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Figure 1: We present a Neural Graphics Pipeline, a GAN-based model that samples a coarse 3D model, provides direct control over
camera and illumination, and responds to geometry and appearance edits. NGP is trained directly on unlabelled real images. Mirrored
balls (right-bottom) indicate corresponding illumination setting.

Abstract
In this paper, we leverage advances in neural networks towards forming a neural rendering for controllable image generation,
and thereby bypassing the need for detailed modeling in conventional graphics pipeline. To this end, we present Neural
Graphics Pipeline (NGP), a hybrid generative model that brings together neural and traditional image formation models. NGP
decomposes the image into a set of interpretable appearance feature maps, uncovering direct control handles for controllable
image generation. To form an image, NGP generates coarse 3D models that are fed into neural rendering modules to produce
view-specific interpretable 2D maps, which are then composited into the final output image using a traditional image formation
model. Our approach offers control over image generation by providing direct handles controlling illumination and camera
parameters, in addition to control over shape and appearance variations. The key challenge is to learn these controls through
unsupervised training that links generated coarse 3D models with unpaired real images via neural and traditional (e.g., Blinn-
Phong) rendering functions, without establishing an explicit correspondence between them. We demonstrate the effectiveness of
our approach on controllable image generation of single-object scenes. We evaluate our hybrid modeling framework, compare
with neural-only generation methods (namely, DCGAN, LSGAN, WGAN-GP, VON, and SRNs), report improvement in FID scores
against real images, and demonstrate that NGP supports direct controls common in traditional forward rendering. Code is
available at http://geometry.cs.ucl.ac.uk/projects/2021/ngp.

CCS Concepts
• Computing methodologies → Rendering; Shape modeling;

1. Introduction

Computer graphics produces images by forward rendering 3D
scenes. While this traditional approach provides controllability in
the form of direct manipulation of camera, illumination, and other

rendering parameters, the main bottleneck of the classic approach is
content creation, that is the explicit need to author detailed scenes.
Neural networks have recently given raise to neural rendering as an
alternative approach wherein specialized networks are trained end-
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to-end to operate on deep features stored on sparse geometry (e.g.,
voxels [ALS16, STH∗19, NPLBY18, NPLT∗19, MGK∗19, ZZZ∗18,
SZW19], points [AUL19], surface patches [GFK∗18]) to directly
produce pixel colors. Neural rendering revolutionizes image synthe-
sis workflow by bypassing the content creation stage, however, they
lack the level of controllability supported in traditional rendering.

In this work, we leverage advances in neural networks towards
forming a neural rendering for controllable image generation, and
thereby bypassing the need for detailed modeling in conventional
graphics pipeline. As a first attempt along this avenue, we introduce
Neural Graphics Pipeline (NGP), a hybrid generative approach that
uses neural network to produce coarse 3D content, decorated with
view-specific interpretable 2D features, that can then be consumed
by traditional image formation models — see Figure 3. The approach
relaxes the need for modeling a fully detailed scene model, while
retaining the same traditional direct control over illumination and
camera, in addition to controls over shape and appearance variations
— see the controllable image generation results via these control
handles in Figure 1.

NGP (see Figure 3) consists of four modules: (i) a GAN-based
generation of a coarse 3D model, (ii) a projection module that
renders the coarse geometry into a 2D depth map, (iii) a set of
neural networks to produce image-space interpretable appearance
features (i.e., normal, diffuse albedo, specular map, roughness), and
(iv) a 2D renderer that takes these appearance maps along with
user-provided conventional illumination (i.e., light positions with
intensity) to produce the final images.

Training NGP is challenging because there is no direct supervi-
sion available in terms of paired or unpaired input and corresponding
2D interpretable features. We present an unsupervised learning setup
for the proposed neural modeling framework. Note that by generat-
ing interpretable intermediate maps, we link the 3D and 2D images
without any explicit correspondence information between them. The
core of NGP consists of a network that parameterically translates a
depth image to an image with realistic appearance. These additional
parameters, which disambiguate the translation, are in fact the han-
dles that controls the image generation of the trained network. A
notable feature of NGP, which is based on unsupervised unpaired
training, is the ability of collectively learn from synthetic data and
real images.

By incorporating knowledge from graphics pipeline into neural
image synthesis, we demonstrate the effectiveness of our approach
for controllable image generation results of single-object scenes. We
extensively evaluate our hybrid modeling framework against sev-
eral competing neural-only image generation approaches [ALS16,
MLX∗17, ACB17, ZZZ∗18, SZW19], rate the different methods us-
ing the established FID score [HRU∗17,LKM∗18] (see a preview
in Figure 2), and present ablation studies to show the importance
of our design choices. Our tests demonstrate the superiority of our
method (i.e., lower FID scores) compared to other state-of-the-art
alternatives, on both synthetic and real data.

2. Related Work

GAN-based image generation. Since the introduction of Gen-
erative Adversarial Nets (GANs) [GPAM∗14], many GAN vari-

ants [ALS16, MLX∗17, ACB17, YKBP17] have been proposed
to synthesize images conditioned on control variables sample
from a Gaussian distribution. State-of-the-art GAN-based meth-
ods are now able to generate images with high level of real-
ism [BDS19, WLZ∗18, KLA19]. While it is increasingly possible to
provide guidance through conditional latent code [MO14, OOS17],
structured latent space [NPRM∗20,EKJP20,vSKG18,KHK18], style
example [GEB16], or semantic specifications [PLWZ19], it still re-
mains difficult to directly control generated imagery by updating
all of geometry, camera, illumination, or material parameters. We
were particularly inspired by the recently proposed visual object
network [ZZZ∗18] that takes a generated rough shape and trains a
2D texture network for adding texture to synthesize images. Dif-
ferent from ours, they directly output final RGB images, and do
not provide access to interpretable intermediate features, and thus,
prevents direct illumination control. We use unsupervised training,
avoiding associating images with attributes or tags to allow scaling
in terms of variety, richness, and realism.

3D generative neural networks. Researchers have also devel-
oped various generative networks for automatic content creation,
ranging from single object generation [WZX∗16, CZ19, PFS∗19,
LXC∗17, ZXC∗18, GYW∗19, MGY∗19, YHH∗19], indoor scene
synthesis [MPF∗18, WLW∗19, RWL19, YJL∗18], urban landscape
and terrain generation [KGS∗18, ZLB∗19]. The generated geome-
try, however, is still not sufficiently detailed and/or assigned with
plausible materials, to be directly rendered by traditional forward
rendering to produce high-quality images.

Neural rendering. A particularly exciting breakthrough is neural
rendering, where deep features are learned on coarse geometry (e.g.,
voxels, points), and then neurally rendered to produce a final image.
Most of the proposed approaches use supervised training and/or
largely target novel view synthesis task [STH∗19,TZN19,MGK∗19,
NPLBY18, SZA∗19, AUL19, ZYM∗18, SZW19, BSP∗19, OTW∗19,
MST∗20], with the output optionally conditioned using latent vec-
tors (e.g., appearance vectors in [MGK∗19]). In the unsupervised
setting, GQN [ERB∗18] and HoloGAN [NPLT∗19] allow camera
manipulation and model complex background clutter. However,
since the learned features are deep, they cannot, yet, be manipu-
lated using traditional CG controls. For example, one cannot freely
control illumination in such an image generation pipeline.

3. Formulation

3.1. Overview

Traditional computer graphics follows a model-and-render pipeline,
where a 3D scene is first modeled, and an image is then produced by
rendering the 3D scene via a conventional renderer, a process that
simulates the flow of light in physical world. While NGP follows
a similar paradigm, it bypasses the need to directly model an elab-
orated scene with all essential assets in 3D for rendering. Figure 3
presents an overview of NGP at inference time : we first sample a
coarse 3D shape using a neural network, followed by a set of learned
generators producing view-specific interpretable reflectance prop-
erty maps, along with a neural-rendered specular map. We assume
the reflectance of the viewed content in the scene is characterized by
a set of property maps: diffuse albedo, surface normal, monochrome
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DCGAN LSGAN WGAN-GP VON NGP

Figure 2: Left: image samples generated from existing approaches on cars and chairs categories; Right: image samples generated from NGP.
The models have all been trained on the same datasets.
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Figure 3: NGP at inference time. At test time, starting from a sampled noise vector zs and a set of user control signals (marked in yellow),
NGP uses a combination of learned networks (marked in mustard) and fixed functions (marked in blue) to produce a range of interpretable
feature maps, which are then combined to produce a final image III.

roughness and specular albedo, which are then combined using the
Blinn-Phong Reflection Model.

More specifically, to generate an image using NGP at inference
time, a coarse shape S is first generated from a latent shape code
S := Gshape(zs), the shape is then projected from a viewpoint sample
v to form a 2D depth map ddd := Πv(S). The maps generation mod-
ule then produces a set of intermediate maps, with zda controlling
the appearance (diffuse albedo). The generated reflectance maps
from Gprop := (Gda,Gn,Gr,Gsa) are then fed into a fixed function
Blinn-Phong renderer RBP (see Appendix A in the appendix for
details) to illuminate the viewed content under a given light setting
L. Blending the resultant rendering image with the realistic specular
map generated by Greal

sp , our image formation flow generates the
final image by sampling the space of (zs, v, zda, L) at inference time:

III :=RBP
(
Gprop(Πv(Gshape(zs)),zda),L

)
⊕Greal

sp (Πv(Gshape(zs))),

where ⊕ denotes the image blending operation.

NGP provides the user with several handles (highlighted in yellow
in Figure 3) to control the output image: (i) a camera handle offers
direct control to rotate the camera view; (ii) a illumination handle
offers direct control to specify the lights (position, intensity, and
count); (iii) a shape handle to control the coarse geometry via

direct editing and latent control; and (iv) an appearance handle
to manipulate the appearance of the object via direct editing and
latent control. The NGP is designed such that the output image
meaningfully adapts to the user specifications.

Next, we detail the individual modules in NGP and elaborate on
how we train the networks without intermediate supervision. As
training data, we assume access to a collection of 3D shapes, a
collection of reflectance maps, and a collection of real-world images
for learning respective data prior. Note that, similar to common
GANs for image generation that usually assume no paired data (i.e.,
a random Gaussian sample is paired with a corresponding ground
truth image for supervising the generator) available for training the
networks, we do not have the correspondences between the shape
geometries, reflectance maps and final images, and the random
samplings in the space of (zs, v, zda, L) for training our networks.

3.2. Learning geometry synthesis

We start with a category-specific 3D shape prior to capture rough
geometry of the object, without any reflectance properties. A large
collection of 3D shapes are used for training to learn this shape prior.
We adopt the recently proposed IM-GAN [CZ19], which uses shape
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Figure 4: Learning reflectance maps generation. The proposed architecture for training to jointly generate reflectance property maps from
depth images using adversarial losses and cycle consistency losses to enable unpaired training. Top: the cycle between the real depth image
and the generated diffuse image composited from generated reflectance maps. Bottom: the cycle between real diffuse image composited from
real reflectance maps, and the generated depth maps.

latent codes to produce implicit signed distance fields corresponding
to realistic shapes, although alternate 3D generative models can be
used.

More specifically, we pretrain a 3D autoencoder with the implicit
field decoder to produce a compact shape latent space for represent-
ing 3D shape implicit fields and use latent-GAN [ADMG17] on the
trained shape latent space to produce realistic shape latent codes. As
a result, we learn a generator Gshape to map the Gaussian-sampled
shape code zs to a shape S := Gshape(zs).

3.3. Depth projection

Next, we project the coarse shape to 2D via a direct depth projection
layer. Given a sampled shape S and a sampled viewpoint v, which
is parameterized by an extrinsic matrix EEE := [RRR|ttt] ∈ R3×4 and
camera intrinsics KKK ∈ R3×3, we obtain a coarse depth map ddd by
projecting every visible point p (in homogeneous coordinates) on the
surface S as, ddd := KKKEEE p,∀p ∈ S. We use OpenGL calls for efficient
rasterization and depth rendering. As we shall demonstrate, the
original coarse depth map is itself sufficient for our end goal —
image generation. Although we train Gshape separately, if desired,
NGP can be linked to a differentiable depth rendering layer and
trained end-to-end.

3.4. Learning reflectance maps generation

Next, we elaborate on the modules to generate reflectance maps from
a coarse depth map ddd, including two constant function modules (Gsa
and Gr, for specular albedo and roughness maps, respectively) and
two learned networks (Gda and Gn, for diffuse albedo and normal
maps, respectively).

(i) Specular albedo and roughness maps generation. In absence
of diverse specular albedo and roughness data to learn the data
prior, we simply realize Gsa and Gr as constant functions in the form:
Gsa(ddd) : IIIg

sa = cM(ddd) and Gr(ddd) : ααα
g = αM(ddd), where IIIg

sa is the
generated specular albedo map, ααα

g the generated roughness map,
M(·) generates the mask of ddd by thresholding the depth, c is a
constant specular albedo (set to white) and α is a constant roughness
(set to 4.0).

(ii) Learning to generate diffuse albedo and normal maps. For the
training data to learn Gda and Gn, we only have access to example
‘real’ reflectance maps that comprise of real diffuse albedo maps
Ir
da = {III

r
da} and detailed normal maps Nr = {NNNr}, along with corre-

sponding viewpoints. Note that, given the light setting L (modelled
as a set of white directional lights during training), each set of real
reflectance maps, denoted by (IIIr

da,NNN
r), can be used to render a real

diffuse image IIIr
d f using the diffuse reflection component (denoted

asRdiff) in the Blinn-Phong equation.

Given the coarse depth image ddd and the viewpoint v parameterized
by EEE and KKK, the task is then training Gda and Gn to synthesize a
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pair of generated reflectance maps (IIIg
da,NNN

g) that can be used to
render a diffuse image IIIg

d f . Training with supervision would be
relatively easy, and can be seen as a standard task. However, we do
not have access to ground truth maps for supervision, i.e., the shape
generated from the shape network comes without any ground truth
reflectance properties. Hence, we treat this as an unpaired image-to-
image translation problem. Our key idea is to do a cycle translation
between the depth map and the diffuse image (i.e., th product of
the diffuse albedo and detailed normal map), via the fixed diffuse
rendering functionRdiff. Specifically, we design a cycle-consistent
adversarial network that jointly generates (IIIg

da,NNN
g) from ddd. Figure 4

shows the proposed architecture.

Given ‘real’ depth maps Dr = {dddr} produced from the depth
projection, we train a network Gn to generate a detailed normal map
NNNg = Gn(dddr) that fools a discriminator trained to differentiate the
real and generated detailed normal maps, and another network Gda
to generate a diffuse albedo map IIIg

da that fools a diffuse albedo map
discriminator (Figure 4-top). Note that we do not enforce one-to-
one mapping from depth maps to diffuse albedo maps, but rather
condition the generation using random Gaussian sample code zda. In
practice, we found the network Gda difficult to train in absence of 3D
object-space coordinates, as opposed to the view-dependent camera-
space coordinates provided by the depth map. Hence, we use the
intrinsic KKK and extrinsic EEE camera parameters, to enrich dddr to the
normalized object coordinates (NOC) [WSH∗19] system to obtain
dddr

noc := noc(dddr,KKK,EEE). Further, we found that the generated normal
map NNNg helps improving the generation of the diffuse albedo, as
the detailed normal map provides more detailed geometry informa-
tion. Therefore, we give Gda as input dddr

noc, NNNg, and zda resulting in:
IIIg

da := Gda(ddd
r
noc,NNN

g,zda). Following these two generation networks,
a differentiable diffuse renderer Rdiff takes as input NNNg and IIIg

d to
generate a diffuse image IIIg

d f :=Rdiff(NNN
g, IIIg

da,L).

On the other end (Figure 4-bottom), given the ‘real’ diffuse albedo
map IIIr

da and detailed normal map NNNr, we introduce an encoder Eda
to estimate a Gaussian-distributed diffuse albedo code from the real
diffuse albedo map IIIr

d . In addition, a ‘real’ diffuse image is rendered
via IIIr

d f := Rdiff(NNN
r, IIIr

da,L), taken as input to the depth network
Gdepth to generate a coarse depth map dddg = Gdepth(III

r
d f ) that fools a

coarse depth map discriminator.

We jointly train all the networks Gn, Gda, Eda, Gdepth with a set
of adversarial losses and cycle-consistency losses, as illustrated
with the dashed arrows in Figure 4. We also simultaneously train
corresponding discriminators to classify the real from the generated
maps/images. More details about the training losses can be found
in the appendix (Appendix B). We use fixed light setting L during
training, placing uniformly 4 overhead white directional lights to
light up the scene. Note that the light setting L can be dynamically
changed at inference time, resulting in illumination control in the
generated images.

3.5. Learning realistic specular generation

To add further realism to the final image, we learn a realistic specular
network Greal

sp , which takes as input the generated detailed normal
map NNNg, derived from the input depth, to generate a realistic spec-
ular map IIIg

rs. Blending this generated realistic specular map with

𝑵𝑵𝑔𝑔

𝑰𝑰𝑑𝑑𝑑𝑑
𝑔𝑔

𝑰𝑰𝑐𝑐
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𝒢𝒢spreal

real/fake?

real image

Figure 5: The cycle-consistent adversarial network for learning to
generate realistic specular maps from normal maps using adver-
sarial and cycle consistency losses. For simplicity, other essential
modules in the training cycles are omitted.

the generated diffuse image IIIg
d f leads to a composite image IIIg

c
that fools a realistic images discriminator (see Figure 5) , which is
trained to differentiate the generated final composite images from
the real-world images. The training data here for learning Greal

sp is
only a collection of real-world images. To enable training without
paired data, we again designed a cycle-consistent adversarial net-
work for learning Greal

sp . The key idea shares the same adversarial
cycle-consistency idea as adopted in Section 3.4, and thus we do
not expand on more details of the network architecture. Note the
realistic specular generator can be linked to the networks of training
reflectance map generators, making the setup end-to-end trainable.
Note that this realistic specular generation, while offers furthur re-
alism to the final image, is only conditioned on the view-specific
input NNNg and IIIg

d f , thus it remains unaffected by the illumination
specifications (i.e., uncontrollable) and can be inconsistent across
views. With the balance between realistic specular generation and
loss of full control, we offer different ways of generating images
with trade-off between the realism and control (Sec. 4). Further
improving controllability, particular multi-view consistency of the
realistic specular generation, is left to future research.

3.6. Implementation details

Hyperparameters and full network architectures for NGP are detailed
in the following. Training of the presented models took around 5
days per class on a single Nvidia GeForce GTX 1080. A single
forward pass takes around 180 ms and 1 GB of GPU memory. Note
that while training on real images, we found accurately modeling
perspective effects, instead of an orthogonal camera assumption, to
be important.

3D shape network. For the coarse shape synthesis network, we
adopt the IM-GAN architecture from [CZ19]. Both generator and the
discriminator are constructed by two hidden fully-connected layers,
and the Wasserstein GAN loss with gradient penalty is adopted
to train the latent-GAN. We refer readers to the original paper of
IM-NET for more in-depth technical details.

2D detailing networks. We use a perspective camera with a fo-
cal length of 50mm (35 film equivalent). The 2D networks takes
as input depth images of 256× 256 resolution, which is also the
size for all reflectance maps. For 2D maps generation networks, we
use the ResNet encoder-decoder [ZPIE17, HLBK18] for all map
generators. In addition, we concatenate the diffuse code zda to all
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Figure 6: Qualitative comparison with baselines. NGP versus DCGAN [ALS16], LSGAN [MLX∗17], WGAN-GP [ACB17], and
VON [ZZZ∗18]. All the models were trained on the same set of real-world images.

NGP-BPSRNs

Figure 7: Comparison with SRNs. For fair comparison, we give SRNs [SZW19] full camera information and use the depleted NGP-BP option.
Please refer to the appendix (Appendix E) for details.

intermediate layers in the encoder of Gda [ZZZ∗18], the generated
detailed normal map Ng is fused to the first layer of the encoder
of Gda by concatenation. The ResNet encoder [HZRS16] is used
for constructing Eda. We use mid (70×70) and large (140×140)
receptive field size (RFS) for all discriminators (except the diffuse
albedo discriminator), as the generation of these maps relies on
the mid-level and global-structure features extracted by the corre-
sponding discriminators; we use small (34×34) RFS for the diffuse
albedo discriminator, as the generation of the diffuse albedo needs
only low-level features extracted by the corresponding discriminator,
such as local smoothness, purity, repetitive pattern and etc. of the
albedo color, paying less attention to the global structure of the

generated diffuse albedo. Finally, we use the least square objective
as in LS-GAN [MLX∗17] for stabilizing the training.

4. Experiments

We introduce the datasets, evaluation metrics, and compare Neu-
ral Graphics Pipeline against competing GAN-based and/or neural
rendering baselines. Further details can be found in the appendix
(Sec. D and Sec. E). We evaluate our generated images, both quali-
tatively and quantitatively, on publicly-available datasets. For com-
parisons, at test time, we use two variants of our method: (i) NGP:
as the default option, the final image is generated by blending the
diffuse rendering ofRdiff (Blinn-Phong specular excluded) under 4
base overhead lights (same setting as in training) with the realistic
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specular map; and (ii) NGP-BP: as a depleted option, where we use
the full Blinn-Phong renderer RBP under 4 base lights overhead
(same setting as in training), along with randomly sampled lights,
but without blending with the realistic specular map.

4.1. Evaluations

Datasets. Our 3D dataset consists of chairs and cars from
ShapeNet [CFG∗15] for training 3D rough geometry generator;
as 2D datasets, we render each ShapeNet model in Blender [Com]
to collect example real reflectance maps for training the reflectance
map generators, while we use the real-world images dataset from
VON [ZZZ∗18], which contains 2605 car images and 1963 chair
images, for training the realistic specular generator.

Baselines. We compare our method against the following base-
line methods: DCGAN [ALS16], LSGAN [MLX∗17], WGAN-
GP [ACB17], VON [ZZZ∗18], and SRNs [SZW19], of which the
details can be found in the appendix. Since SRNs assumes training
images with full camera parameters, we train SRNs on Blinn-Phong
rendered images with varying lighting. For a fair comparison, we
compare separately to SRNs with NGP-BP, reporting the FID com-
puted against Blinn-Phong rendered images.

Metrics. Fréchet Inception Distance (FID) is an established mea-
sure comparing inception similarity score between distributions of
generated and real images [HRU∗17, LKM∗18]. To evaluate an
image generation model, we calculate FID between the generated
images set and a target real images set. Specifically, each set of
images are fed to the Inception network [SLJ∗15] trained on Ima-
geNet [DDS∗09], then the features with length 2048 from the layer
before the last fully-connected layer are used to calculate the FID.
Lower FID score indicates image generation with better quality.

Results. We first compare our method against baseline meth-
ods (excluding SRNs) on the real-world images data. Our method
variants consistently outperform these baselines qualitatively and
quantitatively. In Table 1, both NGP and NGP-BP have the two best
FID scores, outperforming other baseline methods by large margins.
Qualitative comparisons on real images are presented in Figure 6.
Note the realism of specular highlights, the wheels and windscreens
of the cars, or the varying illumination on the chairs. The GAN
variants (i.e., DCGAN, LSGAN, and WGAN-GP) suffer from lower
visual quality as they seek to directly map the Gaussian samples to
final images, only producing results with roughly plausible content.

SRNs NGP-BP

car 167.0 30.0

chair 50.3 32.0

Among these variants, VON pro-
duces the closest results compared to
NGP. Note that although our method
provides control over illumination
and camera, we do not see any perfor-
mance degradation, but on the con-

Table 1: FID comparison (lower is better) on real images data. Note
that FIDs are computed against real images data.

DCGAN LSGAN WGAN-GP VON NGP-BP NGP

car 130.5 171.4 123.4 83.3 67.2 58.3

chair 225.0 225.3 184.9 51.8 47.9 51.2

trary, our method still produces slightly better visual results over
VON. Interestingly, observe that by imposing inductive bias on
the image formation model used in traditional rendering, NGP-
BP results in superior quality results even when trained on the
same dataset. We also conduct qualitative comparison with NGP-BP
against SRNs, as shown in Figure 7, with quantitative numbers; See
the inset table, note that FIDs are computed against Blinn-Phong
images data.

More results with intermediate maps. In Figure 8, we present
more qualitative results of generated images using NGP, along with
the intermediate maps used to composite the final images.

Ablation study. Table 1 shows the ablation result of our realistic
specular blending network Greal

sp using NGP-BP v.s. NGP.

In addition, based on the default option NGP, we also conduct
ablation studies to show the importance of the detailed normal map
generator, the diffuse albedo map generator and the realistic specular
generator in generating the final images. The quantitative results are
presented in Table 2, where:

(i) NGP-w/o-Gn disables the detailed normal map generator in
NGP, and uses the coarse normal map derived from the input
coarse shape for the final image generation.

(ii) NGP-w/o-Gda disables the diffuse albedo generator in NGP,
and uses a white diffuse albedo map for the final image gener-
ation.

(iii) NGP-w/o-Greal
sp disables the realistic specular generator in

NGP, such that the final image is produced without blend-
ing with the realistic specular map.

Table 2: Ablation study shows the importance of each generator in
generating the final images. FIDs (lower is better) computed against
real images data are reported in the table.

NGP NGP-w/o-Gn NGP-w/o-Gda NGP-w/o-Greal
sp

car 58.3 64.6 114.1 74.8

chair 51.2 55.7 71.3 52.9

4.2. Controllable Image Generation

The key advantage of NGP is retaining the controls available in
traditional modeling-and-rendering based image generation. In the
following, we demonstrate the various controls supported by our
method. See Figure 3 and supplemental video.

Shape control. NGP generates images of diverse shapes with
ease via simply changing the shape code zs. Additionally, the user
can directly edit the coarse geometry, as shown in the video.

Camera control. We also support direct camera view control for
the final generated image while keeping all other factors. Figure 9 il-
lustrates the effect of changing the camera view for generating differ-
ent final images. Note that earlier works including VON [ZZZ∗18],
SRNs [SZW19], and HoloGAN [NPLT∗19] also support various
levels of camera control.

Illumination control. Our method models detailed normal maps
in the reflectance property maps generation stage, so that additional
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Figure 8: More results with generated intermediate maps. From left to right: input coarse depth map, generated detailed normal map,
generated detailed diffuse albedo map, generated realistic specular map, and the final generated image of our method. The generated specular
albedo map and roughness map by constant function generators are not shown here.

lights can be added on top with explicit control of the illumination
(see Figures 3, 9). We call this more versatile option NGP-plus (see
details in Appendix E). Such level of control (i.e., explicit light
count, position, and intensity) is not supported by VON [ZZZ∗18]
and HoloGAN [NPLT∗19]. Figure 9 shows the effect of generating
various images with different additional light settings.

Appearance control. The overall appearance, particularly the
colorization, of the content in the generated images can be easily
changed by providing an exemplar image as guidance, leading to
controllable and various appearance in generated images (see Fig-
ure 10). Further, this allows the user to simply edit the diffuse albedo,
akin to traditional control, using existing imaging tools, and render
the final image using NGP, thus benefiting from the appearance
disentanglement.

4.3. Limitations

While we present a solution towards incorporating knowledge from
graphics pipeline into neural rendering, the quality of the generated
images is nevertheless below the current limits of traditional com-
puter graphics pipelines (e.g., using Blender) due to the insufficient
image resolution and the lack of global illumination, shadows, and
the ability to composite multiple objects for more complex scenes.

Moreover, as has been mentioned in Section 3.5, the realistic
specular generation lacks of control in the proposed preliminary so-
lution since it is only conditioned on the view-specific normal map
input and thus remains unaffected by illumination specifications
and has multi-view inconsistency. We also observed multi-view
inconsistency from the appearance of objects in the results. This
is caused by modeling/texturing in 2D instead of 3D, which is in
contrast to recent works that directly model the scene in 3D via im-
plicit neural fields, and further leads to the inability to generalize to
out-of-distribution cameras. Also note that we use the inductive bias
of the traditional rendering model (i.e., Blinn-Phong model), which,

while allows more control handles, leads to somewhat unrealistic
specular highlights characteristic of the Blinn-Phong model. This is
a trade-off — NGP(-plus) offers realistic specular highlights while
losing absolute control over it, while NGP-BP has the best control
over the specular highlights, while being somewhat unrealistic.

While we acknowledge these shortcomings, we believe this will
rapidly change, as we have witnessed in the context of GANs in
general or neural rendering in particular. One axis of improvement,
will be targeting larger image sizes (e.g., 1024× 1024 instead of
current 256× 256), possibly using a progressive GAN setup. An-
other orthogonal axis of improvement, which we believe is of higher
priority, will be boosting the rendering quality by incorporating
more advanced but fully differentiable graphics rendering models
instead of the Blinn-Phong model. This will also help to restore the
control for the realistic specular generation. Last, our models are
class-specific and limited to single-object scenes, thus, currently sep-
arate networks need to be trained for new shape categories and can
not synthesize images with multiple objects. However, conceptually,
being unsupervised, we believe that Neural Graphics Pipeline can
be used across many classes, as long as we can get sufficient data
volumes for training, and stronger networks with larger capacities
for compositing multiple objects.

5. Conclusions and Future Work

We have presented a novel graphics pipeline that combines the
strength of neural networks with the effective direct control offered
in traditional graphics pipeline. We enable this by designing neural
blocks that generate coarse 3D geometry and produce interpretable
2D feature layers, that can then be directly handled by a fixed render-
ing function to produce a final image. It is important to emphasize
that our training is completely unsupervised and no attributes like
texture or reflectance indices are associated with the images. This
allows using both real and synthetic images.
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Figure 9: Camera and illumination control. (Top) Camera control with object shape and appearance held fixed along rows. For selected
camera views (marked at the top), we show (at the bottom) the corresponding generations under changing illumination (intensity, location,
number of lights) as shown on the mirrored ball. Note the granularity of camera and illumination control enabled by ours.
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Figure 10: Appearance control via exemplar diffuse albedo images (top rows). Note that the specular highlights on the surface are preserved
even under changes to the color of the cars/chairs.

As we have presented, the unsupervised training of a parametric
translation is a key technical contribution. It involves two carefully
designed architectures with cycle consistency losses that make up
for the lack of supervision in the form of any paired data. While
our current implementation supports four interpertable maps, the
design is scalable and can include additional maps, which in turn
may unlock more control handles using advanced rendering setups.

Our Neural Graphics Pipeline, and neural rendering in general,

questions when do we really need 3D models? In computer graphics,
the production or the fabrication of a physical 3D model is of less
important as the ultimate goal of the pipeline is to ‘merely’ produce
images. Then, it is questionable whether the 3D representation is
needed at all, or some abstract or latent representation could well
instead be used. In our current work, we explored this avenue and
reduced the requirement from detailed 3D models and/or explicit
material assignment. In the future, we would like to continue and
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search for new means to further reduce or totally avoid the use
of explicit 3D, without losing any control over the quality or ma-
nipulation of the generated image. As the quality of neural image
generation continue to rapidly improve, we believe that this work is
an important step forward towards a fully neural workflow, without
sacrificing users’ ability to control the underlying scene attributes.
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Appendix A: Blinn-Phong rendering function

For rendering the final images, we assume that the reflectance of
the content in the scene under camera view v is characterized by
a set of property maps: a surface normal map NNN, a diffuse albedo
map IIId , a specular albedo map IIIs, and a monochrome specular
roughness map ααα. We use a classical rendering model - Blinn-Phong
Reflection Model - as our rendering equation, which, for a given
light LLL, computes intensity as:

III = kd(NNN ·LLL)IIId + ks(NNN ·HHH)αααIIIs

HHH =
LLL+VVV
‖LLL+VVV‖

(1)

wherekd and ks are diffuse reflection constant and specular reflection
constant, respectively. VVV is the direction to the viewer, and hence is
set to the view direction of v for approximation.

Appendix B: Training losses for reflectance maps generation

We train the 2D networks for generating reflectance maps with a
set of adversarial losses and cycle consistency losses. Each loss
described in the following corresponds to a dashed arrow in the
architecture figure in the main paper.
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Adversarial losses For translating depth images to final composi-
tion images, we use the following adversarial loss for the detailed
normal map generation:

LGAN
n = ENNNr

[
logDn(NNNr)

]
+Edddr

[
log(1−Dn(Gn(dddr))

]
, (2)

where Dn learns to classify the real and generated normal maps. For
the adversarial loss on the diffuse albedo maps generation:

LGAN
da = EIIIr

d

[
logDda(III

r
d)
]

+E(dddr ,zda)

[
log(1−Dda(Gda(ddd

r
noc,Gn(drrr),zda)))

]
,

(3)

where dddr
noc = noc(dddr) and Dda learns to classify the real and gener-

ated diffuse albedo maps. We also apply the adversarial loss on the
diffuse images:

LGAN
df = EIIIr

d f

[
logDdf(III

r
d f )
]

+Edddr
[
log(1−Ddf(Rdiff(Gn(drrr),Gda(ddd

r
noc,Gn(drrr),zda),L)))

]
,
(4)

where L is the light setting, IIIr
d f is the real diffuse image produced

from real diffuse albedo and normal maps, and Ddf learns to classify
the real and generated diffuse images.

For the translation from diffuse images to depth images, we use
the following adversarial loss:

LGAN
depth =Edddr

[
logDdepth(ddd

r)
]
+EIIIr

d f

[
log(1−Ddepth(Gdepth(III

r
d f )))

]
,

(5)
where Ddepth learns to classify the real and generated depth images.
Furthermore, as we observed that the task of classifying the real
depth images and generated ones is rather easier for Ddepth, we also
add the adversarial loss on the NOC image derived from the depth
image to balance the network training:

LGAN
noc = Edddr

[
logDnoc(noc(dddr))

]
+EIIIr

d f

[
log(1−Dnoc(noc(Gdepth(III

r
d f )))

]
,

(6)

where Dnoc learns to classify the real and generated NOC images.

Cycle-consistency losses We further add the following cycle con-
sistency losses to enforce the bijective relationship between each
two domains.

Cycle-consistency loss on the depth map:

Lcyc
depth =

E(dddr ,zda)

[∥∥dddg−dddr∥∥
1

]
,

(7)

where dddg = Gdepth(Rdiff(Gn(dddr),Gda(ddd
r
noc,Gn(dddr),zda),L)).

Cycle-consistency loss on the NOC map:

Lcyc
noc =

E(dddr ,zda)

[∥∥dddg
noc−dddr

noc
∥∥

1

]
,

(8)

where dddr
noc = noc(dddr) and dddg

noc =
noc(Gdepth(Rdiff(Gn(dddr),Gda(ddd

r
noc,Gn(dddr),zda),L))).

Cycle-consistency loss on the normal map:

Lcyc
n = E(NNNr ,IIIr

d)

[∥∥Gn(Gdepth(Rdiff(NNN
r, IIIr

d ,L)))−NNNr∥∥
1

]
; (9)

And cycle-consistency loss on the diffuse albedo map:

Lcyc
da =

E(NNNr ,IIIr
d ,III

r
d f )

[∥∥Gda(Gdepth(III
r
d f ),NNN

r,Eda(III
r
d))− IIIr

d
∥∥

1

]
;

(10)

Cycle-consistency loss for the diffuse image:

Lcyc
df =

E(NNNr ,IIIr
d ,III

r
d f )

[∥∥∥IIIg
d f − IIIr

d f

∥∥∥
1

]
,

(11)

where IIIr
d f = Rdiff(NNN

r, IIIr
d ,L) and IIIg

d f =

Rdiff(Gn(Gdepth(III
r
d f )),Gda(Gdepth(III

r
d f ),NNN

r,Eda(III
r
d)),L).

In addition, similar to the latent space reconstruction in other
unconditional GANs and image-to-image translation works, we also
introduce a latent space cycle-consistency loss to encourage Gda to
use the diffuse albedo code zda:

Lcyc
zda = E(dddr ,zda)

[∥∥Eda(Gda(ddd
r
noc,Gn(dddr),zda))− zda

∥∥
1

]
. (12)

At last, to enable sampling at test time, we force Eda(III
r
d) to be

close to the standard Gaussian distribution, by adding a Kullback-
Leibler (KL) loss on the zda latent space:

LKL = EIIIr
d

[
DKL(Eda(III

r
d)‖N (0,I))

]
, (13)

where DKL(p‖q) =−
∫

z p(z) log p(z)
q(z) dz.

Finally, we write the final 2D modeling loss as:

L2D
modeling = LGAN

n +LGAN
da +LGAN

df +LGAN
depth +LGAN

noc

+λ
cyc
n Lcyc

n +λ
cyc
da Lcyc

da +λ
cyc
df Lcyc

df

+λ
cyc
depthLcyc

depth +λ
cyc
nocLcyc

noc +λ
cyc
zda Lcyc

zda +λKLLKL,

(14)

where λ
cyc
n , λ

cyc
da , λ

cyc
df , λ

cyc
depth, λ

cyc
noc, λ

cyc
zda and λKL control the impor-

tance of each cycle consistency loss.

Appendix C: Training details.

The 3D generation network is trained as described in the original
IM-NET paper. The zs is sampled from the standard Gaussian distri-
butionN (0,I), with the code dimension |zs|= 200. The generated
implicit fields are converted to meshes by using 128× 128× 128
grid samplings and Marching Cubes. The diffuse code zda is also
sampled from the standard Gaussian distribution N (0,I), with
the code length |zda|= 8. We set the hyperparameters in Eq. 14 as,
λ

cyc
depth = λ

cyc
noc = 10, λ

cyc
n = λ

cyc
da = λ

cyc
df = 25, λ

cyc
zda = 1, λKL = 0.001.

We use Adam optimizer [KB15] with a learning rate of 0.0001 for
training all 2D networks. We first train the reflectance maps gen-
eration networks for 300,000 samples, and then train the realistic
specular generation networks for 200,000 samples, at last fine-tune
the whole 2D setup by joint training. The diffuse reflectance constant
kd in Equation 1 to 0.6 for cars and 0.8 for chairs. At the inference
time, the specular reflection constant ks in Equation 1 is set to 0.4
for cars and 0.2 for chairs, if applicable.

Appendix D: Details of datasets

Real reflectance property map sets For training reflectance prop-
erty map generators, we render each model in Blender to collect the
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real reflectance property maps. Each model is fit into a unit sphere
placed at the origin. The camera view is randomly sampled from
the camera view distribution described next. For the dataset of real
reflectance property maps, we random sample camera views and ren-
der the models in Blender, obtaining around 10k sets of reflectance
property maps for car category and around 40k sets of reflectance
property maps for chair category.

Camera view distribution We assume the camera is at a fixed dis-
tance of 2m to the origin and use a focal length of 50mm (35mm film
equivalent). The camera location is restricted on a sphere, which can
be parameterized as (ρ = 2, θ, φ), where θ is the counter-clockwise
vertical angle from the object face-direction base and φ is the hori-
zontal angle from the object face direction base. By default, we set
the range of θ to be [0◦,20◦] and the range of φ to be [−90◦,90◦].
In addition, we constrain the camera to look at the origin and disable
camera in-plane rotation.

Real images For training the realistic specular generator, we use
the real-world images dataset from VON [ZZZ∗18], which contains
2605 car images and 1963 chair images. The images are randomly
flipped during the training for data augmentation.

Appendix E: Details of baseline methods and Neural Graphics
Pipeline variants

Baseline methods In the following, We describe the details of the
baseline methods appeared in the comparison.

(i) DCGAN [ALS16] proposed specific generator and discrimi-
nator architectures that significantly improve the training of
generative adversarial networks. We use DCGAN with the
standard cross-entropy loss.

(ii) LSGAN [MLX∗17] adopted least square loss for stabilizing
the GAN training. We use the same DCGAN generator and
discriminator architectures for LSGAN.

(iii) WGAN-GP [ACB17] adopted Wasserstein metric and gradient
penalty in training. We also use the same DCGAN generator
and discriminator architectures for WGAN-GP. In addition,
we replace the default BatchNorm by InstanceNorm in the
discriminator, and train the discriminator 5 times per generator
iteration.

(iv) VON [ZZZ∗18] also generates 3D rough shapes first but in-
stead trains a network to add texture from a specific view to
generate images. The VON results are obtained by the released
models from the authors.

(v) SRNs [SZW19] formulates the image formation as a neural,
3D-aware rendering algorithm. SRNs assume having images
with full camera parameters as training data, thus it can only
be trained on composite images obtained by rendering the
ShapeNet models using Blinn-Phong renderer. After trained,
we make SRNs a generative model for image generation task
by randomly pick scene codes generated from the training and
randomly sample camera viewpoints, similarly to the novel
view synthesis application as described in the original paper.

Neural Graphics Pipeline variants In the following, We describe
the details of NGP variants appeared in the paper.

(i) NGP, as the default option, the final image is generated by
blending the diffuse rendering ofRdiff under 4 base overhead
lights (same setting as in training) with the realistic specular
map. Note that only Rdiff is used to light the scene under
the base lights, thus these base lights only result in diffuse
reflection but no specular highlights in the final image.

(ii) NGP-BP, as a depleted option, where we use the full Blinn-
Phong rendererRBP under 4 base lights overhead (same set-
ting as in training), along with randomly sampled lights, but
without blending with the realistic specular map.

(iii) NGP-plus, as a more versatile option that combines NGP and
NGP-BP for illumination control of additional lights. The out-
put image of NGP is first formed, on top of which the diffuse
reflection and specular reflection yielded by the additional
lights viaRBP are added for producing the final image.

Appendix F: Evaluation on NGP variants

In table 3, we show the FID scores of the three NGP variants. We
can see that, in general, all the three NGP variants consistently
outperforms the other methods. NGP-plus even yields slightly better
results than NGP with additional illumination control. Interestingly,
the NGP-BP produces the best results on chairs even with a biased
traditional rendering model (Blinn-Phong model).

Table 3: FID comparison on real images data. Note that FIDs are
computed against real images data.

DCGAN LSGAN WGAN-GP VON NGP-BP NGP NGP-plus

car 130.5 171.4 123.4 83.3 67.2 58.3 54.8

chair 225.0 225.3 184.9 51.8 47.9 51.2 50.3

Appendix G: Video results

Please see the supplementary video for demonstration of cam-
era/illumination control supported by NGP. Note that our gener-
ators, being view-specific, can lead to small changes across camera
variations.

Figure 11: VON using our 3D shapes.

Appendix H: VON using our 3D shapes

We also show the results of training VON method, which directly
operates in the image RGB space to texturize the 2D projections thus
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provides no control handle for the illumination, on our 3D shape
data. As it is non-trivial to adapt the original VON, particularly
the differentiable 2D sketch generation module, to train with the
implicit shapes used in our paper, we simply implement and train
the core module — the texturization networks, that texturize and
translate the 2D sketch of the 3D shape into the final realistic image.
We can see that, in Figure 11, the visual results are similar to that
in the original VON paper and no handle is available to control the
illumination of the generated images.
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