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Figure 1: Left: visualization of a map f̃ between two surfaces. Like many maps used in geometry processing applications, it is not a formal

continuous bijection, but a set of sparse point correspondences, with noise, outliers, non-injective overlaps, and gaps. From such a map

we infer a homology map f∗, i.e., a topological identification of homology classes, that corresponds to a homeomorphic completion or

correction of the imperfect surface map f̃ . Homology classes are illustrated by representative cycles. Right: a different input map f̃ that

includes a deliberate twist around the waist of the statuette. The inferred homology map f∗ correctly captures this twist.

Abstract

A homeomorphism between two surfaces not only defines a (continuous and bijective) geometric correspondence of points

but also (by implication) an identification of topological features, i.e. handles and tunnels, and how the map twists around

them. However, in practice, surface maps are often encoded via sparse correspondences or fuzzy representations that merely

approximate a homeomorphism and are therefore inherently ambiguous about map topology. In this work, we show a way to

infer topological information from an imperfect input map between two shapes. In particular, we compute a homology map, a

linear map that transports homology classes of cycles from one surface to the other, subject to a global consistency constraint.

Our inference robustly handles imperfect (e.g., partial, sparse, fuzzy, noisy, outlier-ridden, non-injective) input maps and is

guaranteed to produce homology maps that are compatible with true homeomorphisms between the input shapes. Homology

maps inferred by our method can be directly used to transfer homological information between shapes, or serve as foundation

for the construction of a proper homeomorphism guided by the input map, e.g., via compatible surface decomposition.

CCS Concepts

• Computing methodologies → Shape modeling;

1. Introduction

A precise point-wise correspondence between two surfaces is de-
scribed by a continuous bijective map, i.e. a homeomorphism. Be-
sides the geometric one-to-one relation of surface points, a given
homeomorphism determines a specific map topology, an identifi-
cation of topological features such as handles and tunnels and how
often the map twists around each of them. Representations of sur-
face maps used in most geometry processing scenarios, however,
are neither truly continuous nor bijective: Many common forms of
encoding only describe a finite set of corresponding surface points
(e.g. samples from a continuous map; per-vertex images; sparse
landmark annotations), or soft, fuzzy, non-sharp correspondences

of larger surface regions. They are thus inherently ambiguous with
regard to their map-topological properties. In practice, maps can
additionally come with various defects such as noise, outliers, un-
dersampling, or overlaps. Recovering an actual homeomorphism
(as assumed by advanced geometry processing and map optimiza-
tion techniques) from such an imperfect input map requires set-
tling on a map topology which resolves ambiguities and defects in
a globally consistent way.

We describe a method to infer a topological correspondence de-
scription from a (possibly low-quality) input map. Specifically, we
extract a homology map, which defines a one-to-one mapping be-
tween homology classes (of cycles) on the source and target shape.
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While such a homology map does not determine the topology of
a homeomorphism entirely in general, it captures the most funda-
mental topological features, e.g., the identification of correspond-
ing handles and tunnels. Our method addresses the problem that
for the above mentioned practical surface maps, which are not true
homeomorphisms, this homology map cannot be easily read off un-
ambiguously by simply mapping and comparing representative cy-
cles (homology bases).

We demonstrate the method’s support for a large variety of input
map representations and its high level of robustness to a wide range
of input map imperfections, as commonly encountered in geometry
processing applications. The homology map’s utility is exemplified
in the contexts of surface data transfer in a homologically correct
manner and the recovery and construction of true surface homeo-
morphisms from approximate input.

Contribution. In summary, we introduce a method to infer an un-
ambiguous homology map from an ambiguous surface map. The
method exhibits the following properties:

• It supports a large variety of input map types, from dense vertex-
to-vertex and vertex-to-triangle maps, over sparse correspon-
dences, to soft or functional maps, and extrinsic registrations.

• It exhibits a favorable level of resilience to a wide range of map
imperfections.

• It prevents degeneration of the homology map regardless of input
map quality.

Technically, the method’s robustness in the face of imperfect maps
hinges on three main ingredients:

• Instead of attempting to directly transfer and compare local and
high-frequency information (like surface paths or cycles) via an
unreliable map, we carefully choose global and low-frequency

operations, reducing sensitivity to imperfections. Only maxi-
mally smooth data is mapped, and compared globally.

• Differential information is mapped effectively without reference
to the map’s unreliable differential, by encoding it as coordinate-
free scalar information.

• Further resilience to low-quality and even misguiding input is
achieved by incorporating a global topological consistency con-
straint, restricting the inference process to the subspace of ho-
mology maps that are compatible with homeomorphisms.

Computationally, our inference task in its core boils down to solv-
ing an integer quadratic program of modest size, O(g2) for genus g,
which can be efficiently handled by off-the-shelf solvers.

2. Related Work

Homology and cohomology have been considered in a number of
works in the field of geometry processing on discrete surfaces. Er-
ickson and Whittlesey [EW05] and Dey et al. [DFW13] describe ef-
ficient algorithms for the construction of (greedy) homology bases
on surfaces of arbitrary genus. The construction of (canonical) co-
homology bases is addressed by Gu and Yau [GY03] and oth-
ers [PSKG13]. Computational tools built on homology concepts
have been used, e.g., to measure topological similarity of curves
[CVJ15], for function optimization [PSO18], or surface decompo-
sition [CG19]. We apply them in the field of surface maps.

Figure 2: Left: three densely sampled input maps between the

same pair of shapes, describing topologically different maps, as

highlighted by black curves and their images. Right: our inferred

homology maps capture the implied map topology of each case.

A number of works consider the completion of sparse surface
correspondence information to a continuous bijective map. A com-
mon theme is the construction of a structurally compatible surface
decomposition into one or multiple disk patches; the map’s topo-
logical degrees of freedom are settled in this process. Afterwards,
per-patch bijections are easily established. The topological degrees
of freedom are fixed while building the decomposition cut graph
either in a local greedy manner [SAPH04, KS04] or by requiring
additional user input [LGQ08, LBG∗08, CJGQ05]. A recent non-
greedy method [BSK21] is restricted to surfaces of genus zero.
These methods are commonly tailored to sparse landmark or curve
correspondences, and take this input as hard truth, assuming the
absence of outliers or similar imperfections.

Examples for methods that operate on actual surface homeomor-
phisms (taken as input or constructed along the lines of the above
techniques), for instance for the purpose of performing optimiza-
tion in the space of homeomorphisms, are recent methods for inter-
surface map optimization [AL16, SBCK19, SCBK20], compatible
re-meshing [YZL∗20], or seamless parametrization [APL15].

The large variety of (imperfect) map representations used
in geometry processing applications is exemplified by vertex-
to-vertex maps [RMC17], vertex-to-surface maps [EHA∗19,
PBDSH13], sample-to-sample maps [VLB∗17, MCSK∗17], land-
mark maps [EEBC20], partial maps [MGP06, BB08], functional
maps [OBCS∗12], and soft maps [SNB∗12].

A number of techniques target the improvement of such maps, by
denoising [EBC17], sharpening [RMC17], upsampling [HLC20],
or symmetrization [ESBC19]. Nevertheless, they still produce a
map of the same type, which remains topologically ambiguous.

3. Background

In this work, our focus lies on the topological properties of surfaces
captured by their first homology and cohomology groups. Here, we
give a brief introduction to the concepts specific to our application.
For a general rigorous treatment, we refer to [Bre93,Hat02,Lee13].
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3.1. Homology

In our setting, homology describes an equivalence relation of cy-
cles on a surface. On a closed, orientable, two-manifold surface S,
a cycle c is a set of closed, oriented curves embedded in S. Cy-
cles can be reversed (−c) as well as composed via addition: c+ d

superimposes the cycles c and d (with cancellation where c and d

have opposite orientation). A cycle is called boundary cycle if it
is the oriented boundary of some subregion of S. Two cycles are
homologous, c ∼ d, if their difference c− d is a boundary cycle.
The homology class [c] is an equiva-
lence class of all cycles homologous to
c and [0] denotes the class of all bound-
ary cycles. The operation of cycle ad-
dition transfers to homology classes via
[c]+ [d] = [c+d]. With this, the set of all homology classes forms
a commutative group called the first homology group H1(S).

The algebraic intersection number ω(c,d) of a pair of cycles
c, d is the sum of their oriented transversal intersections: At each
intersection, we count +1 if c crosses d left-to-right, or −1 if
c crosses d right-to-left. ω(c,d) is bilinear (w.r.t. cycle addition)
and antisymmetric, i.e. ω(c,d) =−ω(d,c). It is invariant w.r.t. ho-
mologous arguments [FM11, Ch. 1.2.3], hence we can consider it
as a bilinear form on homology classes H1(S)× H1(S) → Z as
ω([c], [d]) = ω(c,d).

3.2. Cohomology

The related concept of cohomology defines an equiva-
lence relation between closed 1-forms on a surface S.
A 1-form x : TS →R is closed if its exterior deriva-
tive vanishes, dx= 0 (inset, top). The class of closed
1-forms is closed under negation and addition, i.e.,
they can be superimposed. A 1-form is exact if
it is the exterior derivative of some 0-form φ, i.e.
x = dφ (inset, bottom). Exact 1-forms are closed
(dx = ddφ = 0). Two closed 1-forms x, y are co-

homologous, x ∼ y, if their difference x−y is exact.
A cohomology class [x] is the equivalence class of
all closed 1-forms cohomologous to x. As before, we can define an
operation [x]+ [y] = [x+ y] on cohomology classes, allowing us to
form the first cohomology group H1(S) of S.

Integration of closed 1-forms along cycles is invariant under
homology and cohomology:

∫
c1

x1 =
∫

c2
x2 for any c1 ∼ c2 and

x1 ∼ x2. It therefore makes sense to define this operation on
classes:

∫
[c][x] =

∫
c x. Due to the linearity of cycle and 1-form

addition, this operation defines a non-degenerate bilinear form
H1(S)×H1(S)→ R between homology and cohomology classes.
If we restrict to the sub-class of closed 1-forms that have integer
integrals along all cycles (which is likewise closed under negation
and addition), then this bilinear form is onto Z, implying that H1(S)
and H1(S) are a pair of dual spaces, i.e. related by a linear isomor-
phism [Hat02, Ch. 3.3].

3.3. Homology and Cohomology Bases

For a surface S of genus g, we can choose a homology basis BS =
{s1, . . . ,s2g}, a set of cycles generating the first homology group

H1(S) (Fig. 3 top left). Any homology class [c]∈H1(S) is uniquely
represented by a linear combination of basis elements

[c] =

[

2g

∑
i=1

sihi

]

= [BSh]

where h ∈ Z
2g is a vector of integer coefficients.

A fixed basis BS allows an explicit representation of the alge-
braic intersection form ω via its Gram matrix ΩS ∈ Z

2g×2g, with
entries (ΩS)i j = ω(si,s j) (Fig. 3 bottom left). Then, for homology
classes [c] = [BShc], [d] = [BShd ], their intersection number is

ω([c], [d]) = ω([BShc], [BShd ]) = 〈hc,hd〉ΩS
= h

T
c ΩShd . (1)

For a homology basis BS on S, a natural choice [GY03,
PSKG13] of dual cohomology basis BS , i.e., a generating set of
closed 1-forms for H1(S), is a set of 1-forms {s1, . . . ,s2g} with∫

si

s
j = δi j (2)

for all i, j (Fig. 3 right).

As before, any cohomology class [x] is represented by a linear
combination [x] = [BSh] for some coefficients h ∈ Z

2g. In this dual
representation, the integral of a cohomology class [x] along some
homology class [c] is just the dot product of their coefficients:∫

[c]
[x] =

∫
[BShc]

[BS
hx] = 〈hc,hx〉. (3)

A basis change between two different homology bases BS , B′
S

can be described by a transition matrix M ∈ Z
2g×2g, mapping co-

efficients h ∈ Z
2g w.r.t. BS to coefficients h′ = Mh ∈ Z

2g w.r.t. B′
S .

Then, duality implies a transition matrix

M = M
−T (4)

between coefficients of the dual cohomology bases BS , B′S , that
preserves the pairing (2).

4. Homology of Surface Maps

Let us now consider two surfaces A and B, and a homeomorphism
(bijective, continuous map) f : A→ B between these. This home-
omorphism can be characterized topologically via the action of f

on the surfaces’ homology and cohomology classes.

Figure 3: Left: a homology basis of cycles BS = {s1,s2,s3,s4}
of a genus 2 surface S. Algebraic intersection numbers ω(si,s j)
of cycles are encoded as coefficients of the matrix ΩS . Right:

a corresponding dual cohomology basis of closed 1-forms BS =
{s1,s2,s3,s4}, fulfilling

∫
si

s j = δi j .
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Figure 4: A homeomorphism f between surfaces A, B (top) in-

duces a homology map f∗ (bottom left) that maps between homol-

ogy classes (equivalence classes of cycles) of A and B, and a cor-

responding cohomology map f ∗ (bottom right) that maps between

cohomology classes (equivalence classes of closed 1-forms).

4.1. Induced Homology and Cohomology Maps

The action of f on cycles induces the homology map f∗ : H1(A)→
H1(B) (Fig. 4 bottom left) via

f∗([cA]) = [ f (cA)]. (5)

This map is a well-defined linear isomorphism between H1(A) and
H1(B) [Hat02, Ch. 2.1], associating each homology class of A with
a unique homology class of B.

Similarly, it induces the cohomology map f ∗ : H1(A)→ H1(B)
(Fig. 4 bottom right), defined by

f
∗([xA]) = [ f (xA)], (6)

where f , by slight abuse of notation, here formally denotes the pull-
back of f−1, mapping 1-forms from A to B along f . Also this map
is well-defined [Lee13, Ch. 11.2].

4.2. Homology Maps between Bases

In practice, we have independent homology bases BA on A and BB

on B and use coefficient vectors hA ∈ Z
2g, hB ∈ Z

2g to represent
homology classes, i.e. [BAhA] and [BBhB]. In this setting, we can
express any homology map f∗ : H1(A) → H1(B) explicitly as a
map M : Z2g → Z

2g between coefficient vectors: For every homol-
ogy class [BAhA], mapped to B as f∗([BAhA]) = [BBhB], we have
M(hA) = hB , or equivalently

f∗([BAhA]) = [BBM(hA)]. (7)

Since f∗ is linear, so is M. But in general, not every linear map
M ∈ Z

2g×2g represents a homology map induced by some home-
omorphism A → B. This more restricted class of map representa-
tions can be characterized by the succinct constraint

ΩA = M
TΩBM, (8)

where ΩA and ΩB represent intersection forms (as defined in
Sec. 3.3) w.r.t. BA and BB. This constraint’s necessity can be shown
based on the fact that homeomorphisms preserve intersections (and
therefore intersection numbers) of cycles; see Appendix A for a

derivation. It is also sufficient, as for any matrix M fulfilling (8),
there is a homeomorphism f : A → B that induces a homology
map f∗ represented by M [FM11, Ch. 6.3.2; MP78, Th. 2]. Note
that in case ΩA = ΩB (i.e., BA and BB have the same intersec-
tion pattern) this constraint defines exactly the class of symplectic

matrices M. We will refer to (8) as symplectic constraint in general.

4.3. Cohomology Maps between Bases

A homology map representation M can be understood as a change
of basis, expressing how f maps basis cycles of BA onto B, repre-
sented w.r.t. BB. The duality of homology and cohomology bases
then implies that the dual basis transform (4), i.e. M = M−T, rep-
resents a corresponding map between cohomology bases BA, BB,
i.e., for h ∈ Z

2g, the cohomology map

f
∗([BA

h]) = [BB
M(h)]. (9)

In this light, we can express the symplectic constraint (8) on M

as an equivalent constraint on M as

MΩAM
T
= ΩB. (10)

Note that M and M here map between two bases on two surfaces
A and B, whereas in (4) they map between two bases on the same
surface S, which is just the special case A= B.

5. Map Homology Inference

Equipped with this background on homology and cohomology as-
pects of maps between surfaces, we are now ready to precisely state
the problem we address and the algorithmic approach we propose.

5.1. Problem Statement

Our method takes as input:

• A pair of closed surfaces A, B, both of genus g, represented by
triangle meshes (VA,EA,FA), (VB,EB,FB).

• A map f̃ that loosely resembles a homeomorphism f : A→B.

We support any map representation that can be used to transfer
scalar quantities from A to B in some way. This includes sharp
dense point-wise maps (e.g. vertex correspondences) and non-sharp
representations such as functional maps or soft maps. Sparse maps
given by a finite set of corresponding surface points (pa, pb) ∈
A×B, e.g. samples or landmarks, can be used as well via inter-
polation (Sec. 5.5).

Homology bases BA and BB of A and B, represented by 2g cy-
cles of oriented edges per mesh, may be provided as input or be
generated automatically using [EW05].

From this input, we infer a homology map f∗ : H1(A)→ H1(B),
represented by a matrix M ∈ Z

2g×2g that maps between BA and
BB such that

• the inference of f∗ is guided by the input map f̃ ;
• there is a true homeomorphism f : A→B that induces f∗.

In particular, if the imperfect input map f̃ is close to a homeomor-
phism f , we expect the homology map inferred from f̃ to be the
one induced by f . In any case, no matter how bad the input, we
ensure that the homology map will never degenerate topologically.
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Figure 5: From a homology basis of surface A (a), we compute a dual cohomology basis of closed 1-forms (b). We encode these 1-forms on

A as periodic scalar fields z (c) which are then transferred via the given surface map f̃ onto B (d), where we differentiate to obtain 1-forms

again (e). We find an integer matrix M that best matches the transferred 1-forms against combinations of cohomology basis representatives

on B (f), subject to symplectic constraint (10) for topological sanity. This cohomology map M implies a corresponding homology map M

between the homology bases shown in (a) and (g).

5.2. Algorithm Overview

Since f̃ is sparse and possibly non-injective, we cannot use it di-
rectly to map cycles (i.e., homology representatives) from A to B,
which would immediately allow to determine the matrix M of the
desired induced homology map f∗. One could try mapping some
points of a cycle from A to B, to the extent f̃ permits, and recon-
struct a cycle from the images on B. A major downside of such a
local approach is its sensitivity to local imperfections such as out-
liers or noise in the map and consequently its heavy dependence on
the choice of cycle. Our aim is to use a global approach.

To this end, instead of local high-frequency information, we map
global low-frequency information via f̃ . Concretely, we transport
maximally smooth closed 1-forms (acting as cohomology represen-
tatives). As the input map f̃ cannot be assumed to be differentiable
(as required to directly map differential information like 1-forms),
we take a detour via an encoding as (periodic) scalar fields—that
are easily mapped by a wide variety of types of commonly used
imperfect maps.

Algorithmically, our approach can be summarized as follows
(see Fig. 5 for a visual overview):

1. create a cohomology basis BA of 2g smooth 1-forms (Sec. 5.3)
2. encode BA as periodic scalar potentials (Sec. 5.4)
3. map them to B using f̃ with interpolation (Sec. 5.5)
4. decode the mapped potentials to yield 1-forms on B (Sec. 5.4)
5. collectively match them against a canonical representation of

BB, subject to symplectic constraint (10), to infer a cohomology
map f ∗, represented by a matrix M (Sec. 5.6)

Finally, we convert to M = M
−T

to obtain a representation of
the desired homology map f∗, compatible with some homeomor-
phism f as a consequence of constraint (10), equivalent to (8).

5.3. Harmonic Cohomology Representatives

By Hodge theory [War83, Ch. 6], for each cohomology class [x]
there exists a unique representative closed 1-form x that is har-

monic, i.e. ∆x = 0, thus as smooth as possible. We adopt this choice
to construct canonical representatives on A and B, see Fig. 5b.

For each cycle a j of our (input) homology basis BA, we compute

a corresponding dual cohomology representative a j ∈ BA that is
the unique 1-form that fulfills the three constituting properties

da
j = 0 (a j closed), (11)

∆a
j = 0 (a j harmonic), (12)

∫
ai

a
j = δi j for all i (a j dual to a j). (13)

In our discrete setting, we encode each 1-form as a column vec-
tor a j = R

|EA| of scalar values assigned to oriented mesh edges.
Then, as described by [GY03], properties (11)–(13) discretize to a
linear system of equations, which can be solved simultaneously for
all a j. The result is a set of discrete harmonic cohomology gener-
ators, encoded as columns of a matrix BA ∈ R

|EA|×2g. We repeat
the same process on B to compute BB ∈ R

|EB|×2g. Note that (11)
and (13) imply that these 1-forms are integral, i.e., they have inte-
ger integrals along all cycles (cf. Section 3.2), in particular 1 along
respective dual basis cycles.

5.4. Periodic Encoding

Encoding. Given an integral closed 1-form a j , we compute a real-
valued scalar potential φ j : V →R, defined on vertices, by integrat-
ing a j along edges. Starting at some root vertex, we propagate φ j

by summing up integrated values of a j along an arbitrary spanning

tree. We then define a complex field z j : V → C as z j = eφ j2πi, see
Fig. 5c, i.e., we use φ j as the argument of a unit complex number.

While φ j depends on the choice of tree and has discontinuities
(across the tree’s cut locus), z j is continuous and unique, i.e., inde-
pendent of the tree and its root (up to a constant phase shift). This
is due to the fact that a j is closed and integral, implying that φ j has
integer jumps at all discontinuities (see Appendix B).

Decoding. A 1-form â j is easily recovered from the complex
field z j: On each edge epq ∈ E, we compute the value of â j as the

smallest angle difference between the arguments of z
j
p and z

j
q:

â
j
pq =

1
2π

arg
(

z j
q/z j

p

)

. (14)
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Figure 6: Transport of a smooth periodic potential under a sparse

map f̃ between surfaces: Samples from a complex field (a) on A are

mapped via point-to-point correspondences (b-c) and harmonically

extended to a dense, smooth field on B via interpolation (d).

where arg(z) ∈ [−π,π) is the argument of z ∈ C. Note that the re-
covery is exact (â j = a j) as long as |a j

pq|<
1
2 for each edge epq.

5.5. Periodic Potential Mapping

If the input map representation f̃ directly allows the transfer of
scalar fields from VA to VB , we can immediately apply it to trans-
fer the periodic potential z j of each cohomology representative a j

from A to B as f̃ (z j) ∈ VB → C, see Fig. 5d. Otherwise, if f̃ only
defines sparse correspondences (pa, pb) ∈ A×B, we define f̃ (z j)
on B as a field z̃ j that smoothly interpolates sparse mapped values
(Fig. 6). One simple way is to obtain z̃ j as a least-squares minimizer
of a set of interpolation and smoothness terms: For each correspon-
dence (pa, pb), we define a fitting term ‖z̃ j(pb)− z j(pa)‖

2 (using
barycentric interpolation if pb lies inside a face). We add the har-
monicity term ‖∆ z̃ j‖2 as a regularizer with a small weight, 10−3

in our experiments.

We then decode the periodic potential f̃ (z j) for each j and de-
note the resulting set of 1-forms by f̃ (BA)∈R

|EB×2g|, see Fig. 5e.
While for maps of very low quality or high distortion and sparsity
the period ambiguity of (14) might locally be resolved in a way that
does match the intent, the global nature of the following procedure
gracefully deals with such sporadic effects.

5.6. Symplectic Cohomology Matching

We can now infer a cohomology map f ∗ (represented by M ∈
Z

2g×2g) from the above defined action of f̃ on BA. According
to (6), the cohomology map f ∗ is induced by the images of closed
1-forms from A under f̃ . In particular, for any basis element
a j ∈ BA, it is

f
∗([a j]) = [ f̃ (a j)]. (15)

In coefficients: [a j] = [BAe j], where e j ∈ Z
2g is a standard unit

vector. Using (9), we can represent f ∗ by M, so (15) becomes

[BB
Me j] = [ f̃ (a j)].

Therefore, for any basis cycle bi ∈ BB, we have∫
bi

[BB
Me j] =

∫
bi

[ f̃ (a j)].

With bi = BBei and (3) the left-hand side becomes 〈ei,Me j〉 =
Mi j . On the right-hand side, we can drop the brackets and obtain

Mi j =
∫

bi

f̃ (a j), or in matrix form: M = B
B

f̃ (BA). (16)

Having computed the images f̃ (a j) of basis 1-forms (Sec. 5.5), we
can use (16) to immediately read off the coefficients of M, repre-
senting the induced cohomology map f ∗.

For input maps f̃ that are dense and reasonably close to a home-
omorphism, (16) will recover its induced cohomology map. How-
ever, in the presence of map defects like non-injectivities or under-
sampling of topological features, it is possible that the interpolated
images f̃ (a j) “snap” into unintended cohomology classes, become
linearly dependent, or degenerate to trivial exact 1-forms. By addi-
tionally enforcing the symplectic constraint (10), it can be ensured
that, regardless of such deficiencies, the inferred cohomology map
is compatible with a true homeomorphism. This can be achieved by
satisfying (16) in the constrained least squares sense:

min
M

∥

∥M−BB f̃ (BA)
∥

∥

2
F

s.t. (10), M ∈ Z
2g×2g.

(17)

In practice, we observe that a variation of this formulation is
much more robust in particular to low-quality input maps f̃ : In-
stead of comparing cycle integrals of 1-forms (as effectively done
in (17)), we infer M by directly and globally measuring similarity
of these 1-forms. This corresponds to a minor change to (17):

min
M

∥

∥B
B

M− f̃ (BA)
∥

∥

2
F

s.t. (10), M ∈ Z
2g×2g,

(18)

i.e. a multiplication with BB from the left (and using BBBB = I).
This is a quadratic integer problem under quadratic equality con-
straints. The solution variables are the (2g)2 integer entries of M.
The matrix equality constraint (10) can be encoded coefficient-
wise; due to antisymmetry of ΩA and ΩB (which are constant ma-
trices computed from the intersection patterns of the chosen bases
BA, BB), it suffices to encode the strictly upper triangular part. Due
to the small problem size, (18) can be efficiently optimized by off-
the-shelf branch-and-bound solvers. We use Gurobi [Gur21] in our
experiments. After a cohomology map M has been computed, we

obtain the desired homology map as M = M
−T

.

Compared to (16), where local map defects can induce unex-
pected cohomology classes, this formulation is more resilient, as
the correct cohomology can still be inferred from correct alignment
of 1-forms in reliable regions. The symplectic constraint on M fur-
ther restricts the search space by ruling out maps incompatible with
any homeomorphism, globally regularizing the process.

6. Results and Applications

We demonstrate the applicability of our homology inference
method for different input map representations (Sec. 6.1) and its
robustness to various map defects (Sec. 6.2). The computed homol-
ogy maps can be used to transfer data in a homologically correct
manner (Sec. 6.3) and to topologically control the construction of
compatible surface decompositions, e.g. cut graphs or layout em-
beddings (Secs. 6.4–6.5), and therefore proper homeomorphisms.

To visualize homology classes we will show smooth representa-
tive cycles, selected for clarity and visibility.
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Figure 7: (a): We establish point-to-point correspondences be-

tween two shapes via a rough rigid alignment and closest-point

projections. (b): The resulting map f̃ is discontinuous and heavily

undersamples or double-covers certain regions of the target sur-

face. (c): Still, we infer the correct homology map f∗.

6.1. Input Map Representations

We show examples of homology maps inferred from different types
of input maps: densely sampled (Fig. 2) or functional maps (Fig. 8),
and sparse (Fig. 9) or partial correspondences (Fig. 17).

Due to its high tolerance to map defects, our inference method
can be used to quickly generate valid topological correspondences
from ad-hoc inputs. One example are vertex-to-surface maps ob-
tained by roughly aligning two shapes in ambient space (e.g. by
a rigid transformation) and generating correspondences via simple
closest-point projections from one surface to the other (Fig. 7a).
While such maps are typically discontinuous and non-injective
(Fig. 7b), they often suffice for the inference of the desired homol-
ogy map (Fig. 7c).

6.2. Robustness

In Fig. 12 we evaluate the robustness of our method with respect
to map imperfections such as noise, outliers, and sparsity. Start-
ing from a dense high-quality input map, we progressively de-
grade the quality of the (sampled) map until the inferred result
switches from the original homology map to a different one. First,
we simulate noise by displacing map samples on the target surface
along random geodesic paths. Our method still tolerates an average
geodesic displacement of 24% of the bounding box diagonal and
only switches to a different homology at 32%. Second, we exam-
ine resilience towards outliers by randomly permuting a subset of
samples. Due to the global nature of our objective (18), map infer-
ence succeeds even in the presence of 60% outliers. Third, we ob-
serve robustness towards very sparse inputs: dropping all but 0.5%
(12 samples) of the input map still yields the correct homology in

Figure 8: (a): A functional map f̃ represented by 50× 50 coeffi-

cients. (b): The homology map f∗ obtained from f̃ by our inference.

Figure 9: Homology map f∗ computed from an input map f̃ repre-

sented by a very sparse set of 29 landmark correspondences on a

pair of genus 4 surfaces.

this experiment. Fig. 13 correspondingly reports the cohomology
matrices M obtained in these experiments. To demonstrate the ef-
fect of the symplectic constraint, we also show the real-valued so-
lutions to an unconstrained version of the optimization problem.

This high resilience to input defects is specific to the similarity-
based inference formulation (18). In contrast, the integration-based
inference formulation (17) is highly sensitive to mapping and inter-
polation errors, as demonstrated in Fig. 11.

Besides the ability to cope with various kinds of sampling er-
rors, we also demonstrate robust inference in the presence of large
distortions and maps far from isometry in Figs. 9, 10b, 11, and 17.

In Figs. 1, 2, and 16 we emphasize that our method extracts topo-
logical information from an input map rather than aiming to find a
natural matching between two shapes. In all three examples, our
inferred homology maps faithfully reproduce the intentional twists
indicated by the input maps.

Finally, Fig. 14 displays the successful handling of a challenging
combination of higher-genus surfaces and low-quality input map.

6.3. Homological Data Transfer

Induced (co)homology maps can be used to directly transfer data
between the (co)homology bases of corresponding objects. One ex-
ample are harmonic tangent vector fields, which can be expressed
as real-valued linear combinations of harmonic fields in a cohomol-
ogy basis. Fig. 10a demonstrates the transfer of a harmonic vector
field from one surface to another via the cohomology map f ∗, pro-
ducing fields with the same flow around corresponding handles.

Figure 10: Left: Transfer of harmonic vector fields (via transfer of

real-valued coefficients between cohomology bases). Right: Trans-

fer of direction field turning numbers along homology generators.
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Figure 11: Due to non-surjectivity and severe misalignment in the input f̃ (a), the interpolated mapping of periodic potentials (b) may

yield non-closed 1-forms. In such cases, an integral-based homology inference via (17) may fail easily (c) as it considers integrals along

representative paths only; the global similarity-based inference (18) can compensate for such errors and here yields the expected result (d).

Figure 12: Robustness towards different input map defects. Noise:

samples are randomly displaced by an average geodesic distance.

Outliers: a subset of samples is randomly shuffled. Sparsity: only a

small subset of samples is kept (11 samples in (c), 10 in (d)). Our

method infers the correct homology map in columns (a-c) and only

reports a different (but valid) homology in column (d).

Fig. 10b shows a regular cross field on a genus 1 surface. Its
global structure can be encoded as turning numbers along basis cy-
cles. Using a homology map f∗, we can transport these turning
numbers to reconstruct a field with the same global behavior on
another object.

6.4. Compatible Cut Graph Generation

One way to construct a homeomorphism is by cutting two sur-
faces into disks along compatible cut graphs and overlaying them
in a common domain. Fig. 15 shows the construction of cut graphs

Figure 13: Cohomology matrices resulting from our optimization.

Columns correspond to Fig. 12. Per category: Top rows show the

real-valued solutions to the unconstrained problem. Bottom rows

show our results, subject to symplectic and integer constraints,

which are always valid (co)homology maps. Matrix entries suffer-

ing from missing or ambiguous information in the unconstrained

case can be faithfully completed via the symplectic constraint.

rooted in a single vertex: Cuts are generated by successively em-
bedding 2g non-separating shortest paths that maintain the same
cyclic order around the root vertex on both surfaces.

While this process produces cut graphs of compatible connec-
tivity, the topology of embedded cut paths arises from a sequence
of greedy decisions, which in general cannot be expected to corre-
spond semantically between the two shapes (Fig. 15a).

However, if semantic correspondence information is given in
form of an input map f̃ , we can use the induced homology map f∗
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Figure 14: Homology map f ∗ inferred from a low-quality map (in-

set) on a topologically complex surface of genus 12.

to further constrain the topology of matching paths during cut graph
construction: Specifically, for each cut path in homology class [c]
on A, we find a matching cut path on B as a shortest path in homol-
ogy class f∗([c]). Shortest paths under homology constraints can be
computed using Dijkstra’s algorithm on the universal cover of the
target surface B, i.e. on a graph with nodes VB ×Z

2g, and count-
ing intersections with basis cycles BB . Fig. 15b shows the result:
Matching cut paths respect topological correspondences specified
by the input map and wrap around handles in the same way on
both surfaces. Cutting and overlaying both surfaces yields a home-
omorphism with the intended map topology (Fig. 15c). It provides
a starting point for a subsequent continuous optimization of map
geometry – which is necessarily restricted to the initial topology.
Fig. 17 shows another example.

Note however, that path homology constraints do not uniquely
determine topology: There can be topologically distinct paths in
the same homology class (e.g. by including twists around separat-
ing cycles, further discussed in Sec. 7). Our homology-constrained
shortest-path computation effectively resolves these remaining am-
biguities in a greedy manner by picking the shortest option.

6.5. Layout Transfer

Similarly to the above cut graph scenario, a homeomorphism can
also be established by embedding a given layout structure into two
target surfaces. Again, the topology of the resulting map is decided
by a sequence of path embeddings. Choosing shortest paths (as
commonly done) thus renders the resulting topology solely depen-
dent on surface geometry.

Our framework adds explicit control over the map topology by
supplying additional information via the input map. In Fig. 16 a
twist in one of the surfaces is also indicated in the map f̃ and is
successfully reproduced in the layout embedding by constraining
shortest paths on the target surface to the inferred map homology.

6.6. Computational Cost

We compute harmonic cohomology bases (Sec. 5.3) by solving the
linear system (11)–(13), via sparse Cholesky decomposition. In all
our examples (meshes of up to 31k vertices) this step never took
longer than 1 second.

The remainder of the run time is dominated by solving the in-
teger quadratic program (18) (symplectic cohomology matching,

Figure 15: Generating compatible cut graphs via greedy short-

est path embeddings (a) offers little control over the resulting map

topology. Given a homology map (Fig. 14), we can constrain paths

on both surfaces to matching homology classes (b), here yielding a

homeomorphism with the desired topology (c).

Sec. 5.4), whose number of variables is quadratic in the genus. In
practice, we observe that the computational cost depends largely
on the quality of the input map. In our experiments, we use a time
limit of 60 seconds for the branch-and-bound solver, which is only
reached by challenging inputs such as in Fig. 14 (where the re-
turned best-so-far solution is already the semantically correct one),
or by the artificially degraded maps in Fig. 12 columns (c) and (d).
In all other experiments, the problem was solved in less than 9 sec-
onds, in many cases (Figs. 1, 2, 5, 10, 16) below 1 second.

Figure 16: (a-b): Input map f̃ between surfaces A and B indicat-

ing a twist. (c): Coarse layout embedded on A. (d): Embedding the

same layout structure on B via shortest paths does not capture the

desired twist. (e): Via the inferred homology map f∗, we constrain

the resulting layout embedding to the expected topology.
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Figure 17: Inferred homology map (top). Constructing a home-

omorphism from compatible cut graphs without homology con-

straints (middle) is highly susceptible to topological artifacts. With

homology constraints (bottom), we obtain a homeomorphism in the

desired homotopy class, ready for geometric optimization.

7. Limitations and Future Work

For very sparse input maps f̃ , the transport of 1-forms via inter-
polation of scalar fields (Sec. 5.5) deteriorates if topological fea-
tures are undersampled (e.g. entire handles not covered by f̃ ).
Depending on the number and location of sam-
ples, harmonic interpolation may not recover the
full periodic signal, as illustrated in the inset. This
can result in 1-forms mapped to potentially unin-
tended cohomology classes. Nevertheless, due to
the enforced symplectic consistency and the reg-
ularizing effect of its global nature, our inference
still often yields the intended or expected overall
homology map in such cases. Note that one cannot easily argue
about the result being correct or incorrect, because the input map,
especially in sparse settings, is inherently ambiguous topologically.

Formulation (18) relies on matching images of harmonic fields
from A under f̃ against harmonic fields on B. This measure is ideal
for maps f̃ that preserve harmonicity, such as isometries, because
in this case it effectively matches cohomology classes via canoni-
cal representatives. While our experiments show that (18) performs
robustly even for maps far from isometry, it could be interesting
to explore whether an adapted measure that explicitly accounts for
non-isometry can offer theoretical or practical benefits.

We have focused our attention on closed surfaces. Extension to
surfaces with boundary will be a worthwhile direction for future
work. It will require generalized notions and generalized construc-
tions of (co)homology bases. As a special case, this may also allow
considering homology with respect to punctured surfaces.

In Secs. 6.4 and 6.5 we have shown how a homology map can
be used to constrain the topology of paths, e.g., for the construc-
tion of cut graphs, layout embeddings, or homeomorphisms. How-
ever, homology does not fully determine path topology in general:

Figure 18: An input map with a Dehn twist around a separating

cycle, a topological feature that cannot be captured by homology.

The inferred homology map is identical to the one in Fig. 2 top.

For surfaces of genus g ≥ 2, there are homologous paths that are
non-homotopic, i.e. that cannot be continuously deformed into one
another (differing, e.g., by Dehn twists along
separating cycles like in the inset) – homology
is sometimes said to be a “linear approxima-
tion” of homotopy. This gap between homology
and homotopy extends to the topology of maps,
where it is captured by the quite intricate Torelli
group [FM11, Ch. 6; HM12]. Elements of the
Torelli group are homologically indistinguishable: The twisted in-
put map in Fig. 18 induces the same homology map as the “identity
map” (Fig. 2 top). The direct inference of a homotopy map is there-
fore an attractive goal. The non-commutativity of the Torelli group
and the consequent fact that homotopy classes cannot be dealt with
by means of linear algebra poses a key challenge in this regard.
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Appendix A: Symplectic Constraint

If two cycles c1, c2 on A have intersection number ωA(c1,c2) on
surface A, their images f (c1), f (c2) under a homeomorphism must
have the same intersection number on B. This also applies to their
homology classes:

ωA([c1], [c2]) = ωB([ f (c1)], [ f (c2)]).

Following (5), f induces a homology map f∗, i.e.

ωA([c1], [c2]) = ωB( f∗([c1]), f∗([c2])).

Let BA, BB be homology bases for A, B. Then, we can express
homology classes using coefficients [c1] = [BAh1], [c2] = [BAh2]:

ωA([BAh1], [BAh2]) = ωB( f∗([BAh1]), f∗([BAh2])).

In this representation, we can replace f∗ by M via (7)

ωA([BAh1], [BAh2]) = ωB([BBM(h1)], [BBM(h2)])

and compute intersection forms using (1) as

〈h1,h2〉ΩA
= 〈M(h1),M(h2)〉ΩB

.

Requiring this for all homology classes yields the constraint

ΩA = M
TΩBM,
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ensuring that the homology map represented by M preserves inter-
section numbers between pairs of cycles transported from A to B.

Appendix B: Periodic Scalar Potentials of Closed 1-Forms

Consider a closed 1-form a j on A such that
∫

c a j ∈ Z for any cy-
cle c. According to the Poincaré lemma, on any contractible do-
main, there exists a 0-form (i.e., scalar field) φ that has a j as its
gradient, i.e. a j = dφ. Since A is connected, its universal cover C is
contractible. We can lift a j to C as â j, which is a closed 1-form on
C. Therefore, there exists some φ : C → R on the universal cover
with dφ = â j . Then, φ is periodic in the sense that φ(c1) = φ(c2)+n

with n ∈ Z for any pair of points c1,c2 ∈ C with identical projec-
tions p(c1) = p(c2).

Proof: As p(c1) = p(c2), there is a path γ connecting c1 and c2 in
C. Via Stokes’ theorem, φ(c2)−φ(c1) =

∫
∂γ φ=

∫
γ dφ=

∫
γ â j. Since

â j is a lift of a j, it is
∫

γ â j =
∫

p(γ) a j . The projection p(γ) onto A is

a closed curve, i.e. a cycle, hence
∫

p(γ) a j = n is an integer. �
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