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Figure 1: Vertical compression (left) and extension (right) of a laser-cut auxetic irregular network in rest state (middle) computed by our
purely geometric process. Notice the horizontal, transversal contraction (left) and extension (right) characteristic of an auxetic behavior. The
compressed network exhibits a Poisson’s ratio n =�0.94 for an applied strain ey =�7.1%. The extended network exhibits a Poisson’s ratio
n =�0.46 for an applied strain ey =+3.3%. Strains are applied symmetrically to the top and bottom boundaries.

Abstract

This paper is devoted to a category of metamaterials called auxetics, identified by their negative Poisson’s ratio. Our work
consists in exploring geometrical strategies to generate irregular auxetic structures. More precisely we seek to reduce the
Poisson’s ratio n, by pruning an irregular network based solely on geometric criteria. We introduce a strategy combining a
pure geometric pruning algorithm followed by a physics-based testing phase to determine the resulting Poisson’s ratio of our
structures. We propose an algorithm that generates sets of irregular auxetic networks. Our contributions include geometrical
characterization of auxetic networks, development of a pruning strategy, generation of auxetic networks with low Poisson’s
ratio, as well as validation of our approach. We provide statistical validation of our approach on large sets of irregular networks,
and we additionally laser-cut auxetic networks in sheets of rubber. The findings reported here show that it is possible to reduce
the Poisson’s ratio by geometric pruning, and that we can generate irregular auxetic networks at lower processing times than a
physics-based approach.

1. Introduction

The more you pull on a rubber band, the more it becomes thinner.
Auxetic materials, however, behave counter-intuitive: they expand
perpendicular to an applied stretch. The Greek word "auxetikos"
meaning "what tends to increase" gives these material their name.
Recent advances in digital manufacturing, where computational
design, materials science and engineering meet, offer whole new
perspectives for tailoring mechanical properties and fabrication of

material with applications as diverse as product design, architec-
ture, engineering and art. Auxetic materials, in comparison to stan-
dard materials, are characterized by enhanced mechanical proper-
ties such as energy absorption, indentation resistance and acous-
tic absorption. Promising applications range from biomedical pur-
poses (prosthesis, blood vessels dilators, limbs, bandages), impact
protection devices for sports (gloves, helmets, pads, mats), to tex-
tile for defense. They also have interesting geometric properties,
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which enable for example an initially planar object to deform out
of plane into a surface with synclastic curvature. Applications here
range from product design [KCD⇤16, Cec21] to architecture and
art [NM15], see Fig. 2.
Auxeticity of existing synthetically created materials and struc-
tures can be demonstrated at different scales: at molecular scale
[MCM⇤17], at micro-scale (polymer foams and fibers) and at
macro-scale auxetic structures with a plethora of geometric struc-
tures fabricated of rubber, metal or 3D-printed (re-entrant cells, ro-
tating units and perforated sheets).
Our focus is on the latter class of auxetic structures, also called
a mechanical metamaterial. A metamaterial gains it extraordinary
effective properties from rationally designed geometric structures
rather than their composition. It enables to obtain new physical
properties of standard materials by change of geometry. For ex-
ample, a rigid wooden board can be made very flexible by cut-
ting notches [ZEK⇤17]. And a 3D printed object made of com-
putationally optimized microstructures can exhibit a full range of
customized mechanical properties using the same printing material
[SMGT18].
The auxetic structures mentioned above thus make it possible to
design and manufacture auxetic metamaterials using non-auxetic
materials such as metal, wood or rubber. The layout of the struc-
ture (including micro-structures) has thus a significant impact on
the auxeticity. These well studied auxetic layouts, which are gener-
ally planar, some of them extended to 3D, are however all of regular
geometry, composed periodically of cells and structures with axis
or rotational symmetries.
In this paper the focus is on irregular auxetic structures, which have
not been studied so far in geometric and computational design. In
architecture new trends focus on architectural materials composed
of irregular geometries, patterns or structures, e.g., the BUGA fibre
pavilions made from coreless-wound fibre-reinforced polymers by
Menges & Knippers [SFS⇤19], the weather responsive self-forming
building parts [WVMR18] or the irregular cellular structures of
Schlüter and Bonwetsch [SB08]. Irregular auxetic networks may
therefore enrich the variety of auxetic materials architects are inter-
ested in since a few years [MSMB17]
The fact that auxetics can be made physically of irregular struc-
tures is known since the first work on synthetically created aux-
etic foams by Lakes in 1987, see figures in [Lak87]. Soft matters
(rubber, foams and other elastomers) made of cross-linked polymer
chains are micro nodes and fibril structures and can be thought of
as irregular networks represented as a graph of connected nodes.
Their fabrication is very complex, including chemical and physical
processes. However, the fabricated auxetic foams for example are
irregular and their (re-entrant) cells clearly exhibit specific struc-
tural geometric features, which can be found analogically in many
regular geometric auxetic structures.
Our idea is to exploit these features for the construction of irregular
auxetic structures. That irregular auxetic structures can also be gen-
erated computationally, has been demonstrated recently in physics.
Goodrich et al. [GLN15] and Reid et al. [RPW⇤18] compute irreg-
ular 2D networks with predefined mechanical properties, including
auxetics, based of physical simulation. Inspired by their work, we
propose to investigate a geometric rather than a physics-based ap-
proach by centering our method uniquely on the geometric features

observed in existing regular auxetic structures. We raise the ques-
tion:

Is it possible to achieve the mechanical property of auxeticity based
solely on a geometric approach?

Our approach at answering this question starts with identifying
the geometric properties comprising irregular auxetic structures,
then developing an algorithm able to reproduce these properties on
arbitrary irregular networks we generate, and finally comparing and
validating our resulting networks’ characteristics with known fea-
tures of auxetic metamaterials. At the end we show some physical
realizations of our networks clearly demonstrating auxetic behav-
ior.

Figure 2: Bending active auxetic structures in architecture
[NM15], auxetic tables [Cec21] and sport shoes with auxetic gar-
ments [Tor13] (left and middle: image courtesy of Lorenzo Mirante
and Tom Cecil).

2. Related Works

Material science. Auxetic materials in nature are not common
(crystalline materials, human tendons, skin of snakes). In 1987
Lakes [Lak87] pioneered research on auxetic materials and struc-
tures by producing the first realistic auxetic foam structure. The
number of publications on auxetic materials since then has in-
creased exponentially. One can globally distinguish between aux-
etic materials and geometric structures: (1) intrinsically auxetic
materials, based on their chemical formulation. Here, research is
still on a theoretical level, no experimental observations so far
[PMW⇤19]. (2) Auxetic foams are obtained by a thermomechan-
ical process to convert conventional polyurethane (PU) foam into
auxetic PU foam [Lak87, VV19]. They are expected to exhibit im-
proved energy absorption for lighter and/or thinner components.
(3) Auxetic structures for metamaterials. There are a plethora
of different geometric patterns such as re-entrant structures, ro-
tating rigid structures, chiral structures, perforated sheets, which
give an auxetic effect on application of load. Review papers fo-
cus on different aspects such as the modeling, the mechanics, or
the deformation mechanisms [RDT⇤18, KZ17, Lim17, GGLR11].
Origami structures also qualify as auxetic mechanical metamateri-
als. Their mechanical behavior is largely driven by the crease pat-
terns, folding sequences, and other parameters describing the ge-
ometry [YY15, KME⇤17]. The Poisson’s ratio for the aforemen-
tioned purely geometric and origami structures can be derived ex-
plicitly. Elipe et al. [EL12] present a comparative study of most
known 2D and 3D auxetic geometries using CAD modeling, tetra-
hedral meshing and FEM simulation. (4) Auxetic composites and
textiles [ZJH16].
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Our approach takes inspiration from both, structural geometric fea-
tures (3) and the strategy employed for foam fabrication (2): we
propose an algorithm which modifies conventional networks by it-
eratively removing node connections (edges in a graph) following
some geometric criteria such that they exhibit auxetic behavior un-
der certain loading conditions.

Computational design of mechanical metamaterials. The com-
putational design and digital fabrication of physical objects at-
tracts a growing interest in computer graphics. While the afore-
mentioned geometric auxetic structures were originally conceived
geometrically, computational approaches relying on, e.g., topol-
ogy optimization, enable to automatically generate them to yield
new ones. Our focus here is only on computational design and
optimization methods including auxetic metamaterials. Zhou et
al. [ZSCM17] focus on the generation and characterization of
databases of microstructures with maximal material property cov-
erage and thus discover multiple new 3D auxetic microstructures.
Schumacher et al. [SMGT18] show that computationally optimized
microstructures can exhibit a full range of customized mechani-
cal properties (bending stiffness, anisotropy, auxeticity). The de-
sign of tileable and printable microstructures taking into account
manufacturing constraints have been investigated by Panetta et
al. [PZM⇤15]. Martinez et al. [MSS⇤19] generate 2D tile ge-
ometries with a graduation of mechanical properties computed
as Voronoï diagrams of regular lattices under star-shaped dis-
tance functions. Topology optimization allows to generate new de-
sign of auxetic metamaterials with prescribed non-linear proper-
ties computationally [WSJ14, ALS14, VCW⇤17, ZK19, ACN20].
These various approaches underline the growing interest in aux-
etic structures in the computer graphics community. The goal of
the present work is to initiate the exploration of irregular auxetic
networks from a geometric point of view.

Geometric design of mechanical metamaterials. [JTV⇤15]
present a geometric approach for design and optimization of poly-
hedral patterns (possibly auxetic) onto 3D surfaces based on affine
symmetries. [KCD⇤16, KLPCP18] propose a design tool based
on conformal mappings to generate and fabricate more complex
shapes with a purely geometric approach using a rotating auxetic
structure. FlexMaps [MPI⇤18] is an inverse modeling approach
with an auxetic chiral structure to design and fabricate smooth 3D
surfaces. All these methods exploit repetitive regular patterns to be
mapped onto a doubly-curved surface.
Irregular microstructures with prescribed mechanical properties are
generated by [MDL16] and [TTZ⇤20]. [MDL16] produces stochas-
tic, aperiodic graded open-cell Voronoï foams with prescribed
Young’s modulus. The resulting material is however limited to an
almost stable positive Poisson’s ratio of about +0.3. We conjec-
ture, that the convexity of Voronoï cells prevents auxetic behav-
iors. [TTZ⇤20] also relies on convex structures to produce materials
which are rigid in one direction and compliant in transverse direc-
tions. While our material is of similar stochastic nature, we seek
to generate auxetic material by favoring the occurrence of concave
structures.
Auxetics are known to be attractive also in architecture not only for
their mechanical properties, but for aesthetics as well [MSMB17].
Architecture is demanding for irregular structures, as the examples
given in the introduction show. Whereas conventional foam serves

in the M.ANY project of Schlüter and Bonwetsch [SB07] as an
ideal model for architectural form finding, our approach draws in-
spiration from auxetic foams and seeks to reproduce their irregular
pattern.

Irregular auxetic structures. While auxetic geometric structures
consisting of ordered or periodic networks are well studied, the ef-
fect of disorder is much harder to conceive and to study. A first ap-
proach is to start from the regular honeycomb structure and to per-
turb it by randomly displacing the vertices [HSS⇤09]. The result-
ing network may not be auxetic anymore. A heuristic search strat-
egy is employed, which computes at each iteration 70 perturbed
networks and applies a FEM simulation to each (including CAD
model + tetmeshing). The one with lowest Poisson’s ratio is se-
lected for the next iteration. 800 iterations with thousands of FEM
simulations are performed, which is excessively time consuming.
Without any guarantee of convergence, experiments show that the
resulting structures are auxetic in mean with values ranging within
[-0.65, +0.2]. Other approaches perturb the vertex positions of a
less regular Voronoi cell structure [HPAZ18]. The heuristic process
of finding the optimal vertex positions and a mass-spring simula-
tion with linear and angular springs allows to select among a huge
set of networks the most auxetics ones. A theoretical formulation
of irregular auxetic honeycombs with spatially random variations
in cell is proposed in [LWHZ14]. All these structures are mappings
of the regular conventional or re-entrant honeycombs. They present
geometric irregularities, but topologically they are identical to the
honeycombs with all vertices of order 3.
In [RPW⇤18, RPB⇤19], the authors show that irregular auxetic net-
works of arbitrary topology can be obtained by initializing a net-
work from a jammed sphere packing simulation, and iteratively
pruning edges selected from their contributions to the elastic mod-
uli (bulk, pure and shear moduli). This approach requires computa-
tionally intensive physical simulations at each step of the process.
While we follow a similar path in which we start with an initial
network and iteratively prune edges in it, we rely exclusively on
simple geometric criteria for doing so. A single physical simula-
tion is required at the end of the process for computing the actual
Poisson’s ratio of the network.

3. Technical Contributions

3.1. Summary of contributions

The goal of our work is to compute irregular auxetic structures
through pruning of initial irregular networks. But instead of rely-
ing on multiple physical simulations at each pruning step, our idea
is to seek a final network exhibiting specific geometric features. We
therefore stick to a geometrical approach throughout our process. A
physical simulation is only required at the end in order to determine
the effective actual Poisson’s ratio of the resulting network. The
challenge we face is to develop a purely geometrically guided prun-
ing process. We will show that our pruning algorithm can produce
networks with reduced Poisson’s ratio and that we achieve negative
Poisson’s ratios for almost all our networks. We will further show,
that the proposed algorithm succeeds in less than a few seconds
for the whole pruning process, compared to minutes to hours for
previous algorithms relying solely on physical simulations.
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Our contributions can be summarized as follows:

1. analysis of geometric features in auxetic networks (Sect. 3.4)
2. introduction of two geometric measures for detecting these fea-

tures in irregular networks (Sect. 3.7)
3. a pruning algorithm guided by these new geometric measures

(Sect. 3.7)
4. a vertex displacement procedure increasing auxeticity

(Sect. 3.8)
5. computation of the Poisson’s ratio for the resulting irregular net-

works (Sect. 3.9).

In addition to these technical contributions, we also present in sec-
tion 4.2 an extensive validation of our results and show some phys-
ical realizations.

3.2. Notations

An irregular network is modeled as a unoriented graph G = (V,E)
connecting planar vertices v 2 V ⇢ R2 by edges e = {v1,v2} 2
E,v1,v2 2 V . To conform with our focus on geometric processing,
we favor the terms vertices and edges instead of particles and bonds
which are common in the material and physics literature.

3.3. Poisson’s ratio

x

y

H

L L+¢L

H+¢H

When a sample of material un-
der tension or compression along
one direction, it deforms in the
orthogonal direction. This mate-
rial behavior is charaterized by
the Poisson’s ratio denoted n and
named after Siméon Denis Pois-
son (1787–1840)[Poi33]. If we
consider a piece of material and
align it to the x and y axis, see the
inset, the Poisson’s ratio between
transverse strain ex and longitudi-

nal strain ey in the elastic loading direction y is defined by

n =� ex
ey

=� DL/L
DH/H

. (1)

For isotropic 2D materials, n does not depend on the load-
ing direction and ranges between �1 < n < 0.5 in 3D, between
�1 < n < 1 in 2D. Values far below -1 can be achieved if the mate-
rial is allowed to deviate from isotropy. Usual materials have posi-
tive Poisson’s ratio, i.e. when stretched in one direction they shrink
in orthogonal directions (e.g., incompressible rubber 0.5, metal 0.3,
foam 0.1-0.5 and cork 0). Auxetic materials are defined by a nega-
tive Poisson’s ratio. If stretched longitudinally, they stretch also in
the transverse direction, as illustrated in Fig. 3.

3.4. Geometric features of 2D auxetic networks

In this section, we analyze salient geometric features shared by all
standard periodic 2D auxetic networks, reviewed for example in
[RDT⇤18]. Interestingly the same geometric features can be ob-
served in irregular auxetic networks [RPB⇤19].

Figure 3: Horizontal traction of a re-entrant honeycomb network.
Reference configuration (left), loaded configuration with uni-axial
strain ex of 10% (right) and Poisson’s ratio n =�0.8.

Figure 4: re-entrant periodic auxetic networks.

Coordination number

The coordination number, denoted Z, is a physical quantity mea-
suring the number of bonds connecting particles in a system. For
example in the context of jamming of spheres [LN10], it is the aver-
age number of spheres in contact with one given sphere. In our ge-
ometrical setting, where the networks are modeled as planar graphs
(see Section 3.2), the coordination number is the average degree of
vertices in the graph. In dimension d, the minimum coordination
number to maintain rigidity of a disordered system, called isostatic
value, is Ziso = 2d [GLN15]. A value of 6, which is the average de-
gree of vertices in a planar triangulation, is well above the isostatic
value, and can not lead to auxetic networks [LNTX19]. Accord-
ing to [RPW⇤18] networks with lower coordination numbers are
more amenable to physics-based pruning. Networks pruned from
Z0 = 5.2 lead to the lowest value of n in their study. Regular peri-
odic networks such as honeycomb, n-STAR and arrowhead shown
in Fig. 4 have even coordination number below the isostatic value
of 4 in 2D.

In our approach, the coordination number Z decreases at each
edge pruning and is thus well suited to control the process. We
will use Z as a stop criteria for the pruning algorithm. Note that
for Z < 3.0 the network is so sparse that the physical simulation
for applying the deformation and measuring n becomes unstable.
In the results Section 4 we study the dependency of the Poisson’s
Ratio from the coordination number (see Fig. 14).
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Figure 5: micro-structure of synthetic foams: (a) conventional
polyurethane foam, (b) auxetic polyurethane foams in contrast to
the conventional foam [VV19]. The auxetic foam exhibits concave
cells. Image courtesy of Springer Nature.

Pointed vertices

A re-entrant vertex, also referred to as pointed, is a vertex which has
all its neighbor vertices in the same halfplane. In the regular exam-
ples illustrated in Fig. 4, all vertices are pointed. There is one angle
larger than p between consecutive edges around a pointed vertex.
In our pruning algorithm developed in Section 3.7 we define the in-
dex of pointedness and angle of pointedness for arbitrary vertices,
and use these measures in order to guide to pruning process.

Concave polygons

The pointed vertices manifest as concave angles in polygons within
the network, as noticeable in Fig.4. These polygons tend to collapse
inward at pointed vertices when compressed. A sufficient number
of such polygons can lead to globally auxetic behavior. Concave
cells can also be observed in auxetic synthetic foams, as illustrated
in Fig. 5. In [RPB⇤19], the authors observe that the network geome-
try changes during pruning to create concave polygons. They show
that the percentage of concave polygons correlate quite well with n.
Our pruning algorithm also creates pointed vertices (see Sec. 3.7).
Furthermore, the vertex displacement procedure introduced in Sec-
tion 3.8 exaggerates the concavities of these polygons.

3.5. Overview

Our method for creating auxetic irregular networks is built upon the
geometric features discussed previously. It is composed of 4 steps:

(1) Generation of an initial dense random network, using Poisson
Disk Sampling and Delaunay triangulation.

(2) Pruning of this network, based on local geometry criteria. We
introduce two new measures which guide the pruning with the goal
of obtaining final networks exhibiting the geometric features.

(3) Modification of the vertices position, which allows to signif-
icantly improve the auxetic behavior of the pruned network. Here
again, the local geometry governs the process.

(4) Computation of the Poisson’s ratio, by applying a physics-
based simulation. We use a non-linear mass-spring system for com-
puting a deformation of the network resulting from uni-axial load-
ing.

A set of pruned networks exhibiting the geometric features of

auxetic networks can be generated with our method in less than a
second for each network. Only local geometrical criteria are used
throughout steps (1) to (3). The final computation of the Poisson’s
ratio in step (4) allows to measure the actual auxeticity of the net-
work. Fig. 6 illustrates steps (1) to (3).

Figure 6: Overview: (a) randomly generated vertices using Pois-
son Disk Sampling (Section3.6). (b) Initial network generated us-
ing Delaunay triangulation and removal of boundary edges (Sec-
tion3.6). (c) pruned network (Section3.7). (d) improved network
obtained by vertex displacements (Section3.8).

3.6. Initial networks

In [RPW⇤18] the initial networks are produced by simulating a
jammed packing of frictionless spheres at zero temperature, fol-
lowing the work of [LN10]. Instead of using a computationally in-
tensive simulation we choose to apply a combination of Poisson
Disk Sampling and Delaunay triangulation, which produce similar
well balanced networks. Blue noise sample patterns - for exam-
ple produced by Poisson Disk Sampling, where all samples are at
least distance r apart for some user-supplied density parameter r
- are generally considered ideal for many applications in rendering
[Bri07]. We use this type of sampling to generate the vertices of our
initial network. The algorithm presented by Bridson is extremely
efficient as it takes O(N) time to generate N samples. The result of
this algorithm is a set of randomly allocated vertices positioned at a
minimal r distance from each other. In order to finalize the network,
we apply a Delaunay triangulation to connect the generated Pois-
son Disk samples and remove long boundary edges. This can also
be efficiently computed in O(N log(N)). Fig. 6 shows the result of
Poisson Disk Sampling (a) and Delaunay triangulation (b).

3.7. Pruning Algorithm

Initial networks have well distributed vertices within a given do-
main. We now explain how to transform this initial network in a
new network that exhibits the geometric features of auxetic net-
works established in Section 3.4. We do so by iteratively pruning
(removing) edges from the initial network, in such a way that the
final network exhibits the geometric features. In particular we seek
to obtain networks with a high percentage of re-entrant vertices. To
this end, we introduce two new measures, which we name index of
pointedness (IoP) and angle of pointedness.

Definition. The index of pointedness n, of a vertex v, is the min-
imum number of consecutive edges ei for i = 1...n incident to v,
necessary to remove in order to attain a pointed vertex. A vertex
having an index of pointedness n is referred to as n-pointed. For
each such set of consecutive edges, the angle of pointedness is the
single angle larger than p that would appear by removing them.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

295



GP. Bonneau & S. Hahmann & J. Marku / Geometric construction of auxetic metamaterials

These two measures are illustrated in Fig. 7. Based on this defi-
nition, a vertex is pointed iff it has an index of pointedness n = 0.
Notice that the angle of pointedness depends on the sequence of
consecutive edges whose removal would make the vertex pointed.
Pruning any single edge around a vertex with an index of point-
edness larger or equal to 2 will not make it pointed, as illustrated
in Fig. 7(c). The index of pointedness enables to characterize the
mesh vertices being the most amenable to increase the percentage
of pointed vertices when one of their incident edges is removed.
Our method revolves around this concept as follows.

(a) (b) (c)

Figure 7: Index and Angle of Pointedness. 0-pointed (a), 1-pointed
(b) and 2-pointed (c) vertices. The edges to be removed in order
for the vertex to become 0-pointed are color coded (same colored
x on consecutive edges to remove). The circular arcs visualize the
angles of pointedness, smallest angle in red, mid angle in orange
and largest angle in green.

Algorithm 1 reduces the coordination number Z by iteratively
pruning edges, until a target coordination number is reached. Edges
are selected for pruning such that the indices of pointedness of ver-
tices gradually decrease. Among all such edges we favor those with
the largest angle of pointedness.

In order to maintain a connected structure and topological coher-
ent network we do not remove an edge if any of its incident vertices
has a degree below a given value. We have noticed experimentally
that a minimum degree of 2 works for our purpose. A vertex of
degree 1 in the network is clearly not desirable since it would re-
sult in edges or polylines sticking out of polygons. Furthermore by
allowing vertices of degree 2, "hanging" polygons could in theory
appear, that would be connected to the rest of the network via a sin-
gle vertex of degree 3. Such structures are also not desirable since
they wouldn’t contribute to the auxeticity of the network. Though
theoretically possible, we didn’t encounter this situation in our ex-
periments. Indeed the random selection of edges in our algorithm,
and the fact that it gradually decreases the indices of pointedness re-
sult in a pruning process that is well distributed within the domain,
and that reaches the target coordination number Z before hanging
polygons appear.

3.8. Vertex displacement

The pruning algorithm introduced in Section 3.7 produces networks
exhibiting a high percentage of pointed vertices and concave poly-
gons. In the present Section we introduce a procedure that increases
the angle of pointedness (see Sec. 3.7) of the resulting networks, by
modifying the position of vertices. Though simple, this procedure
proves nevertheless to be very efficient for decreasing the Poisson’s
ratio, as validated in Section 4.2.

Algorithm 1: Network pruning

Input: V, E: set of vertices and edges of the network,
IoP: array storing the indices of pointedness of all vertices,
Theta: array of list of angles between consecutive edges
around a vertex,
Z
⇤: target coordination number Z

Output: All inputs, updated (except for Z
⇤)

Compute coordination number Z

while Z > Z⇤
do

pick a randomly chosen vertex v in the set V

if IoP(v)>0 then

Select all sequences of consecutive edges that can
make v a pointed vertex (see Fig. 7)

Using Theta, select the sequence of consecutive
edges maximizing the angle of pointedness

Let e be the first edge this sequence (in cw order)

Let w be the vertex incident to e distinct from v

if degree(w) > 2 then

Remove edge e
end if

Update V , E, IoP, T heta and Z
end if

end while

return V , E, IoP, T heta

In order to displace the vertices, we compute a displacement vec-
tor, which is the normalized sum vector of the vectors formed by
the edges incident to the vertex of interest. We use a scalar coeffi-
cient l as a parameter for regulating the amount of displacement.
Referring to Figure 8, the new vertex position v0 is computed by:

v0 = v�l Âi vi � v
kÂi vi � vk (2)

v viµ
v‛ µ‛

Figure 8: A pointed vertex
before (blue) and after (or-
ange) displacement.

In our examples we set l =
Lmean/4, where Lmean is the av-
erage length of the edges of the
network. For pointed vertices this
displacement results in, what we
call, a "spiky" effect. It is im-
portant to mention that the spiky
effect occurs best when the dis-
placement is applied to pointed

vertices. In that case, all the vectors connected to the vertex of in-
terest lie on one half-plane and the vertex is translated in the other
half-plane. This vertex displacement is therefore particularly effi-
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cient when applied after pruning since pruning increases the ratio
of pointed vertices. We apply this procedure to all vertices inde-
pendent whether they are pointed or not. Fig. 12 shows a pruned
network (b) and the spiky network (c) resulting from the applica-
tion of vertex displacement. In Fig. 17, we show that the vertex
displacement has little to no effect if applied to a network before
pruning.

3.9. Poisson’s ratio computation

Let us first recall that one of our main concerns is to favor as much
as possible purely geometric processing and to avoid physical sim-
ulations which are computationally demanding. Nevertheless, we
still need a physical simulation in order to compute the Poisson’s
ratio of the networks we produced, for evaluation purposes.
In order to simulate the physical response of the networks we gen-
erate, we model them via a mass-spring system. We considered net-
works with linear and angular springs, as detailed below. Let us de-
note vrest the position of a vertex in an unloaded network, and v its
new position in the deformed network under physical loading. A
linear spring for an edge {v1,v2} holds a potential energy EL:

EL(v1,v2) =
1
2

KL

✓
d �drest

drest

◆2
drest , (3)

where d = kv2 � v1k and KL the stiffness coefficient for the linear
springs. The potential energy of an angular spring EA(v,v1,v2) is
given by

EA(v,v1,v2) =
1
2

KA
�
q�qrest�2

✓
drest

1 +drest
2

2

◆
, (4)

where di = kvi � vk, i = 1,2, q is the angle between neighbor-
ing edges {v,v1} and {v,v2}, and KA is the stiffness coefficient
for the angular springs. For each vertex v with adjacent vertices
vi, i = 0 · · ·n�1 we insert the angular springs (v,vi,vi+1 mod n), i =
0 · · ·n� 1. Note, that KA has to be chosen some orders of magni-
tude lower than KL in order to favour the hinged vertices to rotate.
In our simulations, we set KL = 20 and KA = 0.001. The physical
simulation consists in computing the position of the deformed ver-
tices v that minimize the total potential energy Etot under stress.
Etot is defined as the sum of a compressive component (3) and a
bending component (4). The IpOpt optimization library [WB06] is
used to solve the non-linear problem. Fig. 13 shows results of three
uni-axial vertical traction simulations, as well as the distribution of
the optimal potential energy Etot across all edges.

As boundary conditions (BC), we enforce uni-axial strains in ei-
ther x or y direction in our simulations. They are implemented by
translating along the loading direction the vertices within a small
ribbon at the top and bottom of the network. We use a width of
10% of the height for these ribbons. This type of strong BC, which
prevents the network to deform in transverse direction inside these
ribbons, is easy to implement in physical experiments. On the other
hand, in order to evaluate the Poisson’s ratio accurately, one has to
measure the transverse deformations far from the BC. We do so by
observing the induced displacements of three points at the four ex-
tremities within central vertical and horizontal ribbons. The width
of these central ribbons is 20% of the network height. As an exam-
ple, look at Fig. 9: uni-axial vertical strain ey of 3% is enforced in

y-direction. Let xl and xr be the average horizontal coordinates of
the three leftmost and three rightmost vertices, then the horizontal
strain is measured as ex =

(xr�xl)�(xrest
r �xrest

l )
(xrest

r �xrest
l ) . ex is negative for a

horizontal contraction and positive for a horizontal expansion. Us-
ing the formula (1), we get the Poisson’s ratio for uni-axial vertical
loading with n =� ex

ey
and for horizontal loading with n =� ey

ex
.

Figure 9: Enforcing a vertical expansion in two networks. A result-
ing horizontal contraction indicates a positive Poisson’s ratio (left).
A horizontal expansion indicates an auxetic network (right). Blue
(resp. orange) vertices correspond to the unloaded (resp. loaded)
network. The highlighted vertices are used to measure the horizon-
tal and vertical strains.

Note that it is possible to measure the Poisson’s ratio on the full
structure, if the constrained vertices are allowed to slide along the
direction transverse to the load. This means, that for the y-strain,
only the y displacement component of the top/bottom nodes are
constrained. While these relaxed boundary conditions are easy to
implement in simulations, they are difficult to reproduce in physical
experiments. Our stronger BC on the other hand, allows to compare
experimental realization (described at the end of section 4.2) with
simulation, as illustrated in Fig. 10.

Figure 10: Matching of simulation and physical realization. Net-
work (same as in teaser) extended in the vertical direction with
a strain of 6%. Physical realization (top left), simulation (bottom
left), superimposed physical realization and simulation (right)
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4. Results

4.1. Methods & Experiments

The computation of the irregular auxetic networks has been
implemented in MATLAB, computation of the Poisson’s ratio
in C++ based on IpOpt library. Experiments were run on a light
MacBook Air (2018) with 1.6GHz Intel Core i5 processor running
at 1.6GHz with 16GB RAM.
In order to enable comparison between results obtained with
different parameters it is therefore necessary to use for each
experiment a large set of randomly generated input networks. We
use sets of 100 networks with ⇡ 460 vertices each.

In all our results we use the following color coding. The networks
resulting from pruning with Algorithm 1 (Section 3.7) are called
pruned networks and shown in blue. The unpruned or initial

input networks are shown in the same blue color. Z0 and n0
are respectively their coordination number and Poisson’s ratio.
The networks obtained from the vertex displacement procedure
(Section 3.8) are called improved or spiky networks, due to their
"spiky" look, and shown in pink.

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Poisson Disk Sampling

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Delaunay Triangulation

Figure 11: Initial random network in 4 steps: (a) Poisson Disk
Sampling with 450 points. (b) Delaunay Triangulation. (c) Removal
of long boundary edges. (d) Initial network – input for pruning al-
gorithms.

4.1.1. Initial networks

We generate our initial networks using Poisson Disk Sampling
(Section 3.6) in order to get evenly distributed vertices, see Fig. 11.
For all networks in this chapter we used an implementation from
[Sum19] with parameters N = 30 and maxAttempt= 2.5 ⇤ log(N)
which gives us random initial networks with roughly 460 ver-
tices vi 2 [0,1]⇥ [0,1]. The fabricated networks are obtained with
N = 20 (⇠ 200 points) and N = 15 (⇠ 115 points). A Delaunay
triangulation is then applied to the set of points. All our initial net-
works have

Z0 = 5.69,

which guarantees us equal starting conditions for the numerical and
practical experiments.

4.1.2. Physics-based simulation

Subsequently, we need to test the auxetic nature of the resulting
networks by simulating their elastic behavior under tensile or com-
pressive loading conditions. The Poisson’s ratio in this section is
computed following the procedure presented in Sect. 3.9 using the
stronger boundary conditions. We also implemented the relaxed
BC and found almost the same PRs. They were slightly smaller;

 pruned network  spiky network

n = - 0.27 n = - 0.54n = + 0.30

(a)

(d) (f)(e)

(c)(b)
 unpruned network

Figure 12: (a) initial network with 458 vertices, Z0 = 5.69. (b)
pruned network with Z = 4.0 and n = �0.27. (c) spiky network
with n =�0.54. (d) - (f) show as color plot the index of pointedness
(IoP) for all vertices in the network, IoP = 0 in green, IoP = 1
in red, IoP = 2 in blue. The ratio of pointed vertices with IoP =
0 increases from 0.08 for the initial network, 0.41 for the pruned
network to 0.71 for the spiky network.

0.03 is the mean difference. To this end, an uni-axial strain in x-
or y-direction with an amount of 3% is applied and the simulation
minimizing the total potential energy is launched. The choice of
the spring stiffness KL and KA has an influence on the mechanical
behavior of our networks. Indeed, by choosing low stiffness val-
ues, the material becomes more flexible. However, attention has to
be paid, since auxeticity should not be achieved because of lack
of stiffness in the simulation. We calibrated these parameter to
KL = 20 and KA = 0.001 so that our simulations and the computed
Poisson’s ratios are coherent with the literature. In [OIBB⇤11] it
is reported, that arbitrary planar triangulations exhibit a Poisson’s
ratio of n = 0.3. Experimental observation by Lakes [Lak91] con-
firm that most common isotropic materials exhibit Poisson’s ratios
close to 1/3. All our unpruned networks have indeed n0 ⇡ 0.3, see
the blue horizontal line and blue dots with small standard deviation
(STD) in Figures 17, 14, and 18 thus validating the choice of these
stiffness parameters.

4.2. Validation

Results. Before explaining our results let us start by showing just
one example output of our algorithm in Fig. 12. In the top row, we
see for a target Z = 4.0 a pruned network with negative Poisson’s
ratio n =�0.27 and a spiky network with negative n =�0.54. The
bottom row visualizes with different colors the index of pointed-
ness. Blue dots correspond to 2-pointed vertices, red dots corre-
spond to 1-pointed vertices. And the green dots are the 0-pointed
vertices, also called pointed or re-entrant. These are the vertices
our algorithm is supposed to increase the percentage of. In this ex-
ample, the percentage of pointed vertices in the network increases
from 8% (initial network) to 41% (pruned network) up to 71% for
the spiky network.
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Figure 13: Uni-axial vertical traction simulation of an unpruned
network with Z = 4 (left), the corresponding pruned network (mid-
dle) and its spiky displacement (right). The top-row shows the un-
loaded networks. The bottom row shows the loaded networks with
colors indicating the distribution of the total potential energy Etot
(see Sect. 3.9).

In Fig. 13 we show the deformation behavior of one selected
network in order to highlight the difference between an unpruned
network with positive Poisson’s ratio (left column) and auxetic net-
works (middle and right column). The auxetic behavior of the
spiky network shown in Fig. 13(right) is clearly visible. The meta-
material expands in x-direction under tensile loading in y-direction.
The typical "hourglass" behavior of a standard material with posi-
tive Poisson’s ratio n = 0.3 can be observed for the unpruned net-
work (left). The pruned network (middle) is also auxetic but to a
smaller extent.

As explained above, for different values of the target coordina-
tion number Z, we computed a set of 100 networks. Each network
was then deformed by applying an uni-axial strain in y-direction
to the top and bottom border vertices of the network. The result of
such an experiment for Z = 4 is shown in Fig. 14. One observes that
the Poisson’s ratios for the individual networks belong to an inter-
val following the probability distribution P(n) (left). The individ-
ual n values are plotted (right). We have conducted this experiment
several times for 100 networks with the same Z, the result gives
always the same probability distribution of n. The spiky networks
are almost all auxetic with quite strong negative Poisson’s ratios.
The pruned networks are in mean close to n = 0, but in all cases,
the Poisson’s ratio is smaller than for the initial network.

We can conclude that our geometric pruning algorithm, even
though purely geometric without any intermediate feedback from a
physics-simulation about evolution of the Poisson’s ratio, is effec-
tive in reducing the Poisson’s coefficient and that the spiky versions
are remarkably auxetic. In particular our spiky networks with very
few non-auxetic specimen compare favorably to previous work by
[HSS⇤09] who achieve a similar mean Poisson’s ratio with a worse
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Figure 14: Probability distribution of n for 100 pruned networks
with Z = 4.0 and their improved (spiky) versions (left). Strains for
both deformations are ey = 0.03. Individual plots of n and mean
values as horizontal lines (right).

STD at the cost of thousands of physics-based simulations (timing
are unfortunately not provided). In the following, we will analyse
the results and validate the method in more detail.

Choice of Z. The coordination number Z in our approach is
the stopping criteria of the pruning Algorithm 1. Z is monoton-
ically decreasing during pruning, since each removed edge re-
duces the degree of its two vertices by 1. We found the optimal
Z by conducting the following experiment. For 8 equidistant values
Z 2 [3.0,3.2,3.4,3.6,3.8,4.0,4.2,4.4], we computed a set of 100
pruned and spiky networks and evaluated the mean Poisson’s ra-
tio. For the three types of networks, unpruned, pruned, spiky, we
reported the mean n as a dot in Fig. 15. The optimal value for
which the spiky network has minimal Poisson’s ratio with great-
est probability is Z = 4.0. For the pruned networks, Z = 3.6 is best.
Pruned networks with lower Z exhibit coarser and thus more flexi-
ble networks than for bigger Z. However, reducing Z below 3.6 or
3.4 does not reduce n but tends towards unstable networks. Mass-
spring networks with angular restraints loose rigidity below Z = 3,
see Section 3.4. In conclusion, we recommend to use Z 2 [3.6,4.0].
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Figure 15: Poisson’s ratio resulting from pruning 100 networks
with different target Z and ey = 0.03. Left: mean Poisson’s ratios
are plotted for the initial unpruned networks (yellow), pruned net-
works (blue) and optimized spiky networks (orange). A minimum n
is observed at Z = 4.0 for the optimized networks. Right: example
networks for different Z values.
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Evolution of Poisson’s ratio. Let us now investigate the central
question about the evolution of the Poisson’s ratio during pruning.
Contrary to the time consuming physics-based pruning approach
from [RPW⇤18] we do not use the simulation at each iteration to
monitor n and to select the optimal edge to be removed. In order
to monitor the evolution of n during pruning we computed the se-
ries of intermediate networks from initial network N0 to the final
pruned network Np, one network for each removed edge. The re-
sult for 5 representative networks with Z = 4.0 is shown in Fig. 16.
The almost monotonically decreasing curves (from right to left) for
decreasing Z until 4.0, validates our geometric pruning approach.
It is quite remarkable that a purely geometric criteria succeed so
efficiently in finding edges with specific mechanical properties.
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Figure 16: Evolution of Poisson’s ratio: for 5 representative net-
works we computed 280 networks by iteratively pruning 280 edges
and plot the curve of 280 Poisson ratios n1, . . . ,n280 for ey = 0.03.

Index of pointedness. The index of pointedness is central
to our method. We introduced this concept in order to develop
an algorithm which monotonically increases the number of
re-entrant vertices. The example shown in Fig. 12 (bottom) is
representative for all networks and all Z values. Indeed, we always
observed the same pointedness ratios. The pruning algorithm
was designed to reduce the index of pointedness of the network
vertices, implying that not only the vertices’ index decreases
but consequently the number of re-entrant (0-pointed) vertices
increases. The measured pointedness ratios together with improved
Poisson’s ratios confirm at least our initial observation about this
geometric feature and the proper behavior of our pruning approach.

Random pruning without any strategy. As we have seen above,
the vertex displacement method (spiky networks) for improving the
pruned networks works well and is quite efficient. With the follow-
ing experiment, we investigate the question : is the vertex displace-
ment method efficient for any kind of networks, even for the dense
initial ones? This would make our pruning method obsolete. This
is indeed not the case. In Fig. 17 the vertex displacement method

was applied to the initial network without any pruning as a repre-
sentative example. As expected, the index of pointedness improves
over the network vertices. Many vertices with index 2 become in-
dex 1. However, the number of pointed vertices (green) does not
increase. Again we have run the test on 100 networks. Evidence
is given by the ratio of pointed vertices, which remains nearly the
same: 8% for all the initial networks, 9% for the spiky versions.
Also the Poisson’s ratio stays quite stable. It slightly improves in
average from n = 0.31 to n = 0.26, with low standard deviation, as
shown in Fig. 17(e),(f) for all 100 networks.
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Figure 17: Spiky network generated from initial networks without
pruning.

Figure 18: Random pruning: (left) Probability distribution of
n. (right) mean values of nunpruned = 0.31, npruned = 0.24 and
nspiky = 0.04 for ey = 0.03. Networks are mostly not auxetic.

Comparison to random pruning. It has been shown that pruning
is an effective way to lower the Poisson’s ratio to negative values.
Since removing an edge reduces the degree of its two vertices by
1, Z is monotonically decreasing during pruning. A perhaps naive
question is the following:
Is the criterion Z < Z0 for a network sufficient to have a low Pois-
son’s ratio?

In order to investigate this question experimentally, we imple-
mented the naive pruning strategy of randomly removing edges.
We computed 100 networks with Z = 3.9 and made the following
observations, see Fig. 18.

• The mean Poisson’s ratio reduces merely from 0.3 to 0.24 thus
indicating that random pruning is clearly not a sufficient strategy.

• We are however far from the n values we can reach with the same
coordination number with algorithm 1.
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Z = 4.0 Z = 3.6 Z = 3.2
|V | 458

|E| unpruned 1356
#Edges removed 380 479 566

Timings in sec

preproc. PDS 0.48
preproc. DT 0.002
preproc. BE 0.023

Pruning 0.19 0.22 0.32
Spiky 0.24
Total 0.935 0.967 0.972

Table 1: Statistics and execution times. |V | number of vertices, |E|
number of edges, PDS Poisson Disk Sampling, DT Delaunay trian-
gulation, BE removal of long boundary edges.

• Random pruning sometimes has the inverse effect: it increases n
above 0.3 with respect to the unpruned network.

• Optimizing a network with Z < Z0 by making the vertices more
spiky remains an efficient method to reduce n whatever its value
is.
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Figure 19: Test of isotropy: average Poisson’s ratios computed with
applied uni-axial strain of 3% in x- and y-direction.

Isotropy. Isotropy is an important material feature. We compare
the Poisson’s ratios nx, ny computed for a set of 100 networks
(with 200 vertices) subject to uni-axial strain of 3% in either x-
or y-direction in Fig. 19. The curves for the 3 types of networks
(unpruned. pruned, spiky) indicate that, in average, the networks
are isotropic with respect to these two directions. This is coher-
ent with the fact, that our geometric pipeline does not favor any
specific orientation when selecting an edge for removal. However,
individually, this is not always true for the pruned networks. Fur-
ther investigation is necessary to examine isotropy with uni-axial
experiments in arbitrary directions.

Execution times. Finally, we present some network statistics and
CPU timings of the methods composing our approach. In total, our
approach, including initial network computation, pruning with Al-
gorithm 1 and improvement to compute auxetic networks takes less
than a second. Note that generation of input networks takes half of
the time. The mass-spring simulation converges in less than 10 sec-
onds for our network sizes. We therefore compare favourably to the

physics-based pruning and simulation approaches which initially
inspired our work.
When users seek a pruned network with a Poisson ratio close to
n =�0.35 for example, the probability distribution in Fig. 14 indi-
cates that they can choose among 10-20 networks within the corre-
sponding bin [-0.33, -0.4]. In total, this procedure requires maximal
100 simulations.

Experimental realization. We follow the method from
[RPW⇤18] for fabricating networks by laser-cutting rubber sheets.
The material we choose is NBR Nitril because of its excellent
resistance to break. It has a density of 1.45g/m3, a thickness of
2mm, and hardness of 65 Shores A. It is almost incompressible
and has a Poisson’s ratio n = 0.5. These properties make this ma-
terial ideal for our testing. Contrary to 3D printing of deformable
microstructures, which requires to strengthen the joints by making
them thicker [PZM⇤15], the opposite is required in our setting: we
need to stiffen the edges away from the nodes in order to facili-
tate rotations at the nodes. This explains the polygonal geometry
of our realized networks. We cut the rubber sheets with a TroTec
300 laser cutter. To produce the cutting paths, we compute offsets
of the polygons in the network and reduce the width of the edges
near nodes, as illustrated in Fig. 21.

This way we have fabricated 5 networks, produced by our al-
gorithm, and laser-cut in a rubber sheet. Their photos are shown
as insets in Fig. 20. Networks (a,b,d,e) are 40cm large and have
203 vertices, network (c) is 20cm large and has 110 vertices. All
exhibit auxetic behavior in simulation, e.g. for extension of 3% ap-
plied in either x- or y-direction we get the following Poisson’s ratios
nx,ny: (a)-0.36,-0.39, (b) -0.47,-0.27, (c) -1.07,0.0, (d) -0.87,-0.12,
(e) �0.92,0.13. Fig. 1 shows three photos of network (a) taken
from a compression and extension experiment with strain applied
symmetrically in the y-direction. Fig. 22 (network (b)) shows an-
other example where the loading applies only on the bottom bound-
ary. The red network in the background corresponds to the rest state
and the deformed networks are black.

In order to examine the matching between simulation and exper-
iments, we conducted an experiment where we applied compres-
sion and tension strains of about ±3%, ±6% and ±10% to all 5
networks. We took a high-resolution photo and measured the real
strains ex and ey on a pixel basis. The resulting Poisson’s ratios
for each network are plotted as orange dots in the graph in Fig.
20 and compared to the Poisson’s ratios obtained through physical
simulation by using the measured y-strains as boundary conditions.
As a complement, Fig. 10 offers a visual matching for the teaser
network. It can be observed that (1) all fabricated networks ex-
hibit negative Poisson’s rations and are thus auxetic. (2) The phys-
ical simulation method with the chosen tension and angular spring
stiffness parameters provides estimates of the Poisson’s ratio that
are consistent with experiments. Note that for higher compression
strains, our simulation is no longer able to accurately predict the
node positions when they collide, thus resulting in lower values
than in reality.

5. Discussion & Future work

A limitation of our work is that it is restricted to planar structures.
In future works, we would like to investigate an extension to 3D
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Figure 20: Comparison of Poisson’s ratios estimated through physical simulation (purple dots) and measured (orange dots) for fabricated
networks of a laser-cut rubber sheet (insets). Applied strains are close to ±3%, ±6% and ±10%.

Figure 21: Producing laser-cut experimental realization of net-
works. Top-left: a network produced by our algorithm, Top-right:
the actual cutting paths transmitted to the laser-cutter, Bottom-left:
close-up on some of the polygons cut-out from the rubber sheet,
Bottom-right: the resulting network.

irregular networks.
Gradient-based optimization techniques would probably strengthen
the method. However, the discontinuous nature of an edge removal
algorithm makes it difficult to formalize a differentiable cost func-
tion to be optimized by a gradient method. The vertex displacement
could be solved this way and provide a globally more optimal so-
lution than the implemented heuristic. However, optimizing a non-
linear function would increase computation time.

Our current implementation allows to apply uni-axial boundary
conditions (BC) as well as bulk and shear BC. Implementation of
periodic BC might enable us to scale-up and to conduct uni-axial
stretching simulations in all planar directions and thus evaluate pre-
cisely the (an)isotropy of our designs.

As stated by Schumacher et al. [SMGT18], mechanical charac-

terization of irregular tilings is not trivial. With our method we fo-
cused on material with one mechanical characteristic, the negative
Poisson’s ratio. Investigating a more deterministic method might
offer insights on how to control additional mechanical parameters.

6. Conclusion

In this paper we have investigated the geometric construction of
auxetic metamaterials with irregular networks. We analyzed im-
portant geometric features commonly found in irregular as well as
regular auxetic networks and developed a pipeline relying solely
on geometric criteria in order to produce irregular networks which
exhibit these features. Since our method is based only on local ge-
ometrical criteria, it is less computationally intensive than related
previous works based on physical simulations. We made extensive
experiments validating our pipeline. We computed the Poisson’s
ratio of multiple sets of 100 networks with different characteristics
produced with our pipeline, and showed that our pipeline effec-
tively produces auxetic networks within a large range of negative
Poisson’s ratios.

Irregular designs can be attractive for potential applications in
architecture, material science, furniture design, or homemade 3D
printed materials with custom stretch. Our method offers a compu-
tational tool for constructing such new metamaterials.
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applied strain ey of +2.1%. Strains are applied to the bottom boundary.
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