laplacian—though in practice
such meshes are quite rare.

Since our Laplacian preserves the given vertex set, it can be
used in a “black box” fashion: one simply provides an ordinary
triangle mesh with n vertices as input, and gets a standard n× n
Laplace matrix as output (Algorithm 3). From here, existing code
can often be used without modification—see Section 5.4 for an
example. The computational overhead is on par with just building
cotan-Laplace and solving a linear system; we use simple arrays
to represent the tufted cover (Section 4.1) and do not require more
general nonmanifold data structures [DFGH04].

2. Related Work

Nonmanifold Geometry Processing. A variety of work from ge-
ometry processing considers nonmanifold triangle meshes [SG95,
HG00, WLG03, GBTS99, YZ01], but does not explore the Lapla-
cian; more recent work handles arbitrary, nonmanifold geometry by
converting it to a volumetric, tetrahedral representation [JKSH13,
HZG∗18, SCM∗19]. By working directly with triangle meshes we
keep the problem dimension low, avoid hard tetrahedral meshing
problems, and preserve self-intersections that are geometric but not
topological. Most importantly, we can improve the robustness of
existing triangle-based algorithms by just replacing cotan-Laplace
with our Laplacian (see Section 5).

Covering Spaces. In geometry processing, branched covers have
been used for, e.g., mesh generation [KNP07,NPPZ11,NRP11], pat-
tern synthesis [KCPS15], and topological visualization [RKG∗17].
The branched cover we consider is just a trivial double cover, glued
back together at all vertices (and any boundary curves)—which en-
sures that all edges are manifold. Though this construction is quite
natural, it does not appear to have been previously used in geometry
processing—perhaps because it is not always representable as an
ordinary simplicial complex (Section 4.1).

Laplacians for Triangle Meshes. A fairly active question [AW11,
HKA15, BSW08, HP11, MMdGD11] is how to accurately approx-
imate the smooth Laplace-Beltrami operator while retaining key
properties such as symmetry, locality, etc. [WMKG07]. For tri-
angle meshes, a common choice is the cotan Laplacian, which
arises naturally via linear finite elements, discrete exterior calcu-
lus [CDGDS13], electrical networks [Mac49, Duf59], and minimal
surfaces [PP93]. As noted in Section 1, cotan-Laplace can be used
on nonmanifold meshes by accumulating per-triangle matrices, but
does not guarantee a maximum principle, and exhibits poor behavior
on meshes with large obtuse angles (see [She02] and Section 5).

The intrinsic Laplacian overcomes these difficulties by replac-
ing the input mesh with an intrinsic Delaunay triangulation (iDT)
(Section 3.2). The iDT changes only the connectivity, using “bent”
edges that run across the exact input geometry (Figure 3). On this

i
k

j

i
k

j

Figure 3: Left: Much as a planar point set can be triangulated in
many different ways, an intrinsic triangulation allows the vertices of
a polyhedron to be connected by many different straight (geodesic)
edges along the surface. Right: Each intrinsic triangle can be flat-
tened into the plane without distortion; its geometry (area, angles,
etc.) is hence completely described by just three edge lengths.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

70

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

new triangulation, cotan-Laplace is guaranteed to have nonnega-
tive edge weights—at least for interior edges (see Section 5.5). To
date, however, the intrinsic Laplacian, and more broadly, the no-
tion of intrinsic triangulations, has been limited to manifold surface
meshes. Our goal is to develop a Laplacian that is more reliable than
cotan-Laplace, yet can be used on meshes of arbitrary connectivity.

Liu et al. [LXFH15] achieve the intrinsic Delaunay property via
extrinsic splits rather than intrinsic flips; though their algorithm (and
code) assumes manifold input, it may be possible to extend this
scheme to nonmanifold meshes. However, as seen in [LFXH17, Fig-
ure 20] and [SSC19a, Figure 25], splits generate numerous addi-
tional triangles, and skinny angles which can worsen conditioning
of the Laplacian [She02]. Moreover, since splits add new vertices,
the resulting Laplacian cannot be used directly on the input mesh.

restricted
Delaunay

optimal
Delaunay

Figure 4: Standard extrin-
sic Delaunay conditions
yield many edges with neg-
ative weights (in black).

Global Remeshing. A traditional
way to improve finite element qual-
ity is to globally remesh the domain.
However, standard extrinsic Delau-
nay criteria such as restricted Delau-
nay [CDS12, Chapter 13] and optimal
Delaunay [CH11] do not guarantee
that the Laplacian will have nonneg-
ative edge weights, even if triangles
are otherwise nice (Figure 4). Global
remeshing is also far more expensive
than building our Laplacian—which
takes just milliseconds (Section 5).

Higher-Order Finite Elements. The Laplacian can also be im-
proved by adopting higher-order basis functions [GKS02, RWP06,
SHD∗18], which preserves the input geometry but adds more de-
grees of freedom. A practical downside is that this larger Laplace
matrix cannot be used as a drop-in replacement for cotan-Laplace;
it also consumes additional time and memory. Here, little has been
said about the nonmanifold case, nor about the maximum principle.

Point-Based Laplace Operators. To handle nonmanifold geome-
try one could also discard connectivity completely and build a point
cloud Laplacian directly on the input vertex set [BSW08, BSW09,
LPG12]. Traditional point cloud Laplacians (à la [BSW09]) ex-
hibit some nice features like pointwise convergence (under certain
sampling conditions) and a maximum principle, but lose other key
properties (like symmetry, or linear precision). Moreover, small/thin
features may get joined together erroneously, and quality will suffer
unless the input vertices densely and uniformly sample the domain.
There is also a large computational cost: the average neighborhood
size is typically far greater than for a mesh-based Laplacian (around
30 points, rather than 6 vertices)—and must grow as sampling den-
sity increases [HP11], resulting in rather dense systems that are
expensive to solve. In practice, picking parameters that balance qual-
ity and sparsity often requires extensive hand-tuning. For all these
reasons, building point cloud Laplacians on top of classic schemes
for triangle meshes (like cotan-Laplace) presents an attractive al-
ternative [CRT04, CTO∗10], providing sparsity and accuracy even
for irregularly sampled points. Our nonmanifold construction takes
this approach a step further by also providing nonnegative edge
weights—see Section 5.7 for further discussion.

i
ijk

jim
j

k

m

ijk
ijm

i

j

k

m
same

orientation
opposite

orientation
side

orientations

i

j

Figure 5: Notation and orientation conventions for triangle meshes.

3. Background

3.1. Triangle Meshes

We assume the input is a triangle mesh M, and use V, E, and F to
denote its vertices, edges, and faces, resp. (Polygons with more sides
can simply be triangulated, though the choice of triangulation may
slightly change the result [AW11].) We denote vertices by a single
index i ∈ V, edges by two indices ij, and faces by three indices ijk.
The orientation of a mesh element is given by the cyclic ordering of
its vertices—for instance, ijk = jki, but ijk 6= jik. Two faces sharing
an edge have the same orientation if shared vertices appear in the
opposite order—e.g., ijk and jim have the same orientation; ijk
and ijm have opposite orientation. Similarly, each oriented triangle
ijk has three oriented sides with compatible orientations ij, jk,ki.
Finally, we use x : V→ R3 to denote the input vertex coordinates,
`ij := |xi−x j| for the length of edge ij, Aijk for the area of triangle
ijk, and θ

jk
i for the interior angle at vertex i of triangle ijk.

Manifold Condition. An interior (or boundary) edge ij is manifold
if it is contained in exactly two (or one) triangles; an interior (or
boundary) vertex i is manifold if the boundary of all triangles inci-
dent on i forms a single loop (or path) of edges. For example, an
edge contained in three faces is not manifold, and a vertex contained
in two “cones” is also not manifold (see Figure 6). An edge-manifold
or vertex-manifold mesh has all manifold edges or vertices, resp.

3.2. Intrinsic Triangulations

Intuitively, an intrinsic triangulation is another triangulation “drawn
on top of” a given mesh, with the same vertex set; edges of the
intrinsic triangulation are straight (i.e., geodesic) paths (Figure 3,
left). In reality, the intrinsic triangulation is completely determined
by its connectivity and edge lengths [SSC19a, Section 2]; exactly
where and how the intrinsic edges cross the input edges is not
relevant for our Laplacian (though this additional correspondence

i

j

ii
j

i

nonmanifold
edge

manifold
vertex

manifold
edge

nonmanifold
vertex

Figure 6: Examples of manifold and nonmanifold edges/vertices.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

71

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

information can be useful for other applications [FSSB07,SSC19a]).
In particular, since the two triangulations have the same vertex set,
an intrinsic triangle ijk cannot have any vertices on its interior. Its
geometry is therefore completely determined by three ordinary edge
lengths (Figure 3, right), which in turn determine its area Aijk and
interior angles θ

jk
i .

Intrinsic Delaunay. A planar triangulation is Delaunay if no tri-
angle circumcircle has vertices in its interior; such triangulations
play an important role throughout computational science [AKL13].
Rivin [Riv94] generalizes this notion to manifold triangulations—in
particular, a triangulation is intrinsic Delaunay if every interior edge
ij shared by triangles ijk, jim satisfies the local Delaunay condition

θ
ij
k +θ

ji
m ≤ π. (1)

For planar triangulations this definition agrees with the usual one,
but can also be applied to triangulated surfaces since the angles
θ can be determined directly from the (intrinsic) edge lengths `.
Importantly, an interior edge satisfies Equation 1 if and only if

cotθ
ij
k + cotθ

ji
m ≥ 0, (2)

in other words, if and only if its so-called cotan weight is nonneg-
ative [BS07]. Hence, an intrinsic Delaunay triangulation always
yields a Laplacian with positive weights on interior edges.

flip

Figure 7: A non-Delaunay edge
(left) can always be made Delau-
nay (right) via an edge flip.

Intrinsic Edge Flips. An in-
trinsic edge flip updates a tri-
angle pair as depicted in Fig-
ure 7, computing the new edge
length from a planar layout
of the original triangles—and
not from the distance between
endpoints in R3. An intrinsic
Delaunay triangulation can al-
ways be obtained by greedily
flipping any non-Delaunay edge (Algorithm 2). This algorithm termi-
nates in a finite number of operations [BS07], and typically requires
no more than about |E| total flips [SSC19a, Figure 10]. Importantly,
intrinsic flips exactly preserve the original geometry—from a finite
element perspective, changing the triangulation effectively just pro-
vides a different set of linear basis functions for the same polyhedral
domain, which in turn improves the quality of the Laplace operator.
The only challenge is that edge flips—and hence the iDT—are well-
defined only for edge-manifold meshes, which is why we must first
build the tufted cover (Section 4.2).

3.3. Cotan Laplacian

A general way to build cotan-Laplace (which works for our tufted
cover) is to define, for each triangle ijk ∈ F, a local cotan matrix

Lijk :=

 wki +wij −wij −wki
−wij wij +w jk −w jk
−wki −w jk w jk +wki

 ,

where wij := 1
2 cotθ

jk
i (and similarly for w jk,wki). Entries of local

matrices are then summed up into the corresponding entries of a

global Laplacian L ∈ R|V |×|V |. The associated mass matrix B ∈
R|V |×|V | is a diagonal matrix with entries

Bii = ∑
ijk∈F

Aijk/3,

i.e., for each triangle containing i, we contribute one-third of its area
to the mass at vertex i. Using these matrices, a Poisson equation
∆u = f can be discretized as Lu= Bu.

Perfect Laplacians. Wardetzky et al. [WMKG07] outline several
criteria for a “perfect” discrete Laplacian, which capture funda-
mental properties of the smooth Laplace operator ∆. Cotan-Laplace
exhibits all of these properties, except for one: nonnegative edge
weights, which are sufficient to guarantee a discrete maximum prin-
ciple, i.e., that any discrete harmonic function Lu = 0 has local
maxima/minima only at boundary vertices. This property is impor-
tant in practice, preventing (for example) interpolated values from
going out of bounds, or flipped triangles in a parameterization. For
a manifold mesh, one can always obtain nonnegative weights by
flipping to an intrinsic Delaunay triangulation (Equation 2), but edge
flips have no clear definition for nonmanifold edges. Moreover, even
an iDT can yield negative weights on boundary edges, causing prob-
lems for interpolation (Section 5.5). These shortcomings motivate
our search for a Laplacian that is well-behaved on any triangle mesh.

input

Delaunay

A Note About Locality. According to Wardet-
zky et al. [WMKG07], a perfect discrete Lapla-
cian should also exhibit a certain notion of
locality. However, this criterion is worth re-
visiting. In the smooth setting, locality of the
Laplacian ∆ means that the value of ∆u at any
point p depends only on values of u in an ar-
bitrarily small metric neighborhood of p. The
intrinsic Laplacian generally does a good job
of capturing this notion of geometric locality—
for instance, every vertex in a Delaunay trian-
gulation is guaranteed to be connected to its
geometrically closest neighbors [MD10, The-
orem T2]. Wardetzky’s only complaint is that
the intrinsic Laplacian can depend on arbitrarily large combinatorial
neighborhoods, relative to a fixed input triangulation. More precisely,
Wardetzky’s notion of combinatorial locality asks that the value of
Lu at a vertex i depend only on values of u at immediate neighbors
j in the input triangulation (or more generally, on values k edges
away, for some universally fixed integer k). However, combinatorial
locality is often a poor proxy for geometric locality—consider for in-
stance the inset triangulation (top) versus its Delaunay triangulation
(bottom). Moreover, from a geometric point of view, there is nothing
special about the neighborhood relationships in the input mesh: just
as many different atlases describe the same manifold, many different
triangulations can be used to specify the metric of the same polyhe-
dron. On the whole, there is no clear reason to favor combinatorial
locality over geometric locality if the goal is to approximate smooth
solutions as accurately as possible. On the other hand, changing
the mesh combinatorics can incur computational cost—for instance,
it is not clear how to update the intrinsic Laplacian after moving
even a single vertex, other than to rebuild the intrinsic Delaunay
triangulation from scratch. See Section 6 for discussion of other
practical trade-offs.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

72

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

input mesh tufted cover

Laplacian

intrinsic Delaunay
triangulation

Figure 8: Starting with the input mesh, we build a tufted cover,
then flip to intrinsic Delaunay. Since the vertex set is preserved, a
Laplacian built on the iDT can be used directly on the input mesh.

4. Method

We now give the main steps needed to construct our Laplacian,
outlined in Figure 8. For simplicity we will consider an input mesh
given by a list of triangles with distinct vertices (as in common
mesh file formats), but in principle our construction applies to any
triangulation (formally: any pure 2-dimensional ∆-complex).

4.1. Data Structure

1
23 4

2

3

4

1

vertex
face

F (faces)

G (gluing map)

V (vertices)

Figure 9: A simple array-based
data structure records, for each
side of each face, which face
and side it is glued to. A side
is encoded by a face index, and
an index s ∈ {1,2,3}.

In general, a vertex-face adja-
cency list is not be sufficient
to represent an iDT, which can
contain, e.g., multiple edges be-
tween the same two vertices (see
[SSC19a, Figure 6]). Formally,
we must be able to encode a so-
called ∆-complex [Hat02, Section
2.1]. We therefore augment this
list with a gluing map G that can
represent any edge-manifold in-
trinsic triangulation (Figure 9).
For each side of each triangle, G
stores the corresponding side of
the adjacent triangle. A side is
encoded as a pair (f ,s), where
f ∈ {1, . . . , |F|} is the index of
a face, and s ∈ {1,2,3} is the
index of a side within that face.
E.g., for f = ijk, s = 1,2,3 corre-
spond to ij, jk, and ki, resp. (One
could also store a flag for bound-
ary edges, though our tufted cover
will never have boundary.)

4.2. Tufted Cover

One idea for transforming nonmanifold input to be manifold is
to take the boundary of a thickened “shell” around the input (as in
Figure 1, right), but explicitly generating such a shell while avoiding
self-intersection is cumbersome and expensive. Since a triangulation
need only be edge-manifold to support the iDT (Section 4.3) on
which we build the Laplacian (Section 4.4), we use a much simpler
construction. In particular, we make two logical copies of each input

triangle, and systematically glue along
edges to form a closed, edge-manifold
mesh. We call this mesh the tufted cover
since duplicated triangles still share the
same vertices, akin to two layers of up-
holstered furniture connected by buttons
(see inset). Note that, purely for visualization (e.g., in Figure 8), we
“inflate” the cover outward to clearly distinguish front and back
faces, but the actual geometry of each triangle remains flat.

More precisely, the tufted cover of an input mesh M= (V,E,F)

is a triangle mesh M̃ = (Ṽ, Ẽ, F̃) with the same vertices (Ṽ = V),
together with a gluing map G̃. For each face f ∈ F, M̃ has two
oppositely oriented copies σF (f),σB(f)∈ F̃ which one can think of
as the “front” and the “back” of f , respectively. Nonmanifold edges
are resolved by the way we define the gluing map G̃. We first list the
faces around each edge e ∈ E in a circular order ρ

e := (f1, . . . , fk).
If we imagine that these faces are consistently orientated relative to
e, then we just glue them “front to back” along the shared edge, i.e.,
we glue σF (fi) to σB(fi+1 mod k) for i = 1, . . . ,k (Figure 10 gives
an example). A more precise description of the gluing procedure
which takes orientation into account is given in Algorithm 1; here
SIDE(e, f) just gives the side index of e within face f (1, 2, or 3).

Algorithm 1 CONSTRUCTTUFTEDCOVER(M,ρ)

Input: A (possibly nonmanifold) triangle mesh M and an ordering
ρ

e of faces around each edge e.
Output: The tufted cover mesh M̃ and edge glue map G̃

1: F̃←
⋃

ijk∈F{ijk, jik} .two copies of each face

2: G̃←{} .assemble an edge glue map
3: for each edge e ∈ E do
4: if e and σF (ρ

e
1) have the same orientation then

5: f ← σF (ρ
e
1)

6: else f ← σB(ρ
e
1)

7: for i = 1, . . . ,k do .letting k := |ρe|
8: g1← σF (ρ

e
i+1 mod k)

9: g2← σB(ρ
e
i+1 mod k)

10: if f and g1 have different orientation along e then
11: SWAP(g1,g2)

12: G̃(f ,SIDE(e, f))← (g1,SIDE(e,g1))

13: G̃(g1,SIDE(e,g1))← (f ,SIDE(e, f))
14: f ← g2

15: return M̃, G̃

Figure 10: Left: for each face f of the input mesh, we make a “front”
and “back” copy. For each edge e (center) we then glue together
alternating front/back pairs (right).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

73

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

By construction, G̃ defines a symmetric bijection between faces
of the same orientation; hence, the tufted cover M̃ is always edge-
manifold and oriented. For input meshes with boundary, front and
back faces are simply glued together along the boundary; M̃ is hence
also closed. Note that we assume a unique ordering of faces around
e, which may not be available in degenerate cases (e.g., coplanar
faces incident on e). As seen in Section 5.4, however, the ordering
has little effect on the final operator—essentially we just need any
reasonable space of linear elements for the region around the edge.

4.3. Intrinsic Delaunay Triangulation

At this point, summing up local cotan matrices on M̃ (as in Sec-
tion 3.3) would just yield the ordinary cotan-Laplacian (times two).
To improve the Laplacian, we must now flip M̃ to an iDT, as shown
in Figure 11, right. Algorithm 2 gives the usual greedy flip algorithm
in terms of the gluing map G; to implement the “while” loop we
keep a queue of edges that are not yet Delaunay (possibly enqueu-
ing some of the neighbors ki, im, mj, and/or jk after each flip). In
practice, this algorithm takes a small fraction of a second, even on
large meshes [SSC19a, Section 4]. Each flip updates G as detailed
in Figure 12, and the new edge length is given by

`km =
√

`2
im + `2

ik−2`im`ik cosθkm
i . (3)

i

jk

m

To get θ
km
i we sum of the two angles

θ
jk
i and θ

m j
i , which can be computed

from known edge lengths via the law
of cosines. (Fisher et al. [FSSB07, Sec-
tion 2.2] give a more robust floating point implementation.)

Algorithm 2 FLIPTODELAUNAY(M,G, `)

Input: An edge-manifold triangulation M, with edge gluing map G
and edge lengths `.

Output: An intrinsic Delaunay triangulation M,G, `
1: while any edge ij is not Delaunay do .Equation 1
2: Compute the new length `km .Equation 3
3: Flip edge ij to km, updating F and G .see Figure 12
4: end while
5: return M,G, `

nonmanifold
mesh

tufted
intrinsic Delaunay

Figure 11: Even for poor-quality nonmanifold meshes, we achieve
the Delaunay criterion everywhere—without inserting new vertices.

F (faces) G (gluing map)

j

m

i

k
a

b

c

e

d

f
j

j
mi

i ka
b a

c
e

d
f

a
b

b

j

m

i

k

a

c

e

d

f

b
c

F (faces) G (gluing map)

j
m

m
ik

k
a
b a

da
b

b e
f

fli
p

Figure 12: An edge flip updates just two rows of the face and gluing
tables. Here, values s f ∈ {1,2,3} index the sides of face f .

4.4. Building the Laplacian

From here, our Laplacian is just the cotan-Laplacian L of M̃, scaled
by a factor 1/2 (since from a finite element perspective, we have
effectively integrated the Laplacian twice, over the double cover). Al-
gorithm 3 summarizes the entire process, and gives expressions for
computing the cotan weights directly from the intrinsic edge lengths.
The subroutine ANGULARSORTFACES simply sorts the triangles
around each edge (in circular order); MEASUREEDGELENGTHS

gets the initial edge lengths from the vertex positions.

Since the tufted cover M̃ is closed, edge-manifold, and gets
flipped to an intrinsic Delaunay triangulation, the tufted Laplacian
L will have nonnegative edge weights for an input mesh of arbi-
trary geometry and connectivity. Note that for a closed, manifold
input mesh M, the tufted cover will just be two disjoint copies
of M, and L is hence the usual intrinsic Laplacian of Bobenko &
Springborn [BS07]. However, if M has boundary then we still get
something extra: the boundary weights will also be nonnegative,
providing a maximum principle relative to any set of pinned vertices
(see Section 5.5 for further discussion).

Algorithm 3 BUILDTUFTEDLAPLACIAN(M,x)

Input: Any triangle mesh M, with vertex positions x
Output: A |V|× |V| Laplace matrix L for M

1: ρ← ANGULARSORTFACES(M,x)
2: M̃, G̃← CONSTRUCTTUFTEDCOVER(M,ρ)

3: `←MEASUREEDGELENGTHS(M̃,x) .see Section 3.1
4: `←MOLLIFY(M̃, `) .optional, Section 4.5
5: M̃, G̃, `← FLIPTODELAUNAY(M̃, G̃, `)

6: L← 0 ∈ R|V|×|V| .initialize a sparse matrix
7: for each corner i of each ijk ∈ F̃ do
8: s← (lij + l jk + lki)/2
9: A←

√
s(s−a)(s−b)(s− c) .Heron’s area formula

10: w jk← 1
8 (l

2
ij + l2

ki− l2
jk)/A .computes 1

2 cot(θ jk
i)

11: L jk← L jk−w jk .accumulate entries
12: Lk j← Lk j−w jk
13: L j j← L j j +w jk
14: Lkk← Lkk +w jk

15: return L/2 . 1
2 factor due to double cover

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

74

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

4.5. Intrinsic Mollification

Meshes encountered “in the wild” may have near-degenerate ge-
ometry (e.g., near-zero angles or areas) that can impair even basic
floating point arithmetic [ZJ16]. Delaunay flips sometimes fix de-
generate triangles, but are not guaranteed to do so. Likewise, repair-
ing defects extrinsically is hard to do with any kind of guarantee,
since small vertex perturbations that fix one element can damage
another. For the Laplacian, however, we need only intrinsic data
(edge lengths), and can devise a simple mollification strategy that
is guaranteed to work: just increase the length of all edges by a
small, constant amount until no input triangle is degenerate. More
precisely, for each corner of each triangle we want

`i j + ` jk > `ki +δ, (4)

for some user-defined tolerance δ > 0, i.e., we want the triangle
inequality to hold with significant inequality, so that triangles are
nondegenerate. Then

ε := max
i jk

max(0,δ− `ki− `i j + ` jk)

is the smallest length we can add to all edge lengths to ensure
that Equation 4 holds. Updating the edge lengths via `i j← `i j + ε

yields a valid Laplacian even on pathological inputs, as validated
in Section 5.2. Moreover, this strategy closely preserves the given
geometry: at worst, ε can be just slightly larger than δ (due to
floating point error); when M is already nondegenerate, ε = 0. Note
that this strategy is unrelated to clamping edge weights, which is a
non-geometric way of dealing with non-Delaunay edges rather than
degenerate triangles—and may significantly distort the Laplacian.

5. Analysis and Validation

We examined the behavior of our Laplacian via several common
geometry processing algorithms. Note that to visualize the tufted
cover we subdivide each triangle into a curved patch; to trace edges
of the intrinsic triangulation we use the signpost data structure of
[SSC19a] (doing additional work to resolve nonmanifold vertices).

5.1. Performance

We implemented our method in double precision, via geometry-
central [SC∗19], and measured all timings on one thread of an
i7-4790K CPU. In general, the extra cost of our method relative to
using cotan-Laplace is far less than loading the input from disk, and
about as expensive as solving one linear system Lu= f. For example,
on the 57k face mesh in Figure 14 constructing the tufted cover and
performing intrinsic Delaunay flips take 96ms and 25ms, respec-
tively; building and solving a linear system using cotan-Laplace on
the same mesh takes 106ms.

5.2. Dataset Validation

We were able to successfully construct a Laplacian satisfying the
maximum principle on 100% of two real-world datasets: the Prince-
ton Shape Benchmark, which contains 1814 low-quality meshes
from computer graphics [SMKF04], and Thingi10k, comprised of
10,000 meshes from a 3D printing repository [ZJ16]. Both datasets

value

original tufted IDT
15th

eigenvector

original
tufted IDT

0 20 40 60 80 100
index of eigenvalue

0

10

20

30

40

50

60

Figure 13: To verify that our discrete Laplacian correctly approx-
imates the (smooth) Laplace operator, we verify that it has essen-
tially the same low-frequency eigenvectors/eigenvalues as the input—
which should not depend strongly on the choice of tessellation.

include meshes with extremely degenerate geometry and connectiv-
ity, including 1216 and 1971 nonmanifold entries, resp.. Only triv-
ial preprocessing was applied, discarding one entry that contained
splines, ignoring unreferenced vertices, and omitting triangles with
repeated vertices. We converted Thingi10k meshes from STL to PLY
format via Meshlab [CCC∗08].

Algorithm 1 successfully builds the tufted cover for all meshes
in both datasets, always producing a closed, edge-manifold mesh.
Without mollification, Algorithm 2 successfully constructs the iDT
on all meshes except those with near-degenerate faces; it succeeds on
100% of meshes after intrinsic mollification with δ = 10−4h, where
h is the mean edge length (see Section 4.5). Most importantly, all of
our final Laplace matrices are symmetric and positive semidefinite,
with nonnegative edge weights.

5.3. Spectral Validation

One might worry that the Laplacians we build, while structurally
valid, might not correctly capture the original geometry. To verify
that our Laplacian is indeed geometrically meaningful, we compute
its first k = 100 eigenvalues, and compare them to the eigenvalues
from a high-quality extrinsic refinement of the input mesh using the
ordinary cotan Laplacian (Figure 13). These eigenvalues character-
ize the geometry in a mesh-independent way, confirming that our
new triangulation still correctly captures the input geometry.

5.4. Face Ordering

The circular ordering ρ
e of faces around an edge e (Algorithm 3)

is typically unambiguous. However, even if it is not uniquely deter-
mined (e.g., due to coplanar triangles) we find that it has little effect
on the Laplacian. The reason is simply that the different linear basis
functions induced by different orderings (and hence triangulations)
all provide reasonable approximations of the continuous solution
space. For instance, in Figure 14 we apply several different order-
ing strategies (by angle, by face area, and random) on a mesh with

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

75

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

input

face area
ordering

random
ordering

extrinsic
angular ordering

Figure 14: Our Laplacian does not depend strongly on the ordering
of faces around edges—here we compute a deformation using bi-
harmonic weights for several ordering strategies, yielding virtually
identical results.

about 3k nonmanifold edges. Deformations computed via bounded
biharmonic weights [JBPS11] (which rely on the Laplacian) are
essentially indistinguishable: final vertex positions differ by about
10−6 on average.

This experiment also demonstrates the value of providing a “drop
in replacement” for cotan-Laplace: rather than implementing the
biharmonic weight algorithm ourselves (which takes some work due
to the need for a QP solver), we simply built our Laplace matrix
and passed it to libigl [JP∗18]. Since we preserve the input vertex
set (and hence matrix dimensions), we were able to compute the
weights with zero modification to the existing libigl code.

5.5. Meshes with Boundary

Our Laplacian has useful properties not only
for nonmanifold meshes, but for any mesh with
boundary. Both cotan-Laplace and the intrinsic
Laplacian will have negative edge weights for
a boundary edge ij opposite an obtuse angle θ

ij
k

(see inset). Delaunay flips are no help here, since
boundary edges cannot be flipped. Such weights
pose no problem when Dirichlet boundary conditions are enforced
along the entire domain boundary (since boundary weights do not en-
ter into the equation), but can be problematic for interpolating other
sets of pinned values (Figure 15). In contrast, since our tufted cover
is always closed and Delaunay, all weights of our Laplacian are
nonnegative—even for edges incident on the boundary. Hence, har-
monically interpolating any set of pinned values will yield a function
bounded within the range of these values (Figure 15, bottom-right).
This property provides additional robustness for algorithms built on
top of interpolated weights, Green’s functions, etc.

intrinsic
Laplacian

standard
cotan-Laplace

interpolation

tufted Laplacian
(ours)

Figure 15: Unlike previous discrete Laplacians, ours is guaranteed
to have nonnegative edge weights even at the domain boundary.
Here, harmonic interpolation of a set of pinned values stays inside
the given range. In contrast, even the intrinsic Laplacian [BS07] (as
well as ordinary cotan-Laplace) yields values far outside this range.

5.6. Polygon Mesh Processing

The Laplacian is central to numerous algorithms in polygon mesh
processing [BKP∗10]. Our Laplacian serves a drop-in replacement
for cotan-Laplace, improving accuracy and providing some basic
guarantees on robustness—here we examine several examples.

Minimal Surfaces. A classic geometric problem is to construct
surfaces of minimal area that interpolate a given boundary curve—
such surfaces model the physical behavior of soap films, and can be
approximated by triangle meshes where the vertex positions them-
selves are harmonic, i.e., where Lx = 0 [PP93]. Here, nonmanifold
configurations arise not due to erroneous mesh connectivity, but
rather because physical solutions to this problem can have non-
manifold features. As shown in Figure 18, our Laplacian exhibits
numerical robustness even for very poor-quality meshes. In par-
ticular, it guarantees that every vertex of the minimal surface is
contained in the convex hull of its intrinsic neighbors [BS07, Sec-
tion 4], preventing flipped triangles and other geometric artifacts
that can occur with cotan-Laplace (Figure 18, right).

Geodesic Distance. The heat method [CWW17] approximates
geodesic distance using both the Laplacian, as well as a discrete
divergence operator that uses the same cotan weights. Approximat-
ing geodesic distance is a good test case, since polyhedral geodesic
distance has an exact reference solution that does not depend on
how the domain is triangulated [SSK∗05], though is much harder
to compute. Especially on poorly-triangulated nonmanifold models,
we find that our tufted Laplacian comes much closer to this reference
solution than cotan-Laplace (Figure 16).

Shape Editing. A common shape editing paradigm is to work in
differential coordinates, e.g., to modify first or second derivatives of
the surface, then recover best-fit vertex positions by solving a system

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

76

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

nonmanifold
input

naive heat
distance

tufted intrinsic
Delaunay

error
31.9%

error
6.3%

exact
distance

Figure 16: Our Laplacian greatly improves the accuracy of PDE-
based algorithms on poorly tessellated nonmanifold meshes. Here,
we compute geodesic distance via the heat method [CWW17], which
yields large error with the cotan Laplacian. Substituting our tufted
Laplacian brings the result much closer to the exact solution.

involving the Laplacian [YZX∗04, LSCO∗04, SCOL∗04]. Robust-
ness is especially important in this context, since artist-designed
models often have poor triangulation quality, and may intentionally
include nonmanifold features to help represent a shape concisely.
Figure 17 shows one example where our Laplacian dramatically
improves robustness of an editing task on a low-quality mesh re-
sulting from boolean operations; here we specify transformations at
isolated handles, and interpolate them across the shape to obtain a
global deformation. In contrast, cotan-Laplace completely fails to
provide a satisfactory solution.

5.7. Point Cloud Laplacians

To obtain a point cloud Laplacian, we build a highly nonmanifold
triangulation of the point cloud—our tufted cover then furnishes a
Laplacian with all the usual guarantees. This example also provides
an extreme “stress test” for our Laplacian, since these triangulations
are nonmanifold almost everywhere (Figure 20, top).

A common strategy for building a Laplacian on a point cloud
P = {p1, . . . ,pn} ⊂ R3 is to (i) identify the k nearest neighbors of
each point p, (ii) project these neighbors onto an estimated tangent
plane, and (iii) construct the planar Delaunay triangulation Tp of
the projected points. These local triangulations are then used to
build a Laplacian in a variety of ways. For instance, both Belkin et
al. [BSW08] and Liu et al. [LPG12] use the triangulations purely
to determine the mass matrix B; edge weights are determined via a
Gaussian function of the distance in R3 (and are hence always posi-
tive). Such schemes are accurate and have nice theoretical properties
(e.g., pointwise convergence for fairly uniform point distributions)
but involve numerical parameters which are difficult to estimate, and
matrices that are quite dense. Other schemes use the local triangu-
lations only to determine connectivity; the original point locations
are still used to accumulate cotan weights [CRT04, CTO∗10]. A
significant benefit of this approach is that (like mesh-based Lapla-
cians) it accurately handles nonuniform point distributions, while
still retaining a high degree of sparsity. However, since edges may
not satisfy the local Delaunay property (Equation 1), the resulting
Laplacian can have negative edge weights.

control handle

nonmanifold
edge

our Laplacian

standard cotan Laplacian

input mesh

Figure 17: A poor-quality nonmanifold mesh resulting from a
boolean operation (bottom left) deformed in the spirit of [LSCO∗04].
The standard cotan Laplacian yields nonsensical numerical output,
whereas our Laplacian produces the expected deformation.

p p

boundaryinterior boundaryinterior
We likewise construct our point

cloud Laplacian from local trian-
gulations, but rather than accumu-
lating weights independently, we
form the union T =

⋃
p∈P Tp of

triangles containing p in all lo-
cal triangulations Tp; points con-
tained in a noncompact cell of the local Voronoi diagram can be
tagged as boundary vertices (see inset). The resulting global trian-
gulation T has highly irregular connectivity, is nonmanifold almost
everywhere, and has duplicate copies of many faces. However, we
can simply proceed as before: build the tufted cover, flip to an intrin-
sic Delaunay triangulation, and read off the corresponding Laplace
matrix L—which can then be used directly on the original point
cloud P. (We also multiply L by 1/3, since triangles triply-cover the
local neighborhoods.) This Laplacian exhibits all the desired prop-
erties (symmetry, positive-definiteness, nonnegative edge weights,
etc.) while remaining very sparse; unlike schemes based on Gaussian
weights, there are no parameters to estimate or tune.

Comparison of Point Cloud Laplacians. We compared point
cloud Laplacians by computing associated Green’s functions;
Green’s functions of the Laplacian and other linear differential
operators are often used as the basis for, e.g., local shape descriptors
in shape analysis [WS19]. The smallest number of neighbors that
gave reasonable results for the Laplacian of Belkin et al. [BSW08]
was k = 30; even with this minimal neighborhood size, the linear
solve was 10x more expensive than with our tufted Laplacian. For
both our Laplacian and the Laplacian of Clarenz et al. [CRT04], the
triangulation has little dependence on the neighborhood size k—it
merely needs to be large enough to resolve the triangulation of the
center vertex. Though we use the same neighborhood size k = 30
to construct local triangulations; the final matrices still have just 7

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

77

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

reference our Laplacian our Laplacian cotan Laplacian

Figure 18: Left: Our Laplacian yields the correct geometry for nonmanifold minimal surfaces, even on near-degenerate meshes. Right: For a
high-quality mesh, the ordinary cotan-Laplacian may still fail to exhibit the maximum principle, producing vertices that are not in the convex
hull of their neighbors (as shown here, and in [PR01]), or flipped triangles whose normals differ from their neighbors by more than 90◦.

source

[Belkin et al 2008] [Clarenz et al 2004] Tufted Laplacian

underflow

Figure 19: Harmonic Green’s function g on a point cloud. Here,
standard Gaussian weights à la Belkin et al. [BSW08] (left) can
yield numerical underflow for time steps h that are small enough to
resolve the solution. Using Delaunay triangulations to determine
connectivity à la Clarenz et al. [CRT04] (center) is more stable, but
can still yield erroneous negative values. Our tufted point cloud
Laplacian (right) guarantees a discrete maximum principle, yielding
an accurate result. Scan data from [HSL∗17].

nonzeros in each row on average, as with a standard mesh Laplacian.
As shown in Figure 19, the fact that our point cloud Laplacian has
positive edge weights and requires no parameter tuning makes it a
practical and useful alternative to existing schemes.

Point Cloud Parameterization. In Figure 20 we used our Lapla-
cian to generate a conformal parameterization of a noisy point cloud,
adapting the mesh-based method of [MTAD08]. This method also
requires an expression for the area of the flattened surface, which
we write as the sum over all oriented triangles in the tufted cover
(encoded as a bilinear form). Estimated point normals are used
to determine triangle orientations. We did not find it necessary
to use a boundary-only mass matrix, though boundary points can
be identified if desired—see above. Finally, Figure 21 shows a
more sophisticated algorithm run directly on point clouds: param-
eterization by the logarithmic map, computed via the vector heat
method [SSC19b, Section 8.2].

tufted IDT

local
triangulations

conformal
parameterizationnoisy point cloud

Figure 20: To construct a high-quality point cloud Laplacian, we
take the union of local triangulations about each point, resulting in
a nonmanifold mesh on which we construct our tufted Laplacian.
Here, we use this Laplacian to compute the spectral conformal
parameterization of a surface [MTAD08].

source

Figure 21: Our point cloud Laplacian satisfies the same basic
properties as cotan-Laplace, enabling mesh-based algorithms to
be easily ported to point clouds. Here we plot the angular com-
ponent θ of the logarithmic map, which provides a global surface
parameterization around a given point [SSC19b].

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

78

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

6. Limitations and Future Work

The usual trade-off with the intrinsic approach (not specific to this
method) is that the piecewise linear bases used to perform compu-
tation differ from those of the input mesh. For some applications
(such as computing eigenvalues, or geodesic distances) this fact
is irrelevant: values on the input and intrinsic triangulation carry
precisely the same meaning. When interpolating nodal values (as
in parameterization, for instance) it may be more natural to use
the so-called overlay mesh (see [SSC19a, Section 3.4]), though for
many applications interpolating an intrinsic solution in the input
basis still improves results dramatically (e.g., Figure 17).

As noted in Section 3.3, our Laplace operator does not exhibit the
“locality” property of Wardetzky et al., i.e., the local neighborhood
may be different than in the input. However, one should carefully
consider the practical implications: in the end, our Laplacian pro-
vides a principled discretization of the (continuous) Laplacian on the
input domain, simply using a different—and often, higher-quality—
piecewise linear finite element space.

Apart from some simple mollification (Section 4.5), our Laplacian
does nothing to repair defective input (e.g., by filtering outliers
or removing topological noise); instead, it assumes that the input
mesh correctly represents the desired domain. For instance, vertices
that are coincident in space but have distinct indices will not be
connected in the tufted cover. If such features are undesirable, one
should seek out standard tools for mesh repair [ACK13].

Our tufted cover might be used to extend other operators to the
nonmanifold setting—such as those from discrete exterior calcu-
lus [DHLM05], vector field processing [dGDT16,VCD∗16], or even
just other discretizations of the Laplacian (Section 2). The basic
strategy is the same: build the tufted cover, flip to Delaunay, and use
the resulting edge lengths to evaluate any local geometric quantities
appearing in the definition of the operator. However, some thought
is required to transfer vector-valued data to and from the intrinsic tri-
angulation; Sharp et al. [SSC19b, Section 5.4] explore one possible
scheme.

At a high level, our construction helps extend the Delaunay condi-
tion and its associated guarantees to nonmanifold meshes and point
clouds—such guarantees undoubtedly provide new opportunities
for robust geometry processing.

Acknowledgements

Thanks to Boris Springborn and Max Wardetzky for helpful dis-
cussions. This work was supported by NSF award 1943123, an
NSF Graduate Fellowship, a Packard Fellowship, and gifts from Au-
todesk, Adobe, Activision Blizzard, Disney, and Facebook. Thanks
to creators of meshes: Thingiverse user Ramenspork’s high school
students (Figure 16) and TurboSquid user Gatzegar (Figure 17).

References

[ACK13] ATTENE M., CAMPEN M., KOBBELT L.: Polygon Mesh Re-
pairing: An Application Perspective. Comp. Surv. 45, 2 (2013). 11

[AKL13] AURENHAMMER F., KLEIN R., LEE D.-T.: Voronoi Diagrams
and Delaunay Triangulations. World Scientific, 2013. 4

[AW11] ALEXA M., WARDETZKY M.: Discrete Laplacians on General
Polygonal Meshes. In SIGGRAPH 2011. 2011. 2, 3

[BBL∗17] BRONSTEIN M. M., BRUNA J., LECUN Y., SZLAM A., VAN-
DERGHEYNST P.: Geometric Deep Learning: Going Beyond Euclidean
Data. IEEE Signal Processing Magazine 34, 4 (2017). 1

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P., LÉVY B.:
Polygon Mesh Processing. CRC press, 2010. 1, 8

[BS07] BOBENKO A. I., SPRINGBORN B. A.: A Discrete Laplace–
Beltrami Operator For Simplicial Surfaces. Disc. & Comp. Geom. 38, 4
(2007). 1, 4, 6, 8

[BSW08] BELKIN M., SUN J., WANG Y.: Discrete Laplace Operator on
Meshed Surfaces. In Symp. Comp. Geom. (2008). 2, 3, 9, 10

[BSW09] BELKIN M., SUN J., WANG Y.: Constructing Laplace Operator
from Point Clouds in Rd . In Symp. Disc. Alg. (2009), SIAM. 3

[CCC∗08] CIGNONI P., CALLIERI M., CORSINI M., DELLEPIANE M.,
GANOVELLI F., RANZUGLIA G.: MeshLab: an Open-Source Mesh
Processing Tool. In Eurograph. Ital. Chap. Conf. (2008). 7

[CDGDS13] CRANE K., DE GOES F., DESBRUN M., SCHRÖDER P.:
Digital Geometry Processing with Discrete Exterior Calculus. In ACM
SIGGRAPH Courses. 2013, pp. 1–126. 2

[CDS12] CHENG S.-W., DEY T. K., SHEWCHUK J.: Delaunay Mesh
Generation. Chapman & Hall, 2012. 3

[CH11] CHEN L., HOLST M. J.: Efficient Mesh Optimization Schemes
based on Optimal Delaunay Triangulations. Comput. Meth. Appl. Mech.
Engrg. 200 (2011). 3

[CRT04] CLARENZ U., RUMPF M., TELEA A.: Finite Elements on Point
Based Surfaces. In SPBG (2004). 3, 9, 10

[CTO∗10] CAO J., TAGLIASACCHI A., OLSON M., ZHANG H., SU Z.:
Point Cloud Skeletons via Laplacian Based Contraction. In Shape Mod.
Int. Conf. (2010), IEEE. 3, 9

[CWW17] CRANE K., WEISCHEDEL C., WARDETZKY M.: The Heat
Method for Distance Computation. Comm. ACM 60, 11 (2017). 8, 9

[DFGH04] DE FLORIANI L., GREENFIELDBOYCE D., HUI A.: A Data
Structure for Non-manifold Simplicial d-Complexes. In Symp. Geom.
Proc. (2004). 2

[dGDT16] DE GOES F., DESBRUN M., TONG Y.: Vector Field Processing
on Triangle Meshes. In SIGGRAPH Courses. 2016. 11

[DHLM05] DESBRUN M., HIRANI A. N., LEOK M., MARSDEN J. E.:
Discrete Exterior Calculus. arXiv preprint math/0508341 (2005). 11

[Duf59] DUFFIN R. J.: Distributed and Lumped Networks. J. Math. Mech.
(1959). 2

[FSSB07] FISHER M., SPRINGBORN B., SCHRÖDER P., BOBENKO A. I.:
An Algorithm for the Construction of Intrinsic Delaunay Triangulations
with Applications to Digital Geometry Processing. Comp. 81, 2 (2007).
2, 4, 6

[GBTS99] GUÉZIEC A., BOSSEN F., TAUBIN G., SILVA C.: Efficient
Compression of Non-manifold Polygonal Meshes. Comp. Geom. 14, 1-3
(1999). 2

[GKS02] GRINSPUN E., KRYSL P., SCHRÖDER P.: CHARMS: a Simple
Framework for Adaptive Simulation. 3

[Hat02] HATCHER A.: Algebraic Topology. Cambridge University Press,
2002. 5

[HG00] HUBELI A., GROSS M.: Fairing of Non-manifolds for Visualiza-
tion. In Proc. Vis. (2000), IEEE. 2

[HKA15] HERHOLZ P., KYPRIANIDIS J. E., ALEXA M.: Perfect Lapla-
cians for Polygon Meshes. In Comp. Graph. Forum (2015). 2

[HP11] HILDEBRANDT K., POLTHIER K.: On Approximation of the
Laplace-Beltrami Operator and the Willmore Energy of Surfaces. In
Comp. Graph. Forum (2011), vol. 30. 2, 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

79

N. Sharp & K. Crane / A Laplacian for Nonmanifold Triangle Meshes

[HSL∗17] HACKEL T., SAVINOV N., LADICKY L., WEGNER J. D.,
SCHINDLER K., POLLEFEYS M.: Semantic3d.net: A New Large-scale
Point Cloud Classification Benchmark. arXiv:1704.03847 (2017). 10

[HZG∗18] HU Y., ZHOU Q., GAO X., JACOBSON A., ZORIN D.,
PANOZZO D.: Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37,
4 (2018). 2

[JBPS11] JACOBSON A., BARAN I., POPOVIC J., SORKINE O.: Bounded
Biharmonic Weights for Real-time Deformation. ACM Trans. Graph. 30,
4 (2011). 8

[JKSH13] JACOBSON A., KAVAN L., SORKINE-HORNUNG O.: Robust
Inside-outside Segmentation Using Generalized Winding Numbers. ACM
Trans. Graph. 32, 4 (2013). 2

[JP∗18] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 8

[KCPS15] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Stripe
patterns on surfaces. ACM Trans. Graph. 34, 4 (2015), 39. 2

[KNP07] KÄLBERER F., NIESER M., POLTHIER K.: Quadcover: Surface
Parameterization using Branched Coverings. In Comp. Graph. Forum
(2007), vol. 26. 2

[LFXH17] LIU Y.-J., FAN D., XU C.-X., HE Y.: Constructing Intrinsic
Delaunay Triangulations from the Dual of Geodesic Voronoi Diagrams.
ACM Trans. Graph. 36, 2 (2017). 2, 3

[LPG12] LIU Y., PRABHAKARAN B., GUO X.: Point-based Manifold
Harmonics. IEEE Trans. Vis. Comp. Graph. 18, 10 (2012). 3, 9

[LSCO∗04] LIPMAN Y., SORKINE O., COHEN-OR D., LEVIN D., ROSSI
C., SEIDEL H.-P.: Differential Coordinates for Interactive Mesh Editing.
In Proc. Shape Mod. App. (2004). 9

[LXFH15] LIU Y.-J., XU C.-X., FAN D., HE Y.: Efficient Construction
and Simplification of Delaunay Meshes. ACM Trans. Graph. (2015). 3

[Mac49] MACNEAL R.: The Solution of Partial Differential Equations by
Means of Electrical Networks. PhD thesis, Caltech, 1949. 2

[MD10] MAUS A., DRANGE J. M.: All closest neighbors are proper
delaunay edges generalized, and its application to parallel algorithms.
Proc. Nor. Inf. (2010). 4

[MMdGD11] MULLEN P., MEMARI P., DE GOES F., DESBRUN M.:
HOT: Hodge-optimized triangulations. In SIGGRAPH. 2011. 2

[MTAD08] MULLEN P., TONG Y., ALLIEZ P., DESBRUN M.: Spectral
Conformal Parameterization. In Comp. Graph. Forum (2008), vol. 27,
Wiley Online Library. 10

[NPPZ11] NIESER M., PALACIOS J., POLTHIER K., ZHANG E.: Hexag-
onal Global Parameterization of Arbitrary Surfaces. IEEE Trans. Vis.
Comp. Graph. 18, 6 (2011). 2

[NRP11] NIESER M., REITEBUCH U., POLTHIER K.: Cubecover: Pa-
rameterization of 3D Volumes. In Comp. Graph. Forum (2011). 2

[PP93] PINKALL U., POLTHIER K.: Computing Discrete Minimal Sur-
faces and their Conjugates. Exp. Math. 2, 1 (1993). 1, 2, 8

[PR01] POLTHIER K., ROSSMAN W.: Counterexample to the Maximum
Principle for Discrete Minimal Surfaces. Electronic Geometry Models
(2001). 10

[QSMG17] QI C. R., SU H., MO K., GUIBAS L. J.: Pointnet: Deep
Learning on Point Sets for 3d Classification and Segmentation. In Proc.
Comp. Vis. Patt. Rec. (2017). 1

[Riv94] RIVIN I.: Euclidean Structures on Simplicial Surfaces and Hyper-
bolic Volume. Ann. Math. 139, 3 (1994). 4

[RKG∗17] ROY L., KUMAR P., GOLBABAEI S., ZHANG Y., ZHANG E.:
Interactive Design and Visualization of Branched Covering Spaces. IEEE
Trans. Vis. Comp. Graph. 24, 1 (2017). 2

[RWP06] REUTER M., WOLTER F.-E., PEINECKE N.: Laplace–Beltrami
Spectra as ‘Shape-DNA’ of Surfaces and Solids. Comp.-Aid. Des. 38, 4
(2006). 3

[SC∗19] SHARP N., CRANE K., ET AL.: geometry-central, 2019.
www.geometry-central.net. 7

[SCM∗19] SELLÁN S., CHENG H. Y., MA Y., DEMBOWSKI M., JACOB-
SON A.: Solid Geometry Processing on Deconstructed Domains. Comp.
Graph. Forum (2019). 2

[SCOL∗04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA M.,
RÖSSL C., SEIDEL H.-P.: Laplacian Surface Editing. In Symp. Geom.
Proc. (2004). 9

[SG95] SHIMADA K., GOSSARD D. C.: Bubble Mesh: Automated Trian-
gular Meshing of Non-manifold Geometry by Sphere Packing. In Proc.
Symp. Solid Mod. App. (1995). 2

[SHD∗18] SCHNEIDER T., HU Y., DUMAS J., GAO X., PANOZZO D.,
ZORIN D.: Decoupling Simulation Accuracy from Mesh Quality. ACM
Trans. Graph. 37, 5 (2018). 3

[She02] SHEWCHUK J. R.: What is a Good Linear Element? Interpolation,
Conditioning, and Quality Measures. In IMR (2002). 2, 3

[SMKF04] SHILANE P., MIN P., KAZHDAN M., FUNKHOUSER T.: The
Princeton shape benchmark. In Shape Mod. Int. (2004). 7

[SSC19a] SHARP N., SOLIMAN Y., CRANE K.: Navigating Intrinsic
Triangulations. ACM Trans. Graph. 38, 4 (2019). 2, 3, 4, 5, 6, 7, 11

[SSC19b] SHARP N., SOLIMAN Y., CRANE K.: The Vector Heat Method.
ACM Trans. Graph. 38, 2 (2019). 2, 10, 11

[SSK∗05] SURAZHSKY V., SURAZHSKY T., KIRSANOV D., GORTLER
S. J., HOPPE H.: Fast Exact and Approximate Geodesics on Meshes. In
ACM Trans. Graph. (2005), vol. 24, Acm. 8

[VCD∗16] VAXMAN A., CAMPEN M., DIAMANTI O., PANOZZO D.,
BOMMES D., HILDEBRANDT K., BEN-CHEN M.: Directional Field
Synthesis, Design, and Processing. In Comp. Graph. Forum (2016),
vol. 35. 11

[WLG03] WAGNER M., LABSIK U., GREINER G.: Repairing Non-
manifold Triangle Meshes using Simulated Annealing. Int. J. Shape
Mod. 9, 02 (2003). 2

[WMKG07] WARDETZKY M., MATHUR S., KAELBERER F., GRINSPUN
E.: Discrete Laplace Operators: No Free Lunch. In Symp. Geom. Proc.
(2007). 1, 2, 4

[WS19] WANG Y., SOLOMON J.: Intrinsic and Extrinsic Operators for
Shape Analysis. In Handbook of Num. Anal., vol. 20. 2019. 9

[YZ01] YING L., ZORIN D.: Nonmanifold Subdivision. In Proc. Vis.
(2001), IEEE. 2

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B., SHUM
H.-Y.: Mesh Editing with Poisson-based Gradient Field Manipulation.
In SIGGRAPH. 2004. 9

[ZJ16] ZHOU Q., JACOBSON A.: Thingi10K: A Dataset of 10,000 3D-
Printing Models. arXiv:1605.04797 (2016). 1, 7

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

80

