
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Z2P: Instant Visualization of Point Clouds

G. Metzer1, R. Hanocka4, R. Giryes1, N. J. Mitra2,3, D. Cohen-Or1

1Tel Aviv University
2 University College London

3 Adobe Research
4 University of Chicago

Figure 1: Point cloud inputs and resulting visualization using our Z2P, conditioned on different colors and lighting positions.

Abstract

We present a technique for visualizing point clouds using a neural network. Our technique allows for an instant preview of
any point cloud, and bypasses the notoriously difficult surface reconstruction problem or the need to estimate oriented normals
for splat-based rendering. We cast the preview problem as a conditional image-to-image translation task, and design a neural
network that translates point depth-map directly into an image, where the point cloud is visualized as though a surface was
reconstructed from it. Furthermore, the resulting appearance of the visualized point cloud can be, optionally, conditioned on
simple control variables (e.g., color and light). We demonstrate that our technique instantly produces plausible images, and
can, on-the-fly effectively handle noise, non-uniform sampling, and thin surfaces sheets.

1. Introduction

Point clouds are a popular and flexible representation of 3D shapes.
A slew of works have successfully employed deep neural net-
works to synthesize point clouds, for shape synthesis [ADMG18;
LZZ*18; YHH*19; HHGC20; GBZC20], upsampling [YLF*18b;
YWH*19], consolidation [YLF*18a; MHGC20], shape comple-
tion [YKH*18], denoising [RLG*20], among others. Thus, gen-
erating an increasing demand for a fast and effective technique
to visualize point clouds. Yet, neurally synthesized point clouds
do not contain a globally consistent normal orientation (since

standard loss functions do not trivially enable normal regres-
sion [MHZ*21]), which is a prerequisite for rendering them using
surface reconstruction.

Since points are zero-dimensional entities, they cannot be
rendered directly. One approach enables point cloud visualiza-
tion by converting each point into a local tangent patch (i.e.,
splats) [ZPVG01; BK03]. Since point samples are irregular and un-
structured, different heuristics for deciding the size of local splats
inevitably lead to holes and overlaps. Moreover, these techniques
often assume normals are provided as input, or ought to be esti-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14487

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14487


G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

mated on-the-fly [DB07; PJW12]. One approach for avoiding the
difficult normal estimation problem is through screen space opera-
tors [PGA11], at the expense of limited shading and visualization
abilities.

A more meticulous approach is to first reconstruct a mesh sur-
face from the input point samples [KBH06; KH13; HMGC20] and
then render the mesh. However, reconstructing a surface is a noto-
riously difficult problem. Such an approach appears to be overkill if
the end goal is to simply visualize the point set. Further, it inherits
the problems of any reconstruction algorithm. For example, neural
synthesized point clouds lack normal orientation and often contain
interior points, resulting in poor reconstruction results. Moreover,
surface reconstruction is unstable and not well defined in the case
of thin surfaces and sheets. Finally, these methods are often slow,
which is not feasible for a quick preview visualization. One ex-
ception is [KTB07], which allows for faster reconstruction without
normal information, but has limited success on sparse point clouds
(see Figure 8).

We cast the problem as an image-to-image translation problem
whereby z-buffers, i.e., depth-augmented point features as viewed
from target camera view, are directly translated by a neural net-
work to rendered images, conditioned on control variables (e.g.,
color, light). Once trained, our network produces visualization us-
ing a single forward pass, and hence is instantaneous. Further, we
support scene controls, such as light position and colors as an in-
put condition to the network using adaptive instance normalization.
The convolutional nature of the network enables learning a map-
ping at the patch level, which is location invariant. Yet, the shad-
ows in the scene do depend on the location. Thus, by leveraging a
positional encoding, we break this invariance and allow the shading
effects to depend on the location.

Our network is trained on automatically generated pairs of point
clouds and rendered meshes, and only requires training on a few
unique meshes to achieve generalization. We generate a copi-
ous amount of paired data from each mesh, by applying random
lighting, color, and rotation augmentations. During inference our
method can generate plausible images from point clouds where the
ground-truth is unknown (i.e., noisy point clouds from neural net-
works or scanning devices), bypassing the challenging reconstruc-
tion or point normal orientation problem altogether. Moreover, it is
significantly faster than the rendering engine it was trained on: our
preview visualization takes under one second, while the full-blown
rendering engine takes over 10 seconds.

We show that our method can act as an effective, quick-and-
dirty point cloud preview, while still providing useful control. We
demonstrate that our approach can successfully handle noise, non-
uniform sampling, and in particular thin surfaces and sheets (see
Figure 9). Our experimental evaluations show that our technique is
comparable or better than existing techniques, and is considerably
faster.

2. Related Work

Splatting. The most common and direct way to render point clouds
is through splatting, which are small planes placed at each point in
the input point cloud, and point in the normal direction [ZPVG01;

O
ur

s
D

SS
In

pu
t

Figure 2: Our method can directly visualize point clouds with non-
uniform sampling. Note the self shadow effects on the palm of the
left example.

DB07; PJW12]. Splatting methods generally require normals as
input in order to set the splat direction. Some splatting methods
such as [DB07; PJW12] can estimate the normal direction in screen
space, instead of relying on explicit normals as input. Both [DB07;
PJW12] are able to work in real-time and utilize a GPU. The ori-
entation of the normal vector can also be considered for shading
purposes, to detect back facing points. Results of different splatting
methods can be seen in Figures 2, 8, 15. Splatting-based methods
are adequate for fast and simple visualizations, but may be limited
in some features as described in Table 1.

Screen Space Operators. PINTUS et al. [PGA11] developed a
screen space technique that is able to render point clouds in real-
time without normals. To render the point clouds, the points are first
projected onto a texture, then the method detects the visible points
and interpolates the depth values over the rest of the screen. Screen
space deferred shading is applied to highlight surface curvature.
Although this method is real-time and does not require normals, it
can only perform deferred shading.

Surface reconstruction. Reconstructing a surface mesh from
point clouds is a long standing problem in computer graphics that
has been studied extensively for over 20 years [BTS*17]. A com-
mon approach triangulates a set of points [EM94; BMR*99]. Al-
ternatively, an implicit function can be built from the point cloud
and normals, and the surface mesh is extracted by finding the
zero-crossings [HDD*92; KBH06; KH13]. Surface reconstruction
can also be obtained using a mesh deformation technique, where
an initial mesh is incrementally displaced to fit an input point
cloud [SLS*06; HMGC20].

A common prerequisite for surface reconstruction is calculating
a globally consistent normal orientation [MN03; LW10; GKOM18;

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

462



G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

SSG17; JBG19]. Though some techniques, such as [MDD*10;
HMGC20] can reconstruct surfaces with unoriented normals. Tri-
angulation techniques (such as ball-pivot [BMR*99]), handle thin
sheets well, yet inevitably lead to undesirable holes in the recon-
struction. On the other hand, implicit surface reconstruction (such
as Poisson [KBH06; KH13]) tend to handle holes better, yet occu-
pancy is not-well defined in the case of sheets. Finally, this route
is computationally expensive since it requires both reconstructing a
surface and then rendering an image.

KATZ et al. [KTB07] developed a method to detect visible points
from a raw point cloud without normals. As a by product of the the
hidden point removal (HPR), the method also allows for a "quick-
and-dirty" single view reconstruction i.e. a partial mesh that con-
strains a surface only from the view direction. A comparison to
KATZ et al. [KTB07] can be found in Figure 8 and in the supple-
mentary material.

Deep rendering. Since the introduction of the rendering equa-
tion [Kaj86], many works have proposed techniques to speedup
the rendering process, for example, using deferred shading [ST90]
to produce a render from 2D G-buffers (e.g., depth image, normal
maps, etc).

Although deep rendering works and our work both aim at pro-
ducing an image from a 3D object from a single view, rendering
works have a different focus. Rendering methods usually assume a
high quality description of the 3D geometry that can be queried,
like continuous surfaces, and focus on producing highly realis-
tic visualizations while supporting controls like lighting, materi-
als, etc. Our work, on the other hand, enables a quick preview of
the shape (bypassing the surface reconstruction problem), which
does not qualify as a full fledged rendering engine. Recently, deep
learning has been used to perform deferred shading [NAM*17]
which calculates the G-buffer from the complete 3D scene. How-
ever, estimating these maps (e.g., occlusions, light and normal in-
formation) is non-trivial for point clouds. RenderNet [NLBY18]
learns to produce 2D images from a 3D voxel representation of the
shape. Adopting this approach to point clouds is wasteful as it re-
quires creating a voxelized volume (reducing the resolution down
to 64×64×64), as well as require oriented normals. HERMOSILLA

et al. [HMRR19] learns to shade surfaces using deep neural net-
works and G-buffers, which is a faster alternative than path-tracing.
Note that we do not have access to G-buffer information in our case.

Neural point cloud rendering has been studied in [KSL20;
DZL*20; AUL19]. These works mainly focus on rendering novel
views from a single scene using a sparse set of input views. In this
setting, since a descriptor is optimized for each point, it does not
extend to point clouds outside of the training set (single scene).
This type of problem is different than ours, as we do not aim
at visualizing a single scene, instead our technique is generalize
to unseen point clouds. Moreover, our system achieves complete
disentanglement and control of lighting, color, and ambient shad-
ows, as compared to these works that receive shading and color
information from the given RGB images of the scene. A compar-
ison between our work and alternative methods is depicted in Ta-
ble 1. Recently, [CCCM21] proposed a controllable neural render-
ing pipeline for neural 3D shapes represented by neural implicits.

An orthogonal line of works propose differential render-

ing [YSW*19; CGL*19] techniques for a plug-and-play module
in deep learning architectures. Different than the objective of this
work, these works are used to perform shape reconstruction or in-
verse rendering (i.e., recovery of unknown 3D scene and lighting).

3. Method

We formulate the visualization task as an image-to-image trans-
lation from z-buffers of projected point clouds to surface images,
conditioned on the visualization settings. Our framework is simple,
yet effective. We automatically generate simulated training data to
train a fully-convolutional network to learn a mapping from point
cloud z-buffers to rendered mesh images. We inject visualization
control through Adaptive Instance Normalization (AdaIN) [HB17]
layers, enabling a disentangled representation of visualization pa-
rameters and shape.

Figure 3: Self shadow effects are plausibly generated with our
method. Light position is visualized in yellow.

Synthesizing shadows requires long range interactions between
pixels (see Figures 3 and 7). This is achieved by the U-Net [RFB15]
structure which takes into account various scales of the input. Yet,
in order to enable the network to effectively process the light direc-
tion, we break the translational symmetry of the convolutions by
appending positional encoding to the input. During inference, we
use real point clouds (i.e., noisy point clouds obtained from neural
networks or scanning devices) to obtain a plausible quality image,
previewed in under a second, bypassing the challenging surface re-
construction or point normal orientation problem altogether.

3.1. Point Cloud Projection

We use a 2D z-buffer projection of the point cloud as input to our
network. XIE et al. [XWZ*21] demonstrated a similar projection
was useful for their adversarial loss. Each point in the point cloud p
is projected onto the nearest 2D image coordinate (up,vp), with an
intensity value proportional to the depth dp, i.e., distance to the im-
age plane. The projection is a perspective transformation according
to the camera pinhole model with extrinsic (camera location) and
instrinsic (e.g., focal length) parameters. Pixels in the 2D image
plane that do not correspond to any 3D points receive an intensity
of 0, while other pixels receive an intensity value according to

z(up,vp) = e−(dp−α)/β, (1)

where α and β are hyperparameters that we fix once throughout
training, inference and all experiments. The width of the intensity

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

463



G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

Ray Tracing Splatting Screen Space Reconstruction NPR Ours
Raw xyz points 7 3 3 3 7 3

Handles points w/o normals - 3/ 7 3 7 3 3

Generalizes to unseen objects 3 3 3 3 7 3

Robust to internal points - 3 3 7 3 3

Robust to number of points - 7 3 7 7 3

Shadows 3 7 7 3 - 3

Per point colors - 3 3 3 3 7

Scene level scans - 3 3 3 3 7

Table 1: Comparing Z2P to other visualization techniques. Reconstruction refers to reconstructing a mesh and rendering it with ray tracing,
and neural point rendering (NPR) refers to the prior works of [KSL20; DZL*20; AUL19]. Splatting contains 3/ 7for requiring normals,
as some works such as [DB07; PJW12] are able to estimate normals on the fly, and therefore technically do not require normals as input.
Screen Space refers to the work of [PGA11], as discussed in the related work it should be noted that this work is limited to deferred shading.

Figure 4: Overview. We project the point cloud into a 2D z buffer
image, which is the input to our network. We append positional
encoding (Fourier features) in order to model long-range effects
required to generate shadows. We inject scene controls into AdaIN
after each convolutional layer, enabling control of the light and
color in the scene.

values for each points’ 2D projection on the image is within a 5×5
window. In the case where multiple points are assigned to the same
pixel, we use only the closest one to determine the intensity.

The intuition behind our z-buffer image is that points far away re-
ceive a value approaching the background intensity, whereas close
points are exponentially brighter than occluded ones. This makes

2D features consistent with the visualization requirements, since
far points are usually occluded, which should result in an intensity
value that is close to background and much lower than points which
are in front of it. Note that our z-buffer image may contain back-
facing points, since we do not use oriented point normals. Despite
this, we observe that our network is able to cope with such hidden
surfaces well.

3.2. Training Data Generation

Our training data is automatically generated using Blender 3D en-
gine [Com21], which provides explicit control over the rendering
parameters. We sample meshes to produce corresponding pairs of
point cloud and mesh data. In order to generate a large amount of
geometric variety using only a small number of unique meshes, we
apply random rotations and create different point cloud instances
from the same mesh. Note that due to the convolutional nature of
the network, which shares weights across patches of the input z-
buffer, the effective number of training examples is larger than the
number of pairs of input images.

For each pair of point cloud and underlying mesh pair, we ran-
domly select a color and light location which is used to automat-
ically render an image using Blender Cycles engine. The light is
modeled using a flat emission surface with a floor plane for catch-
ing shadows and ambient light.

This results in many pairs of training inputs (zi,si) and outputs
ri, where zi is the 2D projection of the point cloud, si is a vector
containing the settings (color and light position), and ri is the cor-
responding blender rendered image.

The training data is composed of 20 unique meshes each aug-
mented 400 times with rotation, color, and lighting position. Each
mesh has 10 corresponding point clouds that were sampled from it.
This results in 80K pairs of training examples.

3.3. Network Architecture

We formulate our visualization task as an image-to-image trans-
lation from z-buffers to rendered images (with an alpha channel
for matting). However, this is not a simple image-to-image setup
as the target visualization is conditioned on the given color and

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

464



G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

gr
ou

nd
-t

ru
th

ou
rs

Figure 5: Lighting control. Top: our visualized result conditioned on slowly changing light position produces a smooth transformation of the
shade and objects lighting. Bottom: Ground truth mesh renderings under corresponding conditions. The shaded sphere helps visualizing the
light direction.

Figure 6: Color control. We keep a constant light and view angle,
while continuously varying the input color.

light position. To enable better control, we propose a modified U-
Net [RFB15] architecture where we add AdaIN layers to control
the color and light position, and use positional encoding to produce
accurate shadows. Below, we describe each of these added compo-
nents. In Section 4, we show the importance of these components
through an ablation study.

Visualization control. Our architecture enables independent
control of both the object color as well as light position of the vi-
sualization. This disentanglement can be seen in figures 6 and 5.
We inject the color to the network as a 3-dimensional vector, which
defines the RGB values of the target shape. The light position is
given as a 3-dimensional vector corresponding to the light position
in spherical coordinates with respect to the camera. The two vec-
tors are concatenated to produce the settings vector s∈R6. We map
the settings vector s ∈ R6 to a higher dimensional vector w ∈ R512

by an MLP mapping network. The vector w is used to produce the
mean and standard deviation that are used by the AdaIN layers.
Notice that while w is shared across all AdaIN layers, each of them
uses a different (learned) affine transform to control its parameters.

This dependence on the light and color through AdaIN allows con-
trolling the scene setting.

Adaptive Instance Normalization (AdaIN). The original U-
Net uses batch normalization after each convolution operation.
However, to control the color and shadows of the resulting image,
we replace batch normalization with AdaIN layers. These layers
normalize the feature map from the prior convolution operation.
This was also shown to be an effective technique for controlling
global style effects in [KLA19].

Each AdaIN layer ADAi has a target feature length of size fi. In
order to use the global vector w, each AdaIN layer contains two
additional affine transformations Aβ,i, Aγ,i that receive an input of
size 512 and output a vector of size fi.

Formally, each AdaIN layer takes as input a feature map x of
size H×W × fi and the vector w. The affine transformation is used
to calculate βi = Aβ,i ·w and γi = Aγ,i ·w, and the feature map x
is normalized according to Equation 2 below, where µ(x) and σ(x)
are the mean and standard deviation over the spatial dimensions per
each channel,

x̂ = γi

(
(x−µ(x))/σ(x)

)
+βi. (2)

Positional encoding. U-Net is a fully convolutional network
which means it has a limited receptive field, and is translation
equivariant. The light position is used to control shadows. This re-
quires long range interactions between pixels, and should not be
translation equivariant. For example, when lifting an object in the
vertical direction, shadows should remain at the bottom of the im-
age, as the object moves farther away from the bottom floor plane
(see Figure 7).

To allow for long interactions and break the translational sym-
metry, we append positional encoding features to the input image

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

465



G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

w
/P

os
E

nc
w

o/
Po

sE
nc

Figure 7: Shadow effects require positional encoding. During in-
ference, we move the object location upwards (without having
trained on this type of data). Observe how the positional encoding
correctly learns the shadow interactions, keeping the floor plane in
the correct location.

that depend on the pixel location. This enables the convolution fil-
ters to grasp the global context. We use random Fourier features,
which has been successful at modeling both short and long interac-
tions [TSM*20].

Formally, each pixel gets a normalized coordinate value (ui,vi)
in the range [0,1]. At the beginning of training, ten {ω j} values are
sampled from a uniform distribution ω j ∼U [0,10], to produce 40
features for each pixel of the form:

enci = [{sin(ω j ·ui)} j,{sin(ω j ·vi)} j,{cos(ω j ·ui)} j,{cos(ω j ·vi)} j]
(3)

Each encoding enci is concatenated to its corresponding pixel in
the z-buffer, which creates additional input features.

3.4. Losses

Our network is trained using a combination of simple reconstruc-
tion losses. The network produces a 4-dimensional image, three
color channels (for RGB) as well as an alpha channel for trans-
parency. We use an L2 loss between the network-predicted color
image and the ground-truth color image. We also calculate the mag-
nitude of the three color channels (pixel-wise) for both images and
calculate the L1-norm between them. We also compute the L1 dis-
tance between the ground truth and predicted alpha map intensities.

4. Experiments

We performed various experiments to validate our network perfor-
mance as well as compare to existing surface reconstruction tech-
niques. We demonstrate the ability to generalize on point clouds,
where the ground-truth surface is unknown, such as real scans, as
well as on point clouds that were synthesized from neural networks.
We justify various components of our network architecture and per-
form run-time comparisons. All results in this paper are shown on
held out validation or test set examples. There are extended results
and evaluations in the supplementary material and video.

4.1. Visualization Control

We control the visualized result by modifying different settings:
light position, color, and viewing angle. For example, in Figure 6
(more in supplemental) we control the color of the visualized re-
sult. In Figure 5 we move the light position in the horizontal di-
rection, which changes the ambient shading on the object as well
as the shadows on the ground (yet the color is held constant). We
also show the visualization result from multiple view points in Fig-
ure 10, while holding light position and color constant. See supple-
mental video for temporal animations of modifying different visu-
alization controls, as well as the supplemental material.

4.2. Handling Noisy Inputs

Depending on the use case, one may want to disregard noise, even if
it is part of the input. We trained our model with examples contain-
ing uniform noise to produce a type of denoising visualizations. To
test the ability to disregard noise, we added an increasing level of
Gaussian noise during inference (different than the noise we trained
on), in Figure 8. The last row contains the results on Z2P trained
with uniform noise, and the second to last row is Z2P trained on

0.001 0.005 0.01 0.02 0.03

O
ur

s
N

oi
se

O
ur

s
C

le
an

B
-P

iv
ot

Po
is

so
n

H
PR

D
SS

In
pu

t

Figure 8: Handling noisy inputs. We compare against different ap-
proaches for visualizing a noisy point cloud with increasing levels
of Gaussian noise (standard deviation at the bottom). The last row
shows results of our network trained with examples corrupted with
uniform noise.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

466



G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

clean data. The noise-removal version visualizes results that are no-
ticeably smoother than the baseline Z2P, however this may come at
the cost of over-smoothing fine details, since they can be attenuated
in the presence of noise.

Input Poisson Ours

Figure 9: Sheets are especially hard to orient, reconstruct, and may
be unprintable. Popular techniques such as Poisson reconstruc-
tion [KBH06] are not well defined in these cases (due to the open
surface and poor normals). Our method, which operates on raw
point clouds, can handle such cases as it does not rely on oriented
normals or other surface attributes.

4.3. Robustness To Sampling

We show robustness to different types of sampling methods in Fig-
ure 11. Note, that despite only being trained on uniformly sam-
pled meshes, our method is able to generalize to different sampling
methods, as well as noise from neural synthesized point networks
and real scanning devices.

We also evaluate the ability of our method to cope with point
clouds at different scales, which results in a different point density
on the z-buffer image in the supplemental material.

4.4. Generalization

We demonstrate the ability of our technique to visualize images
from point clouds where the ground-truth underlying surface is un-
known. Such an example is point clouds synthesized from neural
networks. These are interesting since they are challenging for sur-
face reconstruction methods [MHZ*21], since they do not contain
normal information and often have inner points and single sheets.
In Figure 15 and in the supplementary, we show our ability to ro-
bustly handle these challenging cases, without oriented normals
and with the unknown noise distribution. Future deep learning ap-
proaches may use our work to better visualize the generated shapes.

We also compared against Point2Mesh [HMGC20] which also
does not require normal orientation, in Figure 12. Additional com-
parisons can be found in the supplementary.

Scans acquired from sensor devices, are usually obtained as a
single occluded view. These scans are not well defined for Pois-
son reconstruction, but can be used with an explicit triangulation
method like ball pivot (which tends to introduce noise). Figure 13
shows results of a single view scan obtained from a low-end Intel
RealSense SR300 scanner. We also show results on a lidar scanner,
which contains an open surface which is especially challenging for
surface reconstruction techniques, such as Poisson 14.

4.5. Timing Comparison

Table 2 shows the run-time of each individual component in our
method. The table shows the timings for: projecting the point cloud
onto the 2D coordinate plane (project), calculating the z-buffer in-
tensity (z-buffer), forward pass through the network (forward), and
the average overall time it takes for one example (avg per example).
Visualizing a point cloud from start to finish takes under three sec-
onds for a point cloud of size 5k, where the most expensive com-
putation is the z-buffering process. Since the z-buffering code is
written in Python, this part can be significantly accelerated using
GPU and C++. Training our method takes around 24 hours on a
single GTX 1080 Ti GPU. Rendering the train and validation set
takes 48 hours (using a single GPU with Blender).

batch
size

project
ms

z-buffer
sec

forward
ms

avg per example
sec

1 <0 2.60 20 2.62
2 10 5.04 40 2.54
3 10 7.88 60 2.65
4 10 10.70 80 2.69
5 20 13.28 110 2.68
6 20 17.48 120 2.93

Table 2: Run time break down. Visualizing a point cloud from start
to finish using our method takes under 3 seconds. The z-buffer op-
eration takes almost all the time, which is written in unoptimized
Python code.

Rendering an image from point clouds by first estimating a re-
construction is computationally expensive. As shown in Table 3,
Reconstruction requires estimating the point normals and propa-
gating their orientation (∼3 seconds), running the reconstruction
algorithm itself (∼1 or∼10 seconds), and then rendering the result
with blender (∼10 seconds). In total, Poisson reconstruction and
ball pivot take 13.85 and 23.92 seconds, respectively, whereas our
technique on the same point cloud takes less than 3 seconds.

steps [sec] Poisson B-pivot
normal estimation 2.76 2.76
reconstruction 10.63 1.03
render 10.53 10.06
total time 23.92 13.85

Table 3: Run time break down for surface reconstruction ap-
proaches. In total, Poisson reconstruction and ball pivot take 13.85
and 23.92 seconds, respectively, whereas our technique on the same
point cloud takes less than three seconds (Table 2).

4.6. Architecture Ablation

The design choices of our architecture are explained through sev-
eral experiments. We control the visualization through AdaIN,
which has been shown to be a powerful tool for controlling style
parameters. We compare it to a feature-baseline, where instead of
injecting the visualization settings through AdaIN, we create a vari-
ant of our network which appends the visualization settings as extra

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

467



G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

Figure 10: Point clouds can be rendered from multiple views while producing a coherent result with respect to both color and shadows.

input features (repeated for every input z-buffer pixel). Note how in
Figure 16, the AdaIN version maintains a consistent color regard-
less of sampling density. By injecting controls at a global scale with
AdaIN, which only changes second order feature map statistics, we
obtain a framework with better style consistency and control. We
also test the impact of the positional encoding. Figure 7 shows that
it is necessary for correctly modeling the long range interactions
needed to generate shadows.

4.7. Splatting

In Figures 2, 15, 16 and the Supplementary Material we com-
pare to splatting techniques. Specifically, we compare to two splat-

Grid FPS Poisson Disk Uniform

O
ur

s
B

-P
iv

ot
Po

is
so

n
In

pu
t

Figure 11: Robustness to different point sampling methods. Poisson
reconstruction and ball-pivot (top, middle rows respectively) vary
in quality across different sampling methods, our method is able to
produce a high quality consistent visualization of the point cloud.

Input Point2Mesh Ours
Figure 12: Comparison to [HMGC20]. Though Point2Mesh also
produces good results, it requires a long time to converge (30-60
minutes), compared to our result that is obtained in seconds.

Input Ball Pivot Ours

Figure 13: Results of visualizing single view point clouds obtained
from Real Sense depth scanner.

ting methods, calculated using MeshLab [CCC*08] and using
DSS [YSW*19]. We use the forward renderer from DSS. which
can be seen as splatting using ZWICKER et al. [ZPVG01]. All splats
are rendered with double-sided shading, which is oblivious to the
normal orientation.

As the point clouds used in the paper are relatively sparse, holes
are visible in the splatting visualizations. The sparsity also affects
normal estimation, as it is calculated using local neighborhood in-
formation, and causes noisy speckle artifacts, as seen in Figure 15.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

468



G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

Input Ball-Pivoting Poisson Ours
Figure 14: Results on real lidar scanned data, which contains
holes, noise and open surfaces.

Splatting techniques are better designed for dense point sets, as can
be seen in Figure 16, as well as when the points already contain
shaded color information.

4.8. Material Control

All the figures presented throughout the paper, are the results of a
model trained with the default Blender diffuse material, which is
sufficient for plausible visualization of point clouds. To allow for
more control over the appearance, we trained our method on a spe-

O
ur

s
B

-P
iv

ot
D

SS
M

es
hL

ab
In

pu
t

Input Ours Poisson Ball Pivoting
Figure 15: Our results on different chairs, planes, and cars gener-
ated by [CYA*20]. Poisson reconstruction was not able to produce
a meaningful result for the chairs with thin surfaces in the top row.

1,000 2,000 5,000 10,000 20,000

A
da

IN
(O

ur
s)

Fe
at

ur
es

D
SS

M
es

hL
ab

In
pu

t

Figure 16: The visualization control vector as extra input features
leads to an inconsistent lighting color result with respect to the
input density.

cial dataset that uses the Blender Principled BSDF shader. In our
experiment, we trained the network to control over the dominant
Metallic and Roughness attributes.

In this special dataset, for each training example we sampled
random color and light direction controls, as in the original dataset,
together with random Metallic and Roughness values. Similar to
the basic training method, we input the original controls together
with the two additional (Metallic and Roughness) controls to the
network through the AdaIN layers.

Figure 17 shows two examples with different Metallic and
Roughness values as input. The supplementary material contains

ground-truth sampled-pc ours
Figure 17: Two examples of the results of our method, trained on a
dataset with the Principled BSDF shader. The examples shows that
our method can control Roughness and Metallic attributes. More
examples can be seen in the supplementary material.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

469



G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

a sweep over many Metallic and Roughness values and the corre-
sponding outputs for a better evaluation.

5. Conclusions and Future Work

We have presented a neural visualization technique for point
clouds. We refer to this technique as instant visualization as we by-
pass the cumbersome step of explicitly converting the point cloud
to a continuous surface prior to rendering. Moreover, our instant
visualization relaxes the need to compute or use normals; instead,
we directly project points to a simple z-buffer. In its basic form,
our technique is a conditional image-to-image convolutional net-
work. However, a vanilla fully convolutional network would learn
translation at the patch level, and ignore long-distance relations. We
showed that by injecting positional encoding, we break the locality
and gain non-local shading effects.

Limitations and future directions. Our visualizations may not
always be completely accurate, for example, nearby points in Eu-
clidean space may be visualized as touching, when in fact they are
far in geodesic proximity (see Figure 18). Another problem may
arise at fine details, as convolutional neural networks tend to out-
put smooth results. The smoothing effect is also encouraged by the
MSE loss our network is trained with, as this loss aims at achiev-
ing the average visualization result. This problem shows up in Fig-
ure 17, where small holes in the cat’s eyes are visualized as closed
off. A dedicated experiment for the robustness to small details, us-
ing spherical harmonics with increasing frequency, is shown in the
in the supplementary material

Our framework offers limited control compared to a full render-
ing engine. While this can partially be addressed by incorporation
textures, materials, and other types of lighting models in the learn-
ing procedure, our method should not be seen as a replacement for
a rendering system in scenarios where physically-based rendering
is more important compared to instant visualization.

Figure 18: Limitation. Our network may have difficulty distin-
guishing between nearby surfaces, and incorrectly visualization
them as a continuous surface. This problem arises from the am-
biguity between typical sampling space and surface holes.

There is an interesting trade-off between speed and shading lo-
cality that we plan to explore more in the future. Local shading ef-
fects, i.e., ambient, diffuse and specular can be learned at the patch
level, while global shading, like shadows or reflections, are sig-
nificantly harder and require learning non-local interactions. One
research avenue is to incorporate transformers for learning inter-
patches dependencies. Another challenging direction is to improve

the visualization of fine details including sharp features. These,
however, are still challenging also for slower methods that recon-
struct surfaces from sparse point clouds, let alone for an instant
preview.

References
[ADMG18] ACHLIOPTAS, PANOS, DIAMANTI, OLGA, MITLIAGKAS,

IOANNIS, and GUIBAS, LEONIDAS. “Learning representations and gen-
erative models for 3d point clouds”. International conference on machine
learning. PMLR. 2018, 40–49 1.

[AUL19] ALIEV, KARA-ALI, ULYANOV, DMITRY, and LEMPIT-
SKY, VICTOR. “Neural point-based graphics”. arXiv preprint
arXiv:1906.08240 2.3 (2019), 4 3, 4.

[BK03] BOTSCH, MARIO and KOBBELT, LEIF. “High-quality point-based
rendering on modern GPUs”. 11th Pacific Conference onComputer
Graphics and Applications, 2003. Proceedings. IEEE. 2003, 335–343 1.

[BMR*99] BERNARDINI, FAUSTO, MITTLEMAN, JOSHUA, RUSHMEIER,
HOLLY, et al. “The ball-pivoting algorithm for surface reconstruc-
tion”. IEEE transactions on visualization and computer graphics 5.4
(1999), 349–359 2, 3.

[BTS*17] BERGER, MATTHEW, TAGLIASACCHI, ANDREA, SEVERSKY,
LEE M, et al. “A survey of surface reconstruction from point clouds”.
Computer Graphics Forum. Vol. 36. 1. Wiley Online Library. 2017, 301–
329 2.

[CCC*08] CIGNONI, PAOLO, CALLIERI, MARCO, CORSINI, MASSIM-
ILIANO, et al. “MeshLab: an Open-Source Mesh Processing Tool”.
Eurographics Italian Chapter Conference. Ed. by SCARANO, VIT-
TORIO, CHIARA, ROSARIO DE, and ERRA, UGO. The Eurograph-
ics Association, 2008. ISBN: 978-3-905673-68-5. DOI: 10 . 2312 /
LocalChapterEvents/ItalChap/ItalianChapConf2008/
129-136 8.

[CCCM21] CHEN, XUELIN, COHEN-OR, DANIEL, CHEN, BAOQUAN,
and MITRA, NILOY J. “Towards a Neural Graphics Pipeline for Con-
trollable Image Generation”. Computer Graphics Forum 40.2 (2021) 3.

[CGL*19] CHEN, WENZHENG, GAO, JUN, LING, HUAN, et al. “Learning
to Predict 3D Objects with an Interpolation-based Differentiable Ren-
derer”. Advances In Neural Information Processing Systems. 2019 3.

[Com21] COMMUNITY, BLENDER ONLINE. Blender - a 3D modelling
and rendering package. Blender Foundation. Blender Institute, Amster-
dam, 2021. URL: http://www.blender.org 4.

[CYA*20] CAI, RUOJIN, YANG, GUANDAO, AVERBUCH-ELOR, HADAR,
et al. “Learning Gradient Fields for Shape Generation”. Proceedings of
the European Conference on Computer Vision (ECCV). 2020 9.

[DB07] DIANKOV, ROSEN and BAJCSY, RUZENA. “Real-time adaptive
point splatting for noisy point clouds.” GRAPP (GM/R) 7 (2007), 228–
234 2, 4.

[DZL*20] DAI, PENG, ZHANG, YINDA, LI, ZHUWEN, et al. “Neural
point cloud rendering via multi-plane projection”. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, 7830–7839 3, 4.

[EM94] EDELSBRUNNER, HERBERT and MÜCKE, ERNST P. “Three-
dimensional alpha shapes”. ACM Transactions on Graphics (TOG) 13.1
(1994), 43–72 2.

[GBZC20] GAL, RINON, BERMANO, AMIT, ZHANG, HAO, and COHEN-
OR, DANIEL. “MRGAN: Multi-Rooted 3D Shape Generation with
Unsupervised Part Disentanglement”. arXiv preprint arXiv:2007.12944
(2020) 1.

[GKOM18] GUERRERO, PAUL, KLEIMAN, YANIR, OVSJANIKOV,
MAKS, and MITRA, NILOY J. “PCPNet: Learning Local Shape
Properties from Raw Point Clouds”. Computer Graphics Forum 37.2
(2018), 75–85 2.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

470

https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
http://www.blender.org


G. Metzer, R. Hanocka, R. Giryes, N. J. Mitra, D. Cohen-Or / Z2P: Instant Visualization of Point Clouds

[HB17] HUANG, XUN and BELONGIE, SERGE. “Arbitrary style transfer
in real-time with adaptive instance normalization”. Proceedings of the
IEEE International Conference on Computer Vision. 2017, 1501–1510 3.

[HDD*92] HOPPE, HUGUES, DEROSE, TONY, DUCHAMP, TOM, et al.
“Surface reconstruction from unorganized points”. Proceedings of the
19th annual conference on Computer graphics and interactive tech-
niques. 1992, 71–78 2.

[HHGC20] HERTZ, AMIR, HANOCKA, RANA, GIRYES, RAJA, and
COHEN-OR, DANIEL. “PointGMM: a Neural GMM Network for Point
Clouds”. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, 12054–12063 1.

[HMGC20] HANOCKA, RANA, METZER, GAL, GIRYES, RAJA, and
COHEN-OR, DANIEL. “Point2Mesh: A Self-Prior for Deformable
Meshes”. ACM Trans. Graph. 39.4 (July 2020). ISSN: 0730-0301. DOI:
10.1145/3386569.3392415. URL: https://doi.org/10.
1145/3386569.3392415 2, 3, 7, 8.

[HMRR19] HERMOSILLA, PEDRO, MAISCH, SEBASTIAN, RITSCHEL,
TOBIAS, and ROPINSKI, TIMO. “Deep-learning the Latent Space of
Light Transport”. Computer Graphics Forum. Vol. 38. 4. Wiley Online
Library. 2019, 207–217 3.

[JBG19] JAKOB, JOHANNES, BUCHENAU, CHRISTOPH, and GUTHE,
MICHAEL. “Parallel globally consistent normal orientation of raw un-
organized point clouds”. Computer Graphics Forum. Vol. 38. 5. Wiley
Online Library. 2019, 163–173 3.

[Kaj86] KAJIYA, JAMES T. “The rendering equation”. Proceedings of the
13th annual conference on Computer graphics and interactive tech-
niques. 1986, 143–150 3.

[KBH06] KAZHDAN, MICHAEL, BOLITHO, MATTHEW, and HOPPE,
HUGUES. “Poisson surface reconstruction”. Proceedings of the fourth
Eurographics symposium on Geometry processing. Vol. 7. 2006 2, 3, 7.

[KH13] KAZHDAN, MICHAEL and HOPPE, HUGUES. “Screened pois-
son surface reconstruction”. ACM Transactions on Graphics (ToG) 32.3
(2013), 1–13 2, 3.

[KLA19] KARRAS, TERO, LAINE, SAMULI, and AILA, TIMO. “A style-
based generator architecture for generative adversarial networks”. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, 4401–4410 5.

[KSL20] KOLOS, MARIA, SEVASTOPOLSKY, ARTEM, and LEMPITSKY,
VICTOR. “TRANSPR: Transparency Ray-Accumulating Neural 3D
Scene Point Renderer”. arXiv preprint arXiv:2009.02819 (2020) 3, 4.

[KTB07] KATZ, SAGI, TAL, AYELLET, and BASRI, RONEN. “Direct visi-
bility of point sets”. ACM SIGGRAPH 2007 papers. 2007, 24–es 2, 3.

[LW10] LIU, SHENGJUN and WANG, CHARLIE CL. “Orienting unorga-
nized points for surface reconstruction”. Computers & Graphics 34.3
(2010), 209–218 2.

[LZZ*18] LI, CHUN-LIANG, ZAHEER, MANZIL, ZHANG, YANG, et al.
“Point cloud gan”. arXiv preprint arXiv:1810.05795 (2018) 1.

[MDD*10] MULLEN, PATRICK, DE GOES, FERNANDO, DESBRUN,
MATHIEU, et al. “Signing the unsigned: Robust surface reconstruction
from raw pointsets”. Computer Graphics Forum. Vol. 29. 5. Wiley On-
line Library. 2010, 1733–1741 3.

[MHGC20] METZER, GAL, HANOCKA, RANA, GIRYES, RAJA, and
COHEN-OR, DANIEL. “Self-Sampling for Neural Point Cloud Consoli-
dation”. arXiv preprint arXiv:2008.06471 (2020) 1.

[MHZ*21] METZER, GAL, HANOCKA, RANA, ZORIN, DENIS, et al.
“Orienting Point Clouds with Dipole Propagation”. (2021) 1, 7.

[MN03] MITRA, NILOY J and NGUYEN, AN. “Estimating surface nor-
mals in noisy point cloud data”. Proceedings of the nineteenth annual
symposium on Computational geometry. 2003, 322–328 2.

[NAM*17] NALBACH, OLIVER, ARABADZHIYSKA, ELENA, MEHTA,
DUSHYANT, et al. “Deep shading: convolutional neural networks for
screen space shading”. Computer graphics forum. Vol. 36. 4. Wiley On-
line Library. 2017, 65–78 3.

[NLBY18] NGUYEN-PHUOC, THU, LI, CHUAN, BALABAN, STEPHEN,
and YANG, YONG-LIANG. “Rendernet: A deep convolutional net-
work for differentiable rendering from 3d shapes”. arXiv preprint
arXiv:1806.06575 (2018) 3.

[PGA11] PINTUS, RUGGERO, GOBBETTI, ENRICO, and AGUS, MARCO.
“Real-time rendering of massive unstructured raw point clouds using
screen-space operators”. Proceedings of the 12th International confer-
ence on Virtual Reality, Archaeology and Cultural Heritage. 2011, 105–
112 2, 4.

[PJW12] PREINER, REINHOLD, JESCHKE, STEFAN, and WIMMER,
MICHAEL. “Auto Splats: Dynamic Point Cloud Visualization on the
GPU.” EGPGV@ Eurographics. 2012, 139–148 2, 4.

[RFB15] RONNEBERGER, OLAF, FISCHER, PHILIPP, and BROX,
THOMAS. “U-net: Convolutional networks for biomedical image
segmentation”. International Conference on Medical image computing
and computer-assisted intervention. Springer. 2015, 234–241 3, 5.

[RLG*20] RAKOTOSAONA, MARIE-JULIE, LA BARBERA, VITTORIO,
GUERRERO, PAUL, et al. “Pointcleannet: Learning to denoise and re-
move outliers from dense point clouds”. Computer Graphics Forum.
Vol. 39. 1. Wiley Online Library. 2020, 185–203 1.

[SLS*06] SHARF, ANDREI, LEWINER, THOMAS, SHAMIR, ARIEL, et al.
“Competing fronts for coarse–to–fine surface reconstruction”. Computer
Graphics Forum. Vol. 25. 3. Wiley Online Library. 2006, 389–398 2.

[SSG17] SCHERTLER, NICO, SAVCHYNSKYY, BOGDAN, and
GUMHOLD, STEFAN. “Towards globally optimal normal orienta-
tions for large point clouds”. Computer Graphics Forum. Vol. 36. 1.
Wiley Online Library. 2017, 197–208 3.

[ST90] SAITO, TAKAFUMI and TAKAHASHI, TOKIICHIRO. “Comprehen-
sible rendering of 3-D shapes”. Proceedings of the 17th annual confer-
ence on Computer graphics and interactive techniques. 1990, 197–206 3.

[TSM*20] TANCIK, MATTHEW, SRINIVASAN, PRATUL P., MILDEN-
HALL, BEN, et al. “Fourier Features Let Networks Learn High Frequency
Functions in Low Dimensional Domains”. NeurIPS (2020) 6.

[XWZ*21] XIE, CHULIN, WANG, CHUXIN, ZHANG, BO, et al. “Style-
based Point Generator with Adversarial Rendering for Point Cloud Com-
pletion”. arXiv preprint arXiv:2103.02535 (2021) 3.

[YHH*19] YANG, GUANDAO, HUANG, XUN, HAO, ZEKUN, et al. “Point-
flow: 3d point cloud generation with continuous normalizing flows”.
Proceedings of the IEEE International Conference on Computer Vision.
2019, 4541–4550 1.

[YKH*18] YUAN, WENTAO, KHOT, TEJAS, HELD, DAVID, et al. “Pcn:
Point completion network”. 2018 International Conference on 3D Vision
(3DV). IEEE. 2018, 728–737 1.

[YLF*18a] YU, LEQUAN, LI, XIANZHI, FU, CHI-WING, et al. “Ec-net:
an edge-aware point set consolidation network”. Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV). 2018, 386–402 1.

[YLF*18b] YU, LEQUAN, LI, XIANZHI, FU, CHI-WING, et al. “Pu-net:
Point cloud upsampling network”. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, 2790–2799 1.

[YSW*19] YIFAN, WANG, SERENA, FELICE, WU, SHIHAO, et al. “Dif-
ferentiable surface splatting for point-based geometry processing”. ACM
Transactions on Graphics (TOG) 38.6 (2019), 1–14 3, 8.

[YWH*19] YIFAN, WANG, WU, SHIHAO, HUANG, HUI, et al. “Patch-
based progressive 3d point set upsampling”. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, 5958–
5967 1.

[ZPVG01] ZWICKER, MATTHIAS, PFISTER, HANSPETER, VAN BAAR,
JEROEN, and GROSS, MARKUS. “Surface splatting”. Proceedings of
the 28th annual conference on Computer graphics and interactive tech-
niques. 2001, 371–378 1, 2, 8.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

471

https://doi.org/10.1145/3386569.3392415
https://doi.org/10.1145/3386569.3392415
https://doi.org/10.1145/3386569.3392415

