
Eurographics Symposium on Geometry Processing 2021
K. Crane and J. Digne
(Guest Editors)

Volume 40 (2021), Number 5

Developable Approximation via Gauss Image Thinning

Alexandre Binninger∗ Floor Verhoeven∗ Philipp Herholz Olga Sorkine-Hornung

ETH Zurich, Switzerland

Input mesh and its Gauss image Piecewise developable mesh with thinned Gauss image Gauss curvature

Figure 1: We present a method for approximating an input mesh with a piecewise developable surface by thinning its Gauss image. Using an
iterative algorithm we are able to concentrate Gauss curvature on creases that naturally emerge over the course of the iterations.

Abstract

Approximating 3D shapes with piecewise developable surfaces is an active research topic, driven by the benefits of developable
geometry in fabrication. Piecewise developable surfaces are characterized by having a Gauss image that is a 1D object – a
collection of curves on the Gauss sphere. We present a method for developable approximation that makes use of this classic
definition from differential geometry. Our algorithm is an iterative process that alternates between thinning the Gauss image of
the surface and deforming the surface itself to make its normals comply with the Gauss image. The simple, local-global structure
of our algorithm makes it easy to implement and optimize. We validate our method on developable shapes with added noise
and demonstrate its effectiveness on a variety of non-developable inputs. Compared to the state of the art, our method is more
general, tessellation independent, and preserves the input mesh connectivity.

CCS Concepts
• Computing methodologies → Shape modeling; Mesh geometry models;

1. Introduction

Developable surfaces are an important class of shapes in geometric
modeling, as they can be manufactured by pure bending of sheet ma-
terials, without stretching or shearing. As such, developable surfaces
are often used in architectural design, where surfaces are composed
of panels of stiff materials, as well as in industrial design of prod-
ucts that can be manufactured with a cylindrical CNC milling tool.
Designing developable surfaces can be challenging due to the highly
constrained nature of the shape space, and in practice, typically
only relatively simplistic smooth developable surfaces are used, or

*joint first authors

piecewise developable surfaces consisting of a low number of pieces.
A recent surge in research focusing on approximating general 3D
shapes with piecewise developable surfaces highlights the desire to
design developable surfaces without needing to worry about their
constrained nature during the design phase. We discuss past and
current research in this area in Sec. 2.

In this paper, we propose a general method for piecewise devel-
opable approximation that is based on a well known characterization:
the Gauss image (i.e., the set of normals) of a piecewise developable
surface is one-dimensional: it may consist of several spherical, not
necessarily simple curves and isolated points. Finding a piecewise
developable approximation of a shape hence amounts to finding
a surface whose geometry is close to the input and whose Gauss

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14374

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14374

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

image is “thin”. Our approach does not rely on a segmentation of the
given shape into pieces that should be individually approximated by
developables, but rather optimizes the developability of the shape as
a whole. Our method alternates between a local step that optimizes
the surface normals to form a curve network-like Gauss image, and
a global step that deforms the surface to approach the target normals.
We preserve the connectivity of the input mesh, thereby allowing
to carry over attributes of the input if desired, such as spatially
varying material properties or texture maps. Our algorithm does not
explicitly rely on principal curvature information in its modeling
of developability, and the results are tessellation independent to a
significant degree.

We show the effectiveness of our algorithm in Sec. 4, where we
apply our method to various non-developable surfaces. We compare
our results with the state-of-the-art, and we also validate that our
method succeeds to recover developable surfaces from ground-truth
developables with added noise. The algorithm is concise and simple
to implement; we will release our implementation publicly to foster
further research and practice in this area.

2. Related work

There is a substantial and diverse body of literature on developable
surfaces in mathematics and geometric modeling. We touch on the
most relevant related works here and refer the interested reader to
the detailed surveys in [Rab20, SAJ20, IRHS20].

2.1. Representation and modeling of developable surfaces

Freeform modeling of developable surfaces is a task that received
a lot of research attention over the last decades. The main goal is
to find a suitable representation of developables that incorporates
their constrained nature in a straightforward manner, while also
providing flexibility for the design process. Attention has been de-
voted to smooth representations of developables, e.g., via B-spline
surfaces [TBWP16, GSP19] or via parametric curves with asso-
ciated envelopes of rectifying planes [BW07] or tangent planes
[BR93, PW99] – as well as discrete representations, which can af-
ford greater flexibility. Prominent discretization examples include
strips of planar quadrilaterals (PQ strips) [LPW∗06, VVHSH21],
ruled meshes [RSW∗07, SVWG12], discrete orthogonal or parallel
geodesic nets [RHSH18, WPR∗19], as well as discrete isometries of
planar checkerboard patterns [JWR∗20].

2.2. Developable approximation

The stream of works above enables modeling developable surfaces
from scratch in a flexible and interactive manner. However, in some
scenarios it is desirable to approximate an already existing, but
not necessarily developable shape with developable pieces, e.g.,
for the purpose of rationalization for fabrication. The approxima-
tion approaches can be categorized into methods that “wrap”, or fit
smooth or discretized developable models to the input geometry,
and methods that modify or deform the input geometry to optimize
a developability criterion. The former approach guarantees that the
output is (piecewise) developable in the sense of the used devel-
opable representation, but it typically requires segmenting the input

surface into patches that are already close to being developable. The
latter approach enables a global optimization of the entire surface,
where the seams between developable patches and cone apexes
may emerge naturally instead of by pre-segmentation heuristic. Our
method belongs to this category. The optimization may not reach
a global optimum, or the proximity to the input may be traded for
developability in some cases, or for the amount of seams, which is
also the case with the “wrapping” approaches.

Approximation by developable wrapping. Liu et al. [LLH09] ap-
proximate rectangular freeform parametric surfaces with a collection
of developable strips fitted to strips on the input surface that are
obtained via slicing by geodesics. This approach is similar to an
earlier method by [Hos98], where the input is restricted to surfaces
of revolution and the pre-segmentation into strips is done along the
direction that follows the rotation axis. Triangle and PQ strips as
discrete developable surfaces are employed in [MS04, SPSH18];
explicit fitting of cones is used in [STL06, MGE07]. Generating a
developable strip that approximates the input can be done by fit-
ting a curve (i.e., a 1D object) in the projective space of tangent
planes [Pet04]. Peternell [Pet04] uses the moving least squares thin-
ning procedure by Lee [Lee00] on the points in this space, and then
reconstructs the developable patch by computing the analytical rul-
ings from the curve, as in [BR93]. The method is applicable only
to dense scans of developable surfaces comprised of a single torsal
patch, as the fitted curve must be a single connected component
without bifurcations.

More recently the developable approximation of more general
surfaces, and with a wider variety of developable pieces has received
attention. Ion et al. [IRHS20] approximate general input meshes by
wrapping them with developable patches, represented as discrete
orthogonal geodesic nets (DOGs) [RHSH18]. They initialize the
DOGs by selecting a sparse set of geodesic curves and aligning the
DOGs coordinate curves to them. After wrapping with disparate
developable patches, they employ a graph-cut algorithm to assign
each input mesh vertex to a specific patch, followed by a nonlinear
projection onto the patch collection to yield a piecewise developable
approximation. The method is not greatly sensitive to the input tes-
sellation and generates developable pieces of general geometry as
opposed to single torsal patches, but the technique is quite com-
plex, consisting of multiple stages and relying on segmentation and
clustering heuristics.

Approximation by optimizing developability. Different devel-
opability criteria can be optimized to make the input surface more
developable. Wang and Tang [WT04] propose to minimize Gauss
curvature (angle deficit), which works well when the input surface is
already almost developable, but suffers from instability on general
inputs [SGC18, IRHS20]. A number of works use a common prop-
erty of cones, cylinders and planar patches, i.e., developables with
constant slope: their surface normals have a constant angle with a
certain axis vector [JKS05, DJW∗06, JHR∗15, GSP19]. This crite-
rion excludes the more general tangent developable surfaces, but
they can be locally approximated with constant slope developables
to second order [GSP19]. Julius et al. [JKS05] use this criterion for
segmentation into near-developable patches that can be flattened
with low distortion, whereas Decaudin et al. [DJW∗06] and Jung

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

290

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

et al. [JHR∗15] improve the developability of a garment piece by
employing this criterion in optimization. They first locally fit a cone
or a plane to each surface point and then deform the mesh to match
the normals found in the first step by solving a Poisson equation,
similarly to our approach. However, in their context of garment
modeling, the input surfaces are a priori close to developable, and
the boundaries and seams are predefined. In contrast, our inputs are
general and we do not assume a segmentation or cuts, which necessi-
tates a more elaborate, iterative optimization to enable the seams to
emerge automatically and to reach a high degree of developability.

Stein et al. [SGC18] introduce a novel triangle mesh developa-
bility criterion: every vertex should have an in- and outgoing edge
that together divide the vertex star into two sets of triangles, such
that the triangles in each set share a normal (or the entire star is
planar). The divider edges are colinear and model the local ruling.
This developability criterion is optimized via a surface flow, where
the rulings and seams arise naturally, yielding piecewise developable
surfaces with highly smooth parts in between the sharp seams. The
limitation of this method is the dependence on the input meshing,
which should provide the topological ability to align the edges to
eventual rulings and hence biases the outcome.

When the input is restricted to height fields, the developability
can be characterized by the height field Hessian being rank deficient.
Sellán et al. [SAJ20] use this criterion to design a developability
optimization. Their method is independent of input tessellation and
resolution and also allows for the interpolation of a set of height
constraints with a developable height field.

Gavriil et al. [GSP19] increase the developability of freeform
architectural surfaces by nonlinear optimization of a similar criterion
to [JKS05,DJW∗06, JHR∗15], namely by adapting the Gauss image
to be locally near-planar. In contrast to our method, the method
in [GSP19] is restricted to B-spline surfaces as input, which do
not contain the levels of noise, sharp features and general topology,
as in our inputs. Additionally, they exclude surfaces with wrinkles
or folds and as such also surfaces that are piecewise developable,
focusing on single smooth developable patches.

3. Method

A smooth developable surface is a ruled surface with the surface
normal being constant along each ruling. Consequently, such a
surface is characterized by the Gauss image being one-dimensional:
it is a network of curves on the Gauss sphere, where the “junction
points” correspond to planar parts on the surface and the curves
correspond to so-called torsal patches (developable patches with
non-vanishing mean curvature). Piecewise developable surfaces
are shapes that consist of smooth developable patches connected
to each other via crease curves. Piecewise developables, as well as
developables containing creases or curved folds, also have 1D Gauss
images that consist of multiple connected components and may
include isolated points corresponding to planar patches delineated
by crease curves (see Fig. 1). If a surface has a 1D Gauss image, it
is piecewise developable.

Fitting a piecewise developable surface to a given shape can
be formulated as finding a sufficiently close surface whose Gauss
image is one-dimensional. A desirable fit approximates the input

|V|= 3k |V|= 14k |V|= 60k

Figure 2: Our method generates comparable results regardless of
input resolution. Higher resolutions lead to smoother surfaces and
crisper seams.

shape not just in terms of Euclidean distance but also in terms of
higher order properties, such as normals. Therefore it is reasonable
to ask that the 1D Gauss image of the approximating developable
is close to the original (two-dimensional) Gauss image in some
sense. It is tempting to focus solely on “thinning” the input Gauss
image, but this poses two challenges: first, a surface in 3D cannot
be reconstructed from a set of normals alone, and second, Gauss
images can have very complex structures, such that finding a suitable,
globally approximating 1D structure is not easily defined.

Our proposal is to gradually deform the input surface towards a
piecewise developable shape by guiding the deformation through
local thinning of the Gauss image. We consider local neighborhoods
on the Gauss image and approximate each neighborhood by an arc,
moving the center point of the neighborhood onto the arc. This
idea is reminiscent of explicit surface smoothing, where points are
iteratively moved to a locally optimal location: even though these
operations are very local, they reliably lead to a globally smoother
shape. Similarly, we observe a globally smooth and one-dimensional
structure emerging from our local operations.

To evolve the input surface according to the progressively updated
normals, we follow the local-global approach, similar to the as-rigid-
as-possible surface modeling method [SA07]. We alternate between
the following steps:

1. Locally optimize the Gauss image to become more curve
network-like.

2. Globally deform the surface to comply with the optimized
Gauss image.

In the local step (Gauss image thinning) we locally approximate the
Gauss image by arcs. In the global step (surface deformation), we
deform the shape from its current state to one that strives to match
the surface normals to the optimized normals found in the previous
local step. In the following sections we give details on these two
components of our algorithm.

In this paper we work with discrete surfaces, specifically with
triangle meshes. The input mesh is denoted byM = (V,F) with
vertex coordinates V, and our outputM′ has the same connectivity
and new vertex positions V′. For simplicity, we center the input
meshM and normalize it to fit inside the unit-diameter sphere.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

291

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

3.1. Gauss image thinning

The local step seeks to find a contracted version of the Gauss image
that locally drives the Gauss image to be closer to a 1D object. We
initialize the Gauss image using the face normals ofM, computed
as the cross product of triangle edges.

For each face f ∈ F with normal n f , we compute an updated
normal n′f as follows. Denoting b f as the barycenter of face f , we
employ a breadth-first search to collect a connected neighborhood
of facesN f such that

∀g ∈N f , ‖b f −bg‖ ≤ r and n f ·ng ≥ cosω. (1)

The combined criterion above defines a neighborhood of faces that
is small both on the surface as well as on the Gauss image: its radius
on the mesh is bounded by r and on the Gauss sphere by ω. Notice
that r is a bound on the Euclidean distance inR3, while ω bounds
the geodesic distance ^(n f ,ng) on the Gauss sphere. See Fig. 5 for
an illustration of the selected neighborhoods.

The normals indexed by the set N f are used to estimate a best-
fit plane whose intersection with the Gauss sphere defines a 1D
approximation of the normal set. To this end we perform weighted
principal component analysis (PCA) on the Gauss image of N f .
Specifically, we assemble the normal vectors of faces g ∈N f into
a matrix X f ∈ R3×|N f |. In order to find a robust fit, we weight
the selected normals based on their geodesic distance on the Gauss
sphere to the normal n f :

wg = exp

[
−
(
^(n f ,ng)

ωσ

)2
]
, (2)

where σ controls how fast the weights fall off with distance.
Throughout our experiments we use σ = 2. The plane with the
smallest weighted distance in the least squares sense to the given
normal vectors is computed by considering the singular value de-
composition of the weighted scatter matrix

A f = ∑
g∈N f

wgngnT
g = X f WXT

f ,

where W is a diagonal matrix of the weights
wg. The first two right singular vectors span
the plane and define an arc on the Gauss
sphere (see inset). We project n f onto that
arc by projecting it onto the plane and renor-
malizing, leading to the updated normal n′f .

The angle threshold ω controls the normal
cone of the neighborhoodN f , such that our
neighborhood selection process is similar to bilateral filtering. The
size of the normal cone determines how aggressively we average
normals and therfore decides about how large the developable pieces
approximating the surface become. At the same time, input meshes
might exhibit noise or very small features spanning a large normal
cone. For this reason we progressively tighten the normal cone.
Starting with a cone angle ωstart = 25◦, we reduce it by a constant
factor at each iteration until we reach the angle ωmin, which is a
parameter of our method. The cone angle for the k-th iteration is
computed according to the formula

ω = max{ωstart ·0.95k, ωmin}. (3)

Increasing either, ωstart or ωmin, or choosing a larger falloff factor
leads to smoother results consisting of a smaller number of devel-
opable pieces, however, we found it sufficient to only modify ωmin
in order to control the characteristics of the result (see Sec. 4.1).

3.2. Surface deformation

The local Gauss image optimization step provides us with updated
face normals n′f . The global surface deformation step finds vertex
positions V′ = {v′1, . . . ,v′|V|} such that the mesh faces approxi-
mately comply with these normals. To this end, we employ Poisson
mesh deformation [YZX∗04, BS08], similarly to the global step of

ARAP [SA07, LZX∗08]. Specifically, we
rotate each current mesh triangle f ∈F sep-
arately by a rotation R f such that its normal
becomes n′f , and we solve a Poisson sys-
tem to stitch the disparate triangles together.
We pick R f as the rotation about the axis
n f × n′f by the angle α = ^(n f ,n′f), i.e.,

the shortest-path rotation.

We opt for rotating individual triangles, as opposed to overlapping
vertex neighborhoods as in [SCOL∗04, SA07], in order to afford
the formation of sharp creases. While generally, non-overlapping
neighborhoods may lead to less smooth deformations [JBK∗12], in
our case the effect is mediated by having smooth prescribed normals
(except across creases).

The stitching deformation objective of the global step is therefore

Edeform(V
′) =

1
2 ∑

f∈F
∑

(i, j)∈ f
ŵi j‖(v′i−v′j)−R f (vi−v j)‖2. (4)

We sum over the edges of each face f = {(i1, j1),(i2, j2),(i3, j3)},
with properly oriented edges. The weight ŵi j is the cotan weight of
the oriented edge (i, j) with respect to the triangle f containing it:
ŵi j =

1
2 cotϕk, where ϕk is the angle lying opposite of edge (i, j) in

the triangle. The objective Edeform(V′) is quadratic in V′.

In order to regularize our developability deformation process, we
add a quadratic data term

Epos(V′) =
1
2
‖M(V′−V)‖2

F (5)

and a quadratic fairness term

Efair =
1
2
‖LV′‖2

F , (6)

where M is the barycentric mass matrix and L is the cotan Laplacian
matrix. The total deformation objective therefore becomes

E(V′) = Edeform(V
′)+λpos Epos(V′)+λfair Efair(V

′), (7)

which can be minimized by solving the sparse linear system

(L+λpos M+λfair LTL)V′ = B+λpos MV, (8)

where B contains expressions in R f ’s and V stemming from the
constant term in the gradient of Edeform and Epos.

We use the cotan Laplacian L and the mass matrix M of the initial
mesh, which enables us to pre-factor the system matrix. In principle

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

292

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

it is possible to recompute the matrix at every iteration, however, we
have found no significant influence of recomputation on the results
of the deformation procedure, and maintaining the reference matrix
fixed may in fact stabilize the iterative deformation flow [KSBC12].
We find the parameters λpos and λfair to work consistently well over
a large range of values without the need to pick specific values
to guarantee a satisfying result. However, these parameters can be
used to tune the result in the obvious way – making it smoother or
keeping it closer to the original geometry (see Sec. 4).

Our local-global algorithm is summarized in Algorithm 1. We
provide the code in the supplemental material.

Algorithm 1: Developability-increasing flow
CenterM at origin and normalize to unit bounding sphere
Initialize V′← input mesh vertex positions
k← 0
repeat

V← V′

N← ComputeFaceNormals(V,F)
for f ∈ F do
N f ← Neighborhood(f ,V,N,r,ω)∪{ f}
n′f ← ProjectNormal(n f ,N,N f ,ω)

R f ← ShortestPathRotation(n f ,n′f)
end
V′← DeformSurface({R1, . . . ,R|F|},V)
k← k+1

until k = maxIterations or maxi∈V ‖v′i−vi‖< 10−3;
OutputM′ = (V′,F)

4. Results

We implement our algorithm using libigl [JP∗21] and run it on a
variety of inputs on a standard laptop set up with an Intel i7-1165G7
processor. We test various input geometries, ranging from almost
developable to doubly-curved, see Fig. 13. The developability of
the results can be estimated by their Gauss image and curvature,
while the approximation quality is specified by the Hausdorff dis-
tance to the input mesh. We investigate the impact of the algorithm
parameters, namely the thresholds used in the neighborhood collec-
tion, and we also explore the dependence of the results on the input
meshing. In most cases our algorithm performs reliably for standard
parameters: 100 iterations, ωstart = 25◦, ωmin = 2.5◦, λpos = 10−3,
λfair = 10−5, r = 0.1, and we keep them mostly fixed throughout for
our experiments. However, in order to achieve specific effects, such
as higher abstraction or fidelity to the input surface, these parameters
can be varied.

4.1. Algorithm parameters

The problem of computing developable approximations is charac-
terized by several tradeoffs: approximation tightness vs. number of
creases and developability. The parameters in our method can be
used to steer these tradeoffs, with the minimum cone angle ωmin
being the central parameter.

The parameter ωmin controls the selection of neighboring points
on the Gauss map. A larger value leads to larger neighborhoods with

input ω = 8.5◦ ω = 10◦

(r = 1.0) (r = 1.0)

input r = 0.01 r = 0.1
(ω = 180◦) (ω = 180◦)

Figure 3: Our two neighborhood parameters ω and r are both
needed to prevent oversmoothing and to enable seams to arise.

greater normal variance and hence stronger averaging, resulting in
fewer developable patches, as shown in Fig. 4. As the value of ωmin
increases, the result become more abstract, featuring larger devel-
opable parts . Since normals are very susceptible to noise, we have
to make sure the parameter ωstart is large enough for noisy meshes
(e.g., Fig. 8) to have a stronger initial smoothing effect. If this pa-
rameter is too small, we risk single triangles to be excluded from
local smoothing. In principle, the cone angle could be adapted by an
arbitrary function, however, it should be monotonically decreasing,
and we found the simple formula in Eq. (3) sufficient for all our
examples. The the value of the radius r can be safely chosen smaller
than 0.1 for meshes of higher resolution (more than 50k vertices).
For significantly lower resolutions, one might need to increase r to
ensure that a sufficient number of normals is collected for eachN f
for a stable PCA fit.

To investigate parameter influence, we run an ablation study on
the neighborhood Euclidean radius r and Gauss sphere radius ω.
We vary one of the parameters and set the other parameter high
enough so that its effect on the neighborhood selection is eliminated.
Specifically, we set r = 1 to eliminate the effect of r, since the
mesh is scaled to a sphere of unit diameter, and we set ω = 180◦

to eliminate selection based on angle between normals. To ease
interpretation, we do not apply progressive decreasing of ω in this
experiment, i.e., we do not use Eq. (3). As demonstrated in Fig. 3,
when the neighborhood is determined by the angle between normals
ω alone, a lower ω does not produce developable patches separated
by well-defined seams, while a larger ω struggles to recover the
underlying geometry. When the neighborhood size is steered by r
alone, a large radius produces too coarse an approximation, while a
smaller r sticks more closely to the original geometry with a large
amount of developable pieces. This experiment stresses the signifi-
cance of combining both criteria in neighborhood computation: the

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

293

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

input

ωmin = 2.5, h = 3.43 ωmin = 5, h = 5.07 ωmin = 10, h = 6.86

Figure 4: Increasing the parameter ωmin results in a coarser segmentation into developable pieces and a larger Hausdorff distance (reported
in percentage of the bounding box diagonal).

radius in the spatial domain and on the Gauss sphere, in the spirit of
bilateral filtering.

4.2. Validation and comparisons

The Gauss images of our results indicate that our method succeeds
to deform the input surfaces such that the Gauss image of an initially
non-developable input transforms to one that is more akin to a
collection of curves corresponding to a piecewise developable shape.
Illustrations of these original input Gauss images and our output can
be seen in Figures 1, 12, and 13. On surfaces that are already very
close to developable, such as the Fandisk in Fig. 13, we manage
to thin the curves on the Gauss map even further. The rightmost
column in Fig. 13 highlights that Gauss curvature is pushed towards
the creases between the developable patches and vanishes on the
patches themselves.

Note that when small groups of points appear on the Gauss im-
age which are separate from the curve network, this is due to non-
developable creases. This is in agreement with the goal of piecewise
developable approximation: creating a surface where Gauss curva-

ω = 25◦ ω = 25◦ ω = 10◦

r = 3.0 r = 1.0 r = 1.0

Figure 5: Our collection method selects neighboring faces (orange)
that are close to the reference face (red) in terms of Euclidean and
connectivity distance r without crossing sharp features, as ensured
by a threshold ω on the angles between corresponding normals.

[SAJ20] ours

Figure 6: The method of Sellán et al. [SAJ20] works on height
fields. We compare a result of their method with ours at a similar
resolution.

ture is concentrated on the creases between the developable pieces
that do have vanishing Gauss curvature.

In Figures 12 and 6 we show a comparison with the most recent
works on developable surface approximation: Stein et al. [SGC18],
Ion et al. [IRHS20] and Sellán et al. [SAJ20] (the latter works only
on height fields). Our results are sometimes smoother and tend
to reflect the symmetries of the input geometry better than Ion et
al. [IRHS20], because we entirely avoid their segmentation step,
which may introduce random symmetry breaking. Additionally,
similar to Stein et al. [SGC18], our method is able to produce a
network of seams and open seam curves, unlike only closed seams
that delineate disk topology patches as in [IRHS20]. The sharp
features in our output may not be as crisp as those of the previous
works because we keep the original connectivity. Still, these features
are apparent enough, and clearly expressed by Gauss curvature, such
that feature-enhancing remeshing should be possible. Compared
to [SGC18] our method usually produces fewer seams and avoids
flattening the surface between rulings, because the mesh edges do
not need to align to rulings in the characterization of developability
we choose to work with.

We show in Fig. 7 how our method lowers the overall distribution
of discrete Gauss curvature on the mesh. We also show the corre-
sponding histograms for the related works by Stein et al. [SGC18]
and Sellán et al. [SAJ20].

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

294

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

10−6 10−4 10−2 100

in
pu

t

10−6 10−4 10−2 100 10−6 10−4 10−2 100

10−6 10−4 10−2 100

ours

op
tim

iz
ed

10−6 10−4 10−2 100

Stein et al. [SGC18]

10−6 10−4 10−2 100

Sellán et al. [SAJ20]

Histograms of absolute Gauss curvature (log scale)

Figure 7: Compared to the results of Stein et al. [SGC18] (middle) and Sellán et al. [SAJ20] (right), our method (left) shifts the discrete Gauss
curvature more towards zero. The bimodal distribution is caused by the Gauss curvature of seam versus interior vertices. Discrete Gauss
curvature is measured as the angle defect at vertices and plotted on a log-scale. The histograms correspond to the Stanford bunnies in Fig. 6
and Figure 27 of [SGC18] (third row, first column).

The method of Sellán et al. [SAJ20] produces remarkably smooth
surfaces and crease curves. They benefit from working with regular
grids stemming from their high resolution height field input; for
our method we also observe smoother results on higher-resolution
and highly regular meshes, see Fig. 6. For a fair comparison we
choose results from both methods that roughly match in resolution.
The benefit of our approach is its generality: we are not restricted
to height fields and can process arbitrary, irregular input meshes
without having to pre-segment them into height field patches. The
Gauss image of our result features a much thinner curve network,
however, the result by Sellán et al. [SAJ20] is merely a rendering of
a triangulated height field, which might have an influence on their
Gauss image.

reference noise added reconstructed

Figure 8: Our method manages to recover underlying analytical
developable surfaces when random noise is applied to the input. For
these examples we used ωstart = 45◦. The original curved crease
model was provided by Rabinovich et al. [RHSH19].

4.3. Mesh dependence

Our method is based on the averaging of the normals over a col-
lection of neighbors locally computed according to the geodesic
distance on the Gauss map and the Euclidean distance of the corre-
sponding faces on the mesh. Combining these two criteria grants
a degree of robustness against tessellation dependence and noise.
Since the surface update is based on Poisson mesh deformation
using local rotations, the deformation is regularized by the input
mesh and inherits the relative mesh independence and robustness of
gradient domain deformations [BS08]. We validate this statement
by comparing our method on meshes featuring noise, different reso-
lutions as well as irregular meshings in terms of triangle sizes and
quality.

Noise. Normals are highly sensitive to noise, thus a low angle cri-
terion ω could hinder the computation of the neighborhood. If the
amplitude of the noise is small compared to the radius threshold
r, our method can compute the neighborhood of normals based on
the underlying structure of the mesh. The approximation of noisy
meshes is illustrated in Fig. 8, where we choose a large starting
angle threshold ωstart = 45◦ with a decrease factor of 0.9 at each
iteration. The meshes represent piecewise developable surfaces and
our method manages to restore them even after adding a significant
amount of noise.

Resolution. Changes in resolution do not greatly affect the dis-
tances on the mesh and on the Gauss map. Therefore, the neighbor-
hood collection scales accordingly to the resolution. Our method
provides very similar results for inputs of differing resolutions, as
shown in Fig. 2.

Tessellation. Since our method is not too sensitive with respect to
mesh resolution, we can robustly handle varying triangle sizes within
the same model (Fig. 9, top row). To test our method on a mesh with
anisotropic triangles, we randomly flip one half of all edges. Even

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

295

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

Figure 9: Although our method preserves the connectivity of the
original mesh, we obtain good results regardless of the input tessel-
lation. We show our method applied to a meshing of the bunny with
varying density (top row) and an irregular tessellation containing
skinny triangles (bottom row). The results have very similar shapes
and also have comparable Gauss curvature.

this extreme meshing does not affect our result significantly. We are
using the triangle based cotan Laplacian operator for reconstructing
the mesh and expect the intrinsic variant [BS07] to lead to even
fewer artifacts.

When applying our method to different tessellations of a sphere,
it becomes clear that the mesh connectivity affects the final result,
see Fig. 10. Nevertheless, all tested tessellations lead to intuitive
piecewise developable approximations of a sphere. The sphere is a
special case, since every point is umbilical, hence the symmetry of
the approximation can only be broken due to meshing. Our method is
fairly tessellation independent on meshes with anisotropic curvature,
as depicted in Fig. 9.

4.4. Runtime performance

To measure the runtime performance of our method, we perform
100 iterations on Bunny meshes of different resolutions with our
default parameter except for a varying minimum angle ωmin of
2.5,5 and 10. We report the average runtime per iteration in Table
1, broken down into the neighborhood collection step, the Gauss
image thinning (normal update), and the global surface deformation
step. The last column (total) also accounts for additional negligible
operations, such as the recomputation of the Gauss map. It is evident
that the most time is spent on the neighborhood collection, which
depends on the angle ω and the resolution of the mesh, since the
mesh is normalized and the selection radius rmax is constant. The
thinning of the Gauss image is the second most expensive step,
as it also depends on the neighborhood size. Since the local step
computes the target normals independently for each face, we provide
a performance analysis on top of an implementation relying on
parallelization. Further optimization is possible, such as caching of

|V| ωmin Neighborhood Normals Surface Total

2.5 0.002 0.001 0.001 0.006
2,294 5.0 0.002 0.001 0.001 0.007

10.0 0.003 0.002 0.001 0.008

2.5 0.026 0.015 0.006 0.050
14,290 5.0 0.032 0.018 0.008 0.062

10.0 0.043 0.026 0.007 0.079

2.5 0.495 0.193 0.055 0.757
57,154 5.0 0.613 0.253 0.055 0.937

10.0 0.960 0.419 0.056 1.451

Table 1: Average running time per iteration (in seconds) over 100
iterations on the Bunny mesh of different resolutions. Experiments
performed on two AMD Ryzen Threadripper 1950X @ 3.40 GHz,
total 32 cores.

the topological search for the neighborhood collection. Updating
the surface is currently negligible in comparison to the local step,
since we precompute the factorization of the system matrix and only
need to perform right-hand-side assembly and back-substitution in
each iteration.

Our runtime performance is comparable to that of Stein et
al. [SGC18], who report that their method runs in the range of sec-
onds to a few minutes on inputs of 1k to 57k vertices. Our method
scales less well than the method proposed by Sellán et al. [SAJ20],
who report linear runtime scaling. Nevertheless, for input resolutions
typically used in this paper (roughly 2k-10k vertices) our method is
faster, and for resolutions around 57k the runtimes are comparable
(estimated 70 seconds for [SAJ20], 75-150 seconds for our method).
Our method slightly outperforms the work by Ion et al. [IRHS20],
who report a runtime of 2 to 9 minutes on meshes similar to the ones
used in this paper.

4.5. Target Gauss image

Our algorithm reliably converges towards a very thin Gauss
image, however, we still observe points on the Gauss sphere
forming lines with a small but visible width.
By inspecting the the target normals com-
puted in the 500th iteration of the mesh fea-
tured in Fig. 1, we observe that they are actu-
ally much closer to a 1D structure (see inset).
This effect is due to the reconstruction step
which models the deformation from one it-
eration to the next and therefore constraints
the normal fitting. It could be beneficial to
consider more general transformations or a
global non-linear optimization as a post pro-
cesssing step in order to generate meshes that
are even closer to the goal of having a 1D
Gauss image.

4.6. Garment design and fabrication

A possible application of our algorithm is the fabrication of shapes
from planar materials like sheet metal or textiles. Garment fabri-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

296

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

Figure 10: Depending on the tessellation and resolution of the
sphere, we obtain different piecewise developable approximations.
We use r = 0.1 and ωmin = 5 for all four results.

input garment piecewise developable draped garment

Figure 11: The dress in this example (left) is designed to fit a specific
person using [WHZ∗21]. We show the result of our method (middle)
and the re-simulated draped shape (right).

cation in particular is largely built around the concept of sewing
patterns and creating a garment that drapes on a 3D body shape from
planar cloth pieces. Recent novel approaches to garment design pro-
pose sketching the garment shape directly in 3D and computing the
sewing pattern in a post-process (see [WHZ∗21] and the references
therein). Improving the developability of the 3D garment model can
help produce a more fabrication-ready design for such approaches,
see a conceptual example in Fig. 11.

5. Discussion, limitations and conclusions

We presented a method to compute a piecewise developable approx-
imation of an input triangle mesh by interleaving local “thinning” of
the surface Gauss image and global fitting of the surface geometry
to the normals. The key ingredients of our method are robust normal
smoothing in the spirit of bilateral filtering, and a surface deforma-
tion to match the normals that is regularized by keeping the local
deformations rigid and avoiding element collapses. Our algorithm
is very simple and depends on a small number of intuitively tunable
parameters that control the results. Our method does not require
a segmentation of the input into patches (unlike [IRHS20]) – the
seams and creases emerge automatically as part of the deformation
process. The algorithm performs stably for a range of parameter set-
tings, making a fully automatic mode possible. The implementation

input [IRHS20] [SGC18] ours

Figure 12: We compare several of our results with the methods of
Stein et al. [SGC18] and Ion et al. [IRHS20].

is straightforward on top of a geometry processing library (we used
libigl [JP∗21]); we provide our prototype as supplemental material,
with only 250 lines of code.

We use the K = 0 characterization of smooth developables ex-
pressed as 1D Gauss image. This means that our approach does not
explicitly depend on rulings and does not rely on the ability of the
mesh edges to model them (unlike e.g. [SVWG12,SGC18]), making
it relatively tessellation-independent. In our current formulation we
preserve the input mesh connectivity as is, and yet creases and seams

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

297

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

are revealed naturally, as expected. The resulting sharp features are
sometimes not perfectly crisp due to the fixed connectivity. It would
be possible to perform remeshing on the fly (as in e.g. [SRH∗15]) to
better align the mesh edges to principal directions and sharp features.
We have already observed a benefit by performing simple local edge
flips, but opted not to include this option to keep the algorithm as
simple as possible.

Like other deformation flow based developable approximation
methods [SGC18,SAJ20], we do not generate an explicit partitioning
of the piecewise developable result into developable patches; the
seam lines are not computed directly, and even after ridge detection
they might not produce a segmentation of the surface such that
each developable patch can be individually flattened, so additional
surface cutting may be required [SGC18]. An exciting direction for
future work is to incorporate manufacturing considerations into the
developability flow, such that usable patches (from the standpoint
of fabrication) with smooth seams are encouraged to arise. In this
regard, allowing interactive user input to help define the seams would
be a helpful feature. With a complete segmentation into developable
patches available, it would also be possible to optimize the surface
for developability even further using [VVHSH21]. Additionally, it is
interesting to explore more elaborate formulations of the local step,
which is currently a mere arc fitting. There is a potential tradeoff
between a tighter local fitting of the Gauss image and the simplicity
and robustness of the overall scheme.

The current running time of our method is dominated by the
neighborhood search and PCA computations. Even though we im-
plemented our algorithm in a parallel fashion, it would additionally
benefit from spatial indexing and caching. We do observe that the
performance scales with mesh resolution because runtime is domi-
nated by neighbourhood queries. The method runs robustly without
requiring interactive intervention. Our optimization is a first order,
gradient descent based approach and tends to make progress quickly
in the beginning and subsequently keep a constant pace; it is con-
ceivable to switch to a second order method after the initial bulk of
progress is achieved (e.g., Newton, as proposed in [GSP19]).

Acknowledgements

We thank the anonymous reviewers for their remarks. We also thank
Amir Vaxman and Tim Hoffmann for the insightful discussions,
which laid the foundation for this project. We are grateful to Sil-
via Sellán for providing us meshes for test and comparison pur-
poses. This work was partially supported by the Personalized Health
and Related Technologies (PHRT) SwissHeart grant and the Euro-
pean Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No.
101003104).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

298

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

Figure 13: Results computed using our algorithm featuring meshes with different characteristics. The columns show (left to right) the original
mesh, the optimized mesh, original and optimized Gauss image as well as Gauss curvature.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

299

A. Binninger, F. Verhoeven, P. Herholz & O. Sorkine-Hornung / Developable Approximation via Gauss Image Thinning

References
[BR93] BODDULURI R., RAVANI B.: Design of developable surfaces

using duality between plane and point geometries. Computer-aided design
25, 10 (1993), 621–632. 2

[BS07] BOBENKO A. I., SPRINGBORN B. A.: A discrete laplace—
beltrami operator for simplicial surfaces. Discrete & Computational
Geometry 38, 4 (2007), 740–756. 8

[BS08] BOTSCH M., SORKINE O.: On linear variational surface defor-
mation methods. IEEE Transactions on Visualization and Computer
Graphics 14, 1 (2008), 213–230. 4, 7

[BW07] BO P., WANG W.: Geodesic-controlled developable surfaces
for modeling paper bending. Computer Graphics Forum 26, 3 (2007),
365–374. 2

[DJW∗06] DECAUDIN P., JULIUS D., WITHER J., BOISSIEUX L., SHEF-
FER A., CANI M.-P.: Virtual garments: A fully geometric approach for
clothing design. Computer Graphics Forum 25, 3 (2006), 625–634. 2, 3

[GSP19] GAVRIIL K., SCHIFTNER A., POTTMANN H.: Optimizing b-
spline surfaces for developability and paneling architectural freeform
surfaces. Computer-Aided Design 111 (2019), 29–43. 2, 3, 10

[Hos98] HOSCHEK J.: Approximation of surfaces of revolution by de-
velopable surfaces. Computer-Aided Design 30, 10 (1998), 757–763.
2

[IRHS20] ION A., RABINOVICH M., HERHOLZ P., SORKINE-HORNUNG
O.: Shape approximation by developable wrapping. ACM Trans. Graph.
39, 6 (2020). 2, 6, 8, 9

[JBK∗12] JACOBSON A., BARAN I., KAVAN L., POPOVIĆ J., SORKINE
O.: Fast automatic skinning transformations. ACM Trans. Graph. 31, 4
(2012), 77:1–77:10. 4

[JHR∗15] JUNG A., HAHMANN S., ROHMER D., BEGAULT A.,
BOISSIEUX L., CANI M.-P.: Sketching folds: Developable surfaces
from non-planar silhouettes. ACM Trans. Graph. 34, 5 (2015). 2, 3

[JKS05] JULIUS D., KRAEVOY V., SHEFFER A.: D-charts: Quasi-
developable mesh segmentation. Computer Graphics Forum 24, 3 (2005),
581–590. 2, 3

[JP∗21] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++ ge-
ometry processing library, 2021. URL: https://libigl.github.
io/. 5, 9

[JWR∗20] JIANG C., WANG C., RIST F., WALLNER J., POTTMANN H.:
Quad-mesh based isometric mappings and developable surfaces. ACM
Trans. Graph. 39, 4 (July 2020). 2

[KSBC12] KAZHDAN M., SOLOMON J., BEN-CHEN M.: Can mean-
curvature flow be modified to be non-singular? Computer Graphics
Forum 31, 5 (2012), 1745–1754. 5

[Lee00] LEE I.-K.: Curve reconstruction from unorganized points. Com-
puter aided geometric design 17, 2 (2000), 161–177. 2

[LLH09] LIU Y., LAI Y., HU S.: Stripification of free-form surfaces with
global error bounds for developable approximation. IEEE Transactions
on Automation Science and Engineering 6, 4 (2009), 700–709. 2

[LPW∗06] LIU Y., POTTMANN H., WALLNER J., YANG Y.-L., WANG
W.: Geometric modeling with conical meshes and developable surfaces.
ACM Trans. Graph. 25, 3 (2006), 681–689. 2

[LZX∗08] LIU L., ZHANG L., XU Y., GOTSMAN C., GORTLER S. J.:
A local/global approach to mesh parameterization. Computer Graphics
Forum 27, 5 (2008), 1495–1504. 4

[MGE07] MASSARWI F., GOTSMAN C., ELBER G.: Papercraft models
using generalized cylinders. In Proc. Pacific Graphics (2007), pp. 148–
157. 2

[MS04] MITANI J., SUZUKI H.: Making papercraft toys from meshes
using strip-based approximate unfolding. ACM Trans. Graph. 23, 3
(2004), 259–263. 2

[Pet04] PETERNELL M.: Developable surface fitting to point clouds.
Computer Aided Geometric Design 21, 8 (2004), 785–803. 2

[PW99] POTTMANN H., WALLNER J.: Approximation algorithms for
developable surfaces. Computer Aided Geometric Design 16, 6 (1999),
539–556. 2

[Rab20] RABINOVICH M.: Modeling Developable Surfaces with Discrete
Orthogonal Geodesic Nets. PhD thesis, ETH Zurich, Zurich, 2020. doi:
10.3929/ethz-b-000427802. 2

[RHSH18] RABINOVICH M., HOFFMANN T., SORKINE-HORNUNG O.:
Discrete geodesic nets for modeling developable surfaces. ACM Transac-
tions on Graphics 37, 2 (2018). 2

[RHSH19] RABINOVICH M., HOFFMANN T., SORKINE-HORNUNG O.:
Modeling curved folding with freeform deformations. ACM Trans. Graph.
38, 6 (2019). 7

[RSW∗07] ROSE K., SHEFFER A., WITHER J., CANI M.-P., THIBERT
B.: Developable surfaces from arbitrary sketched boundaries. In Proc.
Symposium on Geometry Processing (2007), p. 163–172. 2

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface modeling.
In Proc. Symposium on Geometry Processing (2007), p. 109–116. 3, 4

[SAJ20] SELLÁN S., AIGERMAN N., JACOBSON A.: Developability of
heightfields via rank minimization. ACM Trans. Graph. 39, 4 (2020). 2,
3, 6, 7, 8, 10

[SCOL∗04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA M.,
RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In Proc. Sym-
posium on Geometry Processing (2004), pp. 179–188. 4

[SGC18] STEIN O., GRINSPUN E., CRANE K.: Developability of triangle
meshes. ACM Trans. Graph. 37, 4 (2018). 2, 3, 6, 7, 8, 9, 10

[SPSH18] SCHÜLLER C., PORANNE R., SORKINE-HORNUNG O.: Shape
representation by zippables. ACM Trans. Graph. 37, 4 (2018). 2

[SRH∗15] SCHRECK C., ROHMER D., HAHMANN S., CANI M.-P., JIN
S., WANG C. C., BLOCH J.-F.: Nonsmooth developable geometry for
interactively animating paper crumpling. ACM Trans. Graph. 35, 1 (2015).
10

[STL06] SHATZ I., TAL A., LEIFMAN G.: Paper craft models from
meshes. Visual Computer 22, 9 (2006), 825–834. 2

[SVWG12] SOLOMON J., VOUGA E., WARDETZKY M., GRINSPUN E.:
Flexible developable surfaces. Computer Graphics Forum 31, 5 (2012),
1567–1576. 2, 9

[TBWP16] TANG C., BO P., WALLNER J., POTTMANN H.: Interactive
design of developable surfaces. ACM Trans. Graph. 35, 2 (2016). 2

[VVHSH21] VERHOEVEN F., VAXMAN A., HOFFMANN T., SORKINE-
HORNUNG O.: Dev2PQ: Planar quadrilateral strip remeshing of devel-
opable surfaces, 2021. arXiv:2103.00239. 2, 10

[WHZ∗21] WOLFF K., HERHOLZ P., ZIEGLER V., LINK F., BRÜGEL
N., SORKINE-HORNUNG O.: 3d custom fit garment design with body
movement, 2021. arXiv:2102.05462. 9

[WPR∗19] WANG H., PELLIS D., RIST F., POTTMANN H., MÜLLER C.:
Discrete geodesic parallel coordinates. ACM Trans. Graph. 38, 6 (Nov.
2019). 2

[WT04] WANG C. C., TANG K.: Achieving developability of a polygonal
surface by minimum deformation: a study of global and local optimization
approaches. The Visual Computer 20, 8 (2004), 521–539. 2

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B., SHUM
H.-Y.: Mesh editing with Poisson-based gradient field manipulation.
ACM Trans. Graph. 23, 3 (2004), 644–651. 4

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

300

https://libigl.github.io/
https://libigl.github.io/
https://doi.org/10.3929/ethz-b-000427802
https://doi.org/10.3929/ethz-b-000427802
http://arxiv.org/abs/2103.00239
http://arxiv.org/abs/2102.05462

