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Figure 1: Fluidymation in action—an artist prepares a style exemplar by dropping some watercolor paint onto wet paper (a). We record
this process in a video sequence that captures not only the appearance of the artistic medium but also its dynamic properties, e.g., pigment
diffusion (b). The user provides a target animation (c) onto which we transfer the exemplar’s appearance and dynamics. The resulting
animated sequence (d) moves as if the artistic medium diffuses across the paper in the direction and speed of the prescribed target animation
(see our supplementary video).

Abstract

We present Fluidymation—a new example-based approach to stylizing animation that employs the natural dynamics of artistic
media to convey a prescribed motion. In contrast to previous stylization techniques that transfer the hand-painted appearance of
a static style exemplar and then try to enforce temporal coherence, we use moving exemplars that capture the artistic medium’s
inherent dynamic properties, and transfer both movement and appearance to reproduce natural-looking transitions between
individual animation frames. Our approach can synthetically generate stylized sequences that look as if actual paint is diffusing
across a canvas in the direction and speed of the target motion.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering;

1. Introduction

Example-based style transfer to video sequences has seen re-
markable advancements recently, both in terms of visual qual-
ity [FJS∗17, JvST∗19] and reduction of computational over-
head [FCC∗19, KSM∗19, TFF∗20]. Unlike still images, when styl-
izing a video, one needs to take temporal continuity into account.

Processing the frames independently usually causes the output se-
quence to flicker [FLJ∗14]. A similar effect is common for tradi-
tional hand-colored animations created manually in a frame-by-
frame fashion [Wel19]. Due to the limited control over physical
artistic media, it is usually impossible for the artist to achieve a per-
fect continuity in time. This limitation is commonly understood as
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an important artistic feature of hand-colored animations. However,
watching such flickering animation may cause eye strain, and the
viewer can become tired after a while [KSHTB∗03]. On the other
end of the spectrum there are video stylization approaches which
guarantee high temporal consistency [SED16,RDB18]. Their draw-
back is that the stylized content looks glued on the moving ob-
jects, which breaks the impression of being painted frame by frame.
Other techniques [BCK∗13,FLJ∗14,JvST∗19] let the user fine-tune
the amount of temporal flickering to balance between the two ex-
tremes. However, the synthetically generated flicker they produce
usually does not convincingly reproduce temporal dynamics seen
in actual hand-colored animations.

In this paper we propose a novel approach to generating tem-
porally consistent stylization of video sequences which we call
“fluidymation”. The key idea is to transfer not only the texture
from a style exemplar, but also the dynamic properties of the artis-
tic medium being used. For example, instead of using a still im-
age of watercolors, we use a video recording of watercolor paint
diffusing across paper. The aim is to reuse this natural dynamic
to convey the motion in the target sequence. In contrast to previ-
ous methods, which need to enforce temporal consistency explic-
itly, our approach leverages the dynamic properties of the artistic
medium itself, to let the paint move naturally as it would in real life
(see Fig. 1).

2. Related Work

A traditional approach to image stylization imitates the artwork cre-
ation process by overlaying a set of automatically distributed brush
strokes (colored [Hae90] or textured [Her98, Her01]) to produce
the final stylized image. In the case of video stylization, the strokes
are displaced according to the motion in the scene, e.g., using op-
tical flow estimation [HE04] or a 2D projection of the movement
of 3D objects [Mei96]. The stroke aggregation process allows for
a wide range of customization thanks to the possibility of altering
the appearance of individual brushes [LBDF13].

Another important branch of stylization techniques uses proce-
dural filtering [BLV∗10, MSS∗18] to enable artistic control via a
manual tweaking of filtering parameters. Those approaches can
mimic a wide range of styles, including watercolor, oil painting,
or charcoal drawing. Bousseau et al. [BKTS06] proposed a fil-
tering pipeline designed to simulate watercolor. To avoid the so-
called shower door effect [Mei96], they employ temporal mor-
phological filtering and texture advection [BNTS07]. Similarly,
in [BSM∗07], pre-defined 2D patterns are successively transformed
in a shape-preserving manner to match the movement of objects in
an animated 3D scene.

In example-based stylization [HJO∗01], the concept of image
analogies is used to change the appearance of the target image ac-
cording to an example of a stylized source image. The analogy can
be further extended using additional paired source and target guid-
ing channels that encode other important features such as region
boundaries [BCK∗13] or illumination changes [FJL∗16]. Those
channels are then plugged into a guided variant [KNL∗15,FJL∗16]
of patch-based synthesis [KEBK05, WSI07] to produce the final
stylized image. Such an approach can also be extended into the

video domain [BCK∗13, FJS∗17, JvST∗19] where an additional
guide is used to ensure temporal consistency.

Recently, neural style transfer became popular thanks to the sem-
inal work of Gatys et al. [GEB16] showing that responses of a
VGG network pre-trained on an image recognition dataset [SZ14]
can be used to capture some aspects of artistic style. This tech-
nique was later extended to handle temporal consistency in video
sequences [RDB18]. This success was later followed by image
translation networks [IZZE17, TFF∗20] that are able to match, or
in some aspects even outperform the results of guided patch-based
synthesis.

The techniques mentioned above have a common drawback. Al-
though they can deliver temporally coherent stylized animations,
their output feels rather artificial—the realistic transition phenom-
ena typical for natural artistic media are not taken into account.
In our work, we aim to perform example-based stylization of an-
imations by transferring not only the appearance of natural media
but also their dynamic properties. Thanks to this extension, we can
mimic the impression that the paint propagates in unison with the
motion of animated shapes.

Our approach is similar in motivation to the problem of ap-
pearance transfer to fluid simulations [BBRF14, JFA∗15] where
the style of an image or video exemplar is transferred to a tar-
get flow field. However, Browning et al. [BBRF14] use only a
few hand-drawn images as a style exemplar, and thus cannot take
into account the artistic medium’s dynamic properties. The method
of Jamriška et al. [JFA∗15] can use video as a style examplar,
but it does not manipulate the motion’s speed and direction, and
thus produces drifting and warping effects that break the illusion
of physical paint following the target motion. An alternative ap-
proach is the use of neural style transfer in the context of fluid sim-
ulations [KAGS19, KAGS20]. However, those techniques consider
only static exemplars to provide high frequency details, and the
fluid’s gross movement is determined by the original simulation.

Although physical models can be employed to achieve realis-
tic simulation of appearance as well as dynamic effects of natural
artistic media such as watercolor [CAS∗97], oil paint [BWL04], or
pastel [HLFR07], those techniques do not deal with the issue of
preserving temporal consistency in animation.

3. Our Approach

The inputs to our algorithm are the following sequences
(see Fig. 2):

• Srgb—a sequence of lS images serving as a style exemplar, cap-
tured by a camera perpendicular to a canvas,
• Smask—a sequence of lS binary masks denoting the presence of

artistic media in the exemplar image,
• T mask—a sequence of lT binary masks that define the placement

of artistic media in the target animation.

Optionally, the user may also specify two additional sequences
of source and target flow fields: S f low and T f low. These are also
required as an input to our algorithm, but when not available we
provide a solution for how to approximate them automatically
from Smask and T mask (see Appendix A).
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Figure 2: An overview of all inputs (yellow border), guiding channels (black border), and the output frame (blue border) including an illus-
tration of how those are derived and plugged into the patch similarity measure D. During the optimization, the nearest-neghbour field NNF is
iteratively refined to minimize D over all source patches taken from Srgb and used in the output frame T rgb. The 3D occurence map Ω

∗ of the
uniformity term Ω reflects the current source patch utilization to prevent excessive use of certain patches. To encourage temporal coherence
and speed up the convergence, the nearest-neighbour field from the previous frame NNFprev is used during the optimization.

The output of our method is a sequence of images T rgb com-
posed of a selection of 2D patches taken from Srgb that can be
rotated by an angle θ prescribed in an orientation field T rot . For
every pixel q = ( j, x̂, ŷ) in the target sequence T rgb where j is q’s
frame number and [x̂, ŷ] are its 2D coordinates we seek a suitable
patch s centered at a pixel p = (i,x,y) in the source sequence Srgb

and rotated by θ stored in T rot(q).

In contrast to the method of Jamriška et al. [JFA∗15] our new
formulation provides two important advantages: (1) source patches
can be retrieved from the entire exemplar sequence and rotated.
This helps to increase the variety of exemplars to better convey the
extent of target motion and keep the source patches aligned with
its direction; and (2) explicit advection of previously synthesized
frames is no longer required. Instead, we use an incrementation of i
as described in Section 3.4.

To obtain T rgb and T rot we proceed frame by frame and for each
frame j we minimize the following energy:

E(S,Tj) = ∑
q∈Tj

min
p∈S

D(p,q),

where the patch similarity function D is defined as follows:

D(p,q) = ∑
p′∈s,q′∈t

Dtex(p′,q′)+wboundDbound(p′,q′)+

wdirDdir(p′,q′)+wextDext(p′,q′)+

wtempDtemp(p′,q′)+wuni
Ω(p′).

Here s and t are patches centered at a source pixel location p and a
target pixel location q, respectively while p′ and q′ are coordinates
of pixels covered by 2D patches s and t of size n×n. Dtex measures
the consistency of texture and Dbound maintains alignment of mask
boundaries, i.e., during the optimization those two terms mostly
affect the p’s spatial coordinates [x,y]. The term Ddir upholds the
consistency of motion direction controlled by the parameter θ, Dext

encourages the selection of patches that have an appropriate extent
of motion, i.e., influences the temporal coordinate i of the pixel p,
and Dtemp keeps the output coherent in time. Finally, the unifor-
mity term Ω helps to avoid the overuse of particular source patches
that may cause so called wash-out artifacts [JFA∗15], i.e., a lack
of visual variety seen in the original source exemplar. The influ-
ence of each individual term D∗ is balanced relatively to Dtex using
a weighting factor w∗. All terms Dtex, Dbound , Ddir, Dext , Dtemp,
and Ω are described in more detail in the following sections.

3.1. Texture consistency and boundary effects

The computation of Dtex and Dbound is similar to that of Jamriška
et al. [JFA∗15] except for the rotation T rot(q) of the corresponding
source patch p which needs to be taken into account when com-
puting those two terms. The term Dtex, responsible for local visual
similarity of the generated texture to the source one, is computed
as follows:

Dtex(p′,q′) = ‖Srgb(p′)−T rgb(q′)‖2.

The term Dbound facilitates the expression of directional effects
apparent at boundaries of a painted area. Additional guidance chan-
nels Sshape and T shape are generated by filtering the binary masks
using Gaussian blur with radius b (see Fig. 2). The term itself is
then computed as

Dbound(p′,q′) = ‖Sshape(p′)−T shape(q′)‖2.

3.2. Motion orientation alignment

The term Ddir helps to keep the flow direction of a source patch s
centered at a pixel p aligned with the direction of a target patch t
centered at a location q. To accomplish this goal we evaluate Ddir

as follows:

Ddir(p′,q′) = | tan(S f low
θ

(p′)+T rot(q′)−T f low
θ

(q′))|,
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Srgb(p)

T mask(q1)

T mask(q2) Ddir(p,q2)≈ 0 Ddir(p,q1)� 0Ddir(p,q1)≈ 0

Figure 3: The influence of the rotation alignment term when evaluating the distance of patches at pixels p and q. Arrows signify the general
directions of flow fields S f low

θ
(p) and T f low

θ
(q). The alignment term Ddir is minimal for values of θ that lead to a perfect alignment of flow

field orientations. The color and mask channels are shown only for clarity; they do not participate on the calculation of Ddir.

where S f low
θ

(p′) and T f low
θ

(q′) are the respective orientations of the
flow fields at pixels p′ and q′ in radians. An orientation T rot(q′) of
a source patch s centered at the target pixel q′ is added to keep the
directions consistent. Using this equation, similarly aligned flow
orientations (possibly in the opposite direction) are preferred, and
conversely, mappings resulting in an orientation close to being per-
pendicular to the direction of the target flow are strictly avoided
(see Fig. 3).

3.3. Motion extent control

In the method of Jamriška et al. [JFA∗15] the selection of source
patches is limited only to those that are available in the current ani-
mation frame. This requirement imposes restrictions on the content
of source and target animation, e.g., the extent of motion in the
source sequence needs to be roughly in proportion to the motion in
the target sequence, otherwise the texture evolution would not look
motivated by the movement of the paint. This may lead to unde-
sirable drifting artifacts where the motion of the source exemplar
is superimosed on the target motion (see the comparison with the
method of Jamriška et al. [JFA∗15] in our supplementary video).

In our approach we increase the flexibility of synthesis by en-
abling retrieval of patches from the entire source sequence. How-
ever, to achieve plausible results, we need to guide the patch se-
lection according to the past and future motion amount at each lo-
cation and distinguish between parts where the material is subject
to motion and those which are mostly stationary (see Fig. 4a). To
accomplish this we use I f low (see Fig. 4b) to produce two guidance
channels: Iext

+ and Iext
− (where I denotes either S or T ).

The forward channel Iext
+ is constructed by accumulating the

amount of motion at each pixel since the start of the sequence, i.e.,

Iext
+ (i,x,y) = ‖acc+(i,x,y)‖,

where i is a frame number, [x,y] is a pixel location and

acc+(i,x,y) =

{
acc+(i−1,x,y)+ I f low(i−1,x,y), if i > 1,
(0,0) otherwise.

In addition to accumulation we zero acc+ at pixels that are outside
the mask Imask

i to make sure the accumulation is restarted at coor-
dinates where the material appears repeatedly. An example of Iext

+

is illustrated in Fig. 4c.

Since we would like to enable material diminishing which the
exemplar sequence may not contain or is not physically plausi-
ble we introduce a complementary guiding channel (illustrated
in Fig. 4d) that is calculated in the opposite direction of time, i.e.:

Iext
− (i,x,y) = ‖acc−(i,x,y)‖

where

acc−(i,x,y) =

{
acc−(i+1,x,y)+ I f low(i,x,y), if i < lI ,
(0,0) otherwise.

Similarily to Iext
+ we zero the accumulator acc−(i,x,y) for pix-

els [x,y] that are outside the mask, i.e., Imask(i,x,y) = 0.

Using these two additional guiding channels Dext is computed as
follows:

Dext(p′,q′) = ‖Sext
+ (p′)−T ext

+ (q′)‖2 +‖Sext
− (p′)−T ext

− (q′)‖2.

The final step towards enabling the reversibility of time is
that during the evaluation of distance between two patches that
have roughly opposite flow directions, values in T ext

+ and T ext
− are

swapped before being subtracted from Sext
+ and Sext

− .

3.4. Temporal coherence

Previous approaches to maintain temporal coherence in guided
patch-based synthesis [BCK∗13, JFA∗15, FJS∗17, JvST∗19] use
a warped version of previous frames to encourage selection of
patches that have similar content to those in previously synthesized
frames.

In our approach, we take into account the fact that exemplar
patches are being retrieved from the entire sequence, i.e., patch co-
ordinates include not only the spatial location but also an index
of the source frame. If we shift this index by some amount ∆i we
can get an appearance similar to that if we perform warping of the
previous patch using the motion field of the source sequence. More-
over, thanks to orientation alignment (see Section 3.2) after shifting
in time the patch will also follow the motion direction of the target
sequence. What remains to be determined is the actual ∆i, i.e., the
number of frames the index is shifted to meet the amount of motion
in the target sequence.
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flowing

stationary

(a) A splotch of watercolor in Srgb manifesting different looks at flowing
and stationary parts

(b) Corresponding flow field S f low. Angle S f low
θ

is encoded as hue and
magnitude S f low

m as intensity.

(c) Derived guidance channel Sext
+ (d) Derived guidance channel Sext

−

Figure 4: Motion extent control illustrated on three frames picked from a longer sequence

T mask
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T ext
+ (k, x̂, ŷ)
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Sext
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q
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Figure 5: Determining the time coordinate shift ∆i at the source pixel p = (i,x,y) that corresponds to target pixel q = ( j, x̂, ŷ) (a). First, the
amount of motion at q is determined by the difference stored in T ext

+ channel (b). Then a time shift ∆i∗ is found that most closely matches the
target movement amount (c). Finally, the time coordinate i of the corresponding patch p is shifted by ∆i∗ to get p∗ = (i+∆i∗,x,y) (d).

Let us assume, for now, that flow directions at the mapped source
coordinates match the target ones (i.e., they point in the same direc-
tion besides being aligned). To compute ∆i under this assumption
we accumulate the amount of motion Sext

+ and T ext
+ at each pixel of

the source and target sequence (see Section 3.3) from which we can
compute a relative amount of motion between frames j and j+1 at
the 2D location [x̂, ŷ] of target pixel q:

[T ext
+ (k, x̂, ŷ)] j+1

k= j = T ext
+ ( j+1, x̂, ŷ)−T ext

+ ( j, x̂, ŷ).

Let p = (i,x,y) be coordinates of a corresponding source patch to
a target patch q in the previous frame j and the amount of motion
at 2D location [x,y] between frames i and i+∆i is:

[Sext
+ (k,x,y)]i+∆i

k=i = Sext
+ (i+∆i,x,y)−Sext

+ (i,x,y).

Then the optimal time shift ∆i can be retrieved as follows:

∆i∗ = argmin
∆i≥0

∣∣∣[T ext
+ (k, x̂, ŷ)

] j+1
k= j −

[
Sext
+ (k,x,y)

]i+∆i
k=i

∣∣∣ .

When the optimal ∆i∗ is known the location of the corresponding
patch s∗ centered at pixel p∗ is set to p∗=(i+∆i∗,x,y) (see Fig. 5).

When the target and rotated source flow at pixels p and q are
in opposite directions, the frame index is shifted backward, i.e.,
∆i ≤ 0, and instead of the past motion amount Sext

+ , we use future
motion amount Sext

− (see Section 3.3).

As soon as all corresponding shifted source patches are known,
we can produce a target temporal guide T temp using voting oper-
ation [WSI07], i.e., we compute a weighted average of collocated
pixels in the overlapping patches. The source part of the temporal
guide Stemp = Srgb and the final term Dtemp is computed accord-
ingly to Fišer et al. [FJS∗17]:

Dtemp(p′,q′) = ‖Stemp(p′)−T temp(q′)‖2.

Since the temporal guide is meaningful only in regions where the
previous mask overlaps the current one, the weight wtemp is set
to zero at locations where there is no overlap. In the first frame,
wtemp is set to zero as no previous frame is available.
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When the movement in the target sequence is much stronger than
in the exemplar, [Sext

+ (k,x,y)]i+∆i∗
k=i may not be sufficiently large to

match that of [T ext
+ (k, x̂, ŷ)] j+1

k= j , for example when i+∆i∗ reaches
either end of the source sequence. In this case the synthesized an-
imation may lag behind the target sequence. This occurs when the
assigned source pixel p is too far or too near to the boundary of the
source mask in contrast to the target patch location q (see a demon-
stration of this effect at the end of our supplementary video).

To mitigate this issue we employ a similar strategy as in Jamriška
et al. [JFA∗15]. We introduce a spatially varying modulation m(q)
of the temporal coherence weight wtemp based on the difference of
signed distance fields of the source and target masks as follows:

m( j, x̂, ŷ) =

{
0, if T mask( j−1, x̂, ŷ) = 0,
s(|T dist( j, x̂, ŷ)−Sdist(i+∆i,x,y)|), otherwise,

where T dist and Sdist are signed distance fields defined in Ap-
pendix A and s is a smoothstep function defined as

s(v,ml ,mu) =


0, if v≤ ml ,

1, if v≥ mu,

3v′2−2v′3 otherwise,

where v′ = (v−ml)/(mu −ml) and mu and ml are configurable
upper and lower thresholds.

3.5. Spatial uniformity

During the minimization of energy E, a smaller fraction of source
patches may become more preferred due to their tendency to pro-
duce lower matching error (e.g., patches with mostly homogeneous
color). Jamriška et al. [JFA∗15] suppress this wash-out artifact by
using an additional hard constraint that enforces uniform utilization
of source patches. In our scenario, however, the entire sequence is
used for synthesis and thus strictly uniform utilization is not rea-
sonable. Instead, we adopt a soft constraint similar to that used by
Kaspar et al. [KNL∗15]. They use a 2D occurrence map Ω

∗ which
stores the utilization of individual source patches. It allows us to
adaptively penalize a patch at the location p whenever it was al-
ready used too often.

In our scenario, we consider not only the 2D location of patches
but also their orientations and positions in time. Due to this fact
we need to extend Ω

∗ into 3D and perform the occurrence accu-
mulation with respect to the orientation of individual patches. The
formula for our 3D occurrence map becomes:

Ω
∗(i,x,y) =

∣∣∣{q ∈ T mask |(i,x,y) ∈N θ(k, x̂, ŷ)}
∣∣∣ ,

where (k, x̂, ŷ) are the coordinates of a nearest-neighbour patch q,
θ = T rot(k, x̂, ŷ), and N θ(k, x̂, ŷ) represents a cuboid with dimen-
sions n× n× (2r + 1), centered at pixel (k, x̂, ŷ), and rotated by θ

radians in the x,y-plane. The configurable parameter r sets the tem-
poral dimension of the penalized neighbourhood. This occurrence
map is computed for each frame separately. Similarly to Jamriška
et al. [JFA∗15], we treat the boundary segments Sbound and T bound

and interior segments Sint and T int separately, obtaining the follow-

Sl+1Tl+1 SlTl

NNFl+1 NNF↑l

Figure 6: Upscaling a nearest-neighbour field with a target win-
dow mapped to a rotated source window

.

(a) A 2-by-2 block of pixels
mapped to different source pixels

(b) Their coordinates transformed
to the coarser level

(c) Voting on the final coordinates
by majority

Figure 7: Downscaling an NNF mapping

ing formula for ω
∗:

ω
∗ =

{
n2(2r+1)|T bound |/|Sbound | in the border segment, and
n2(2r+1)|T int |/|Sint | in the interior segment.

Following Kaspar et al. [KNL∗15], we set the uniformity
term Ω(p′) at the pixel p′ = (i,x,y) to:

Ω(p′) =
Ω
∗(p′)

n2 ·ω∗
.

3.6. Optimization

To minimize E we use a multi-resolution EM-like optimization
scheme of Wexler et al. [WSI07]. The number of resolution pyra-
mid levels is set to blog2 dmin/nc, where dmin is the minimum di-
mension of the full-resolution source and target images and n is the
patch size. This ensures that the patch size gets close to, but does
not exceed, the size of the images in the coarsest level.

During the synthesis at each pyramid level l a nearest-neighbour
field NNFl is constructed. It stores frame number i, centroid [x,y],
and rotation θ of currently best matching source patches s for each
target patch t centered at pixel [x̂, ŷ], i.e., (i,x,y,θ) = NNFl( j, x̂, ŷ).
The advantage of NNF is that it can be upsampled when transfer-
ring the solution from a coarse level l+1 to a finer level l [TFF∗20].
However, since in our scenario source patches can be rotated, each
upscaled coordinate

NNF↑l ( j, x̂, ŷ) = (i,x↑,y↑,θ)

c© 2021 The Author(s)
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Platkevič et al. / Fluidymation

has to have an additional offset given by the Jacobian of the under-
lying transformation, i.e., backward rotation of the corresponding
patch (see Fig. 6):

(x↑,y↑) = 2 · (x′,y′)+ c+R−θ((x̂ mod 2, ŷ mod 2)− c),

where c = ( 1
2 ,

1
2 ), Rθ is the operator of rotation by θ radians,

and (x′,y′,θ) can be extracted from the coarse level NNFl+1 as
follows:

(i,x′,y′,θ) = NNFl+1( j,bx̂/2c,bŷ/2c).

Since the optimization of E is performed sequentially we can
further speed up the convergence by initializing the NNF of the
current frame using the values from the previous frame with shifted
frame indices

NNFprev( j, x̂, ŷ) = (i+∆i,x,y,θ)

where (i,x,y,θ) = NNF( j−1, x̂, ŷ). On the level l the initial NNFl

is obtained by merging two NNFs: (1) the upscaled NNF↑l and

(2) a downscaled NNF↓prev. The NNF downscaling process consists
of the following steps done for each target pixel [ j, x̂, ŷ]:

1. nearest-neighbour coordinates are gathered from a square win-
dow from NNFprev of width 2l with the top-left corner posi-
tioned at 2l(x̂, ŷ) (see Fig. 7a),

2. each corresponding patch coordinate (i,x,y) is transformed by
the inverse of the upscaling transformation (see Fig. 7b),

3. the mode of transformed patch coordinates (i,x,y) is assigned as
the new value of NNF↓prev( j, x̂, ŷ) and the prescribed rotation θ

is stored to T rot( j, x̂, ŷ) (see Fig. 7c).

These two mappings are then merged on a per-pixel basis based on
which of the two mappings has a smaller error.

Thanks to these extensions, the initialization of the NNF needs to
be done only in the coarsest level of the first frame. In the following
frames and pyramid levels, we start the optimization using good
estimates from previous NNFs (through NNF↓prev and NNF↑l ). This
enables us to bring a significant performance gain over previous
sequential solvers.

We provide pseudocode of the entire algorithm in Appendix B.

4. Results

We implemented our approach using C++ and set all tunable pa-
rameters to values presented in Table 1.

During the optimization of E we accelerate the retrieval
of nearest-neighbour patch using generalized PatchMatch algo-
rithm [BSGF10]. To further decrease computational overhead, we
omit search for rotations θ and instead for each randomly sampled
triplet (i,x,y) we test only those rotations that minimize Ddir. This
allows us to reduce the search space to only three dimensions and
thus substantially lower the number of random samples required to
get satisfactory results. Besides that we also take advantage of the
nearest-neighbour field upsampling and reuse from previous frames
(see Section 3.6) which further lower the computation overhead.
With all those optimizations on a quad core 3 GHz CPU our method

Table 1: Settings of all tunable parameters used to generate re-
sults presented in Fig. 10 (d is the maximal dimension of the target
animation).

parameter description value
n patch size 5
b boundary region width 30 px
r cuboid size 5 frames
wbound boundary term weight 4
wext motion extent term weight 0.25
wdir directional alignment weight 1
wtemp temporal coherence weight 4
wuni uniformity weight 1
ml temporal modulation lower threshold d ·0.01
mu temporal modulation upper threshold d ·0.1

(a) 01 (b) 02

(c) 03 (d) 04

(e) 05
(f) 06

Figure 8: A selection of source exemplars used for evaluation.
The checkerboard pattern indicates areas outside the mask. Exem-
plars 01, 02, 03, 04, 05 are natural and 06 is synthetically gener-
ated using simulation.

is more than an order of magnitude faster when compared to the
computational overhead of the LazyFluids algorithm [JFA∗15].

To validate our method we recorded five natural style exemplars,
and one synthetic one using fluid simulation [CAS∗97] (see Fig. 8).
For target animations we prepared six different sequences mani-
festing various kinds of movement (see Fig. 9). Results for vari-
ous combinations of styles and target animations are available in
our supplementary video and are depicted in Fig. 10. The aver-
age computational overhead for individual target sequences is pre-
sented in Table 2.

The results demonstrate that our method handles complex shapes
and can transfer fine detailed texture while maintaining the appear-
ance and dynamics of the original style exemplar. Despite the in-
terpolation of source pixels’ colors due to arbitrary rotation and
blending of the rotated patches, the output does not significantly
suffer from a detail loss or wash-out.
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(a) The genie animation stylized using natural exemplar 01.

(b) The horse animation stylized using natural exemplar 02.

(c) The sunflower animation stylized using natural exemplar 03.

(d) The waving animation stylized using the exemplar 05. Segments were generated separately, colorized, and composited
together with a solid color background.

(e) The jump animation stylized using synthetic exemplar 06.

Figure 10: Previews of the results
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Table 2: Average timings for source-target combinations presented in Fig. 10.

resulting sequence source sequence target sequence target sequence avg. time per frame
source + target width × height × #frames width × height × #frames #pixels (inside mask) seconds
01 + genie (Fig. 10a) 400×120×30 900×900×400 123×103 3.48
02 + horse (Fig. 10b) 400×222×20 1000×800×400 111×103 2.89
03 + sunflower (Fig. 10c) 200×200×20 500×600×200 60×103 1.33
05 + waving (Fig. 10d) 160×149×20 640×740×250 80×103 2.62
06 + jump (Fig. 10e) 225×94×20 700×300×225 12×103 0.55

(a) genie (b) horse (c) jump

(d) squiggle (e) sunflower (f) waving

Figure 9: A selection of target animation sequences used for eval-
uation.

To demonstrate the effect of individual terms in our energy func-
tion E we performed an ablation study (see our supplementary
video) where we selectively set the weight of each individual term
to zero. It is visible that omitting the boundary term Dbound leads
to a loss of natural transition between the artistic media and the
canvas. When the motion direction alignment Ddir is missing, the
material is perceived as moving in random directions which are not
in line with the prescribed target flow except at boundaries where
the Dbound slightly reinforces correct direction. When both terms
are set to zero, the resulting flow becomes completely random. Ig-
noring motion extent term Dext leads to a selection of patches which
do not provide a sufficient movement in the subsequent frames
therefore unnatural-looking results are produced, e.g., moving re-
gions are stylized with the texture of stationary ones and vice versa.
Disabling the patch occurrence measure Ω leads to visible wash-out
artifacts since the variety of source patches becomes significantly
reduced. Without Dtemp the output is not coherent in time and by
switching off Dtex the texture details become slightly deteriorated.
The reason why the output looks reasonable even when Dtex is
not active is the fact that texture coherence is also jointly enforced
by Dtemp. When both terms (Dtex and Dtemp) are disabled, the drop
in quality becomes more noticeable.

We compared our technique to the LazyFluids algo-
rithm [JFA∗15] which was originally developed for a different
application scenario (appearance transfer to fluid simulations),
however, it still represents a closest previous state-of-the-art
method that can be applied in our setting. We use our source binary
masks as alpha channels in their RGBA input and the target flow
field is constructed using the method described in Appendix A.
See our supplementary video for a comparison, where it is visible
that both methods successfully retain the appearance of the style
exemplar, but when seen in motion it is apparent that the texture in

the static area is gradually warped by the LazyFluids algorithm and
thus the motion characteristics of the original exemplar sequence
are not preserved well. Also, LazyFluids tends to superimpose
the exemplar motion on top of the target motion, resulting in a
composition typically not in line with the prescribed direction,
which may lead to drifting artifacts. In contrast our method better
preserves the stationary components and also more faithfully
resembles the dynamic properties of the exemplar artistic media.

In our supplementary video, we also provide a comparison to
EbSynth [JvST∗19]—an example-based method that represents the
traditional approach to video stylization. In this technique style ex-
emplar follows the motion in the target video precisely while the
temporal coherence is enforced explicitly. Although the purpose of
EbSynth differs from our scenario, seeing its results side-by-side
with our technique helps to understand the core idea behind flu-
idymation. The aim is not to keep the texture attached to the target
moving object but instead convey the motion as if the paint diffuses
over the canvas.
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Figure 11: User study results. On a likert scale 18 participants
where asked to what extent our approach and two previous tech-
niques (LazyFludis [JFA∗15] and EbSynth [JvST∗19]) convey the
notion of watercolor diffusion (1 is "not at all" and 10 is "abso-
lutely"). Our approach was almost consistently evaluated to better
preserve the desired motion dynamics.

To provide a quantitative evaluation we conducted a user study
with 18 participants (10 men and 8 women) out of which 7 were
professional artists and 11 casual observers. We presented them
with sequences produced by our approach and also two previous
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methods (LazyFluids [JFA∗15] and EbSynth [JvST∗19]) and asked
them on a likert scale to what extent they think each particular tech-
nique conveys the notion of watercolor diffusion (1 is "not at all"
and 10 is "absolutely"). Results of the user study are presented
in Fig. 11, which shows that users perceive our approach as de-
livering results that are closest to the desired motion dynamics.

5. Limitations and Future Work

Although the proposed method provides a viable solution to the
Fluidymation scenario, there are still some limitations that could
inspire future improvements.

Since the synthesis algorithm searches for patches over the entire
source sequence, we need to upload it into memory. This limits the
dimensions and length of the source sequence that can be used to
stylize the output in a single run. In practice such a limitation can
be bypassed by uploading only a fraction of the source frames in a
sliding window that can be shifted in time.

A scenario in which our method can encounter difficulties is
when new material is added on the canvas during the animation
(see, e.g., results with the squiggle animation in Fig. 9d). In this
case the area under the imaginary brush appears like it has already
received the paint (see Fig. 12a) which may not be perceived as a
realistic behavior. This problem can be alleviated by generating the
output in a reverse order (see Fig. 12b). This, however, requires an
additional supervision which we plan to automatize in future work.

When the style exemplar contains only a small area with sub-
stantial motion (see, e.g., Fig. 8c), the resulting sequence may con-
tain slight flicker due to lack of sufficiently dynamic content at the
area of moving edges. Also, the areas where the target motion is di-
rected inward may contain more artifacts than those with outward
motion. This is caused by the fact that the temporal coherence is
maintained only in the forward direction. In future work it would
be beneficial to consider also bidirectional optimization in the spirit
of [BCK∗13].

A challenge for our technique could be generalization to subtle
geometric details (see, e.g., the lower tip of the genie in Fig. 9a)
for which there are no similar counterparts available in the style
exemplar. In those cases spurious shape fragmentation may occur
in the resulting stylized sequence (see Fig. 10a).

Our simple flow field construction algorithm (see Appendix A)
was designed to capture diffusive motions where the dominant flow
component is usually perpendicular to the mask boundary. Due to
this design some type of movements such as rotations may not be
captured correctly. This drawback could manifest in the results as
if the material is moving diagonally to the mask boundary. In fu-
ture we envision to employ more robust flow field construction al-
gorithms (e.g., [OF03, NBM05]) which would capture also these
additional details.

6. Conclusion

We have presented an approach to the example-based stylization of
animations that retains the appearance and the dynamic properties

(a) Normal result (b) Target animation reversed

Figure 12: The squiggle animation displays an unrealistic appear-
ance of a material being added onto a canvas while a more realistic
result can be obtained when the target animation is reversed.

of the original hand-painted style exemplar. Thanks to this prop-
erty, we can avoid the temporal incoherence issue typical for hand-
colored animations while at the same time overcoming the unnatu-
ral stiffness and dissonance of previous stylization techniques that
enforce temporal coherence explicitly. We believe our approach can
inspire artists to bring new life to their animations, giving them a
more natural hand-painted look.
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Appendix A: Flow field construction

When either S f low or T f low is not provided as an input to our al-
gorithm, we can approximate them using the motion at the bound-
aries of masks Smask and T mask. As the procedure is the same for
the source S as well as the target T sequence, we will denote both
as I.

We assume a direction of a flow field I f low
i at the boundary

of Imask
i is perpendicular to its tangent, and therefore parallel to the

gradient of a distance field Idist
i computed from the mask’s bound-

ary [FH12] (see Fig. 13c). The magnitude of I f low
i at the mask

boundary (see Fig. 13d) can then be estimated as a difference of
distance fields of two consecutive frames (see Fig. 13d) giving us
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(a) Masks of two adjacent
frames Imask

i−1 and Imask
i

(b) Their corresponding signed
distance fields Idist

i−1 and Idist
i

(positive values in green, negative in
red)

(c) The gradient
of the second
distance
field∇Idist

i , i.e.,
the flow direction
(hue is direction,
intensity is
magnitude)

(d) The difference
of the distance
fields Idist

i − Idist
i−1

at the second
mask’s border,
i.e., the amount
of flow

(e) The difference
and gradient
multiplied, i.e.,
the final flow at
the border

(f) The final flow
field I f low

i
obtained by
diffusing the
border pixels’
values

Figure 13: Flow field construction in 2D

Imask
1 I f low

1 Imask
2 I f low

2 Imask
3

Figure 14: Enlarged part of three successive frames’ masks
with corresponding flow fields between them, without (top) and
with (bottom) the distance field temporal smoothing applied.

a complete estimate of a flow field at the boundary of mask Imask
i

(see Fig. 13e):

I f low
i =

(
Idist
i − Idist

i−1

) ∇Idist
i∣∣∇Idist
i

∣∣ .
To compute flow field vectors for the pixels in the interior

of Imask
i we use diffusion of the border values as in Johnston et

al. [Joh02] (see Fig. 13f).

To improve smoothness in the temporal domain and enable sub-
pixel movements which cannot be captured by binary masks, we
convolve the estimated sequence I f low with a temporal Gaussian
filter with radius of 3 frames (the difference between flow fields
with and without the temporal smoothing can be seen in Fig. 14).

Appendix B: Algorithm overview

An overview of multi-scale optimization scheme for minimizing E
which includes also our special handling of nearest-neighbour
fields is presented in Algorithm 1. The operation SHIFTNNF is
described in Section 3.4 and operations UPSCALENNF, DOWN-
SCALENNF, and MERGENNF are specified in Section 3.6. In-
puts Sguides and T guides denote all additional guiding channels and
their weights (i.e., bound, int, f low, rot, dist, temp, ext+, ext−,
and uni).

Algorithm 1 Multi-scale optimization

NNFprev← empty mapping
Ti← empty image
for each level l do

if l is the coarsest level then
if first frame then

NNFinit ← random mapping
else

NNFinit ← DOWNSCALENNF(NNFprev)
end if

else
if first frame then

NNFinit ← UPSCALENNF(NNFl+1)
else

NNF↑l ← UPSCALENNF(NNFl+1)

NNF↓prev← DOWNSCALENNF(NNFprev)
NNFinit ← MERGENNF(NNF↑l ,NNF↓prev)

end if
end if
NNF,T rgb

i ← OPTIMIZE(Srgb,Smask,Sguides,

T mask
i ,T guides

i ,NNFinit )
end for
output T rgb

i
NNFprev← SHIFTNNF(NNF)

The central EM-like texture optimization loop OPTIMIZE in-
spired by [KEBK05, WSI07] is presented in Algorithm 2. Here
the operation FINDNNF uses patch similarity D to retrieve nearest
neighbour patches whereas VOTENNF performs voting that aver-
ages color of all co-located pixels within intersecting patches (as
in [KEBK05]).

Algorithm 2 Texture Optimization

function OPTIMIZE(Srgb,Smask,Sguides,T mask
i ,T guides

i ,NNFinit )
NNF ← NNFinit
T rgb

i ← VOTE(Srgb,NNF)
for j← 1 . . .opt_iters do

NNF← FINDNNF(Srgb,Smask,Sguides,T rgb
i ,T mask

i ,T guides
i )

T rgb
i ← VOTE(Srgb,NNF)

end for
return NNF,T rgb

i
end function
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