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Figure 1: (left) Forest regions of Switzerland visualized over a shaded terrain model using LOOPS. (right) The red circle shows a refinement
lens that demonstrates how flexibly LOOPS can simplify or refine polygons inside an area interactively controlled by the user.

Abstract

Displaying polygonal vector data is essential in various application scenarios such as geometry visualization, vector graphics
rendering, CAD drawing and in particular geographic, or cartographic visualization. Dealing with static polygonal datasets
that has a large scale and are highly detailed poses several challenges to the efficient and adaptive display of polygons in
interactive geographic visualization applications. For linear vector data, only recently a GPU-based level-of-detail (LOD)
polyline simplification and rendering approach has been presented which can perform locally-adaptive LOD visualization of
large-scale line datasets interactively. However, locally optimized LOD simplification and interactive display of large-scale
polygon data, consisting of filled vector line loops, remains still a challenge, specifically in 3D geographic visualizations where
varying LOD over a scene is necessary. Our solution to this challenge is a novel technique for locally-optimized simplification
and visualization of 2D polygons over a 3D terrain which features a parallelized point-inside-polygon testing mechanism. Our
approach is capable of employing any simplification algorithm that sequentially removes vertices such as Douglas-Peucker
and Wang-Miiller. Moreover, we generalized our technique to also visualizing polylines in order to have a unified method
for displaying both data types. The results and performance analysis show that our new algorithm can handle large datasets
containing polygons composed of millions of segments in real time, and has a lower memory demand and higher performance
in comparison to prior methods of line simplification and visualization.

CCS Concepts
e Human-centered computing — Geographic visualization; Visualization techniques; ® Theory of computation — Compu-
tational geometry;  Computing methodologies — Rendering; Rasterization;

1. Introduction

Polygonal line and area feature vector maps are a major and central
type of data in any geographical information system (GIS), pre-
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dominantly to visualize cartographic information. Common area
features found in GIS, including lakes, forests or settlement bound-
aries, are defined by closed polygons in 2D. We refer to such area
features simply as polygons.

In the context of interactive 3D geo-visualization systems and
rendering detailed digital elevation models, large scale polygon
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vector data is most commonly displayed by converting them to
other data types or by creating proxy data structures. Then, to sup-
port scalable visualization of large scale polygon datasets, a set of
discrete levels of detail (LODs) with different accuracy are gen-
erated. However, LOD visualization is not continuous in this ap-
proach and only the closest available LOD can be chosen. Addition-
ally, it is challenging to assign different LODs to individual classes
of data, e.g. lakes and forests. Even if fetching different classes
of data from different LODs is possible, conflicting LOD simplifi-
cations cannot easily be resolved. Finally, independent adaptation
of the LOD of different zones on screen is becoming increasingly
important in 3D geo-visualization systems. This scenario suffers
from obvious seams and discontinuities in the displayed informa-
tion when discrete LODs are used.

Only recently, real-time simplification and display of large poly-
line vector datasets has been made possible by LOCALIS [ADP20].
Nevertheless, LOCALIS is limited to non-filled polyline vector
data and one specific method of line simplification. To optimally
support the visualization of vector data in GIS applications and ad-
dress the aforementioned challenges, real-time generalization and
display algorithms are required for managing the LOD of a wider
range of vector data directly. In this paper we introduce LOOPS,
a novel polygon simplification approach that supports locally opti-
mized LOD simplification and visualization of large static polygo-
nal vector data in real-time. In particular, the contributions include:

e A novel locally-adaptive polygon simplification algorithm with
a point-inside-polygon test suitable for data-parallel processing
environments such as GPUs.

e Demonstration of the independence of our algorithm from the
underlying simplification technique, i.e. supporting any tech-
nique that recursively discards vertices based on an error metric,
like Douglas-Peucker [DP73] or Wang-Miiller [WM98].

e A novel technique for drawing the outline of triangulated 2D
polygons which enables us to use the same algorithm and data
structure uniformly for simplification and visualization of both
open line and closed polygonal vector data.

e A customizable parametric spatial indexing data structure to op-
timize the per-pixel LOD search, as well as an evaluation of how
the performance is affected by adjusting its settings.

2. Related Work

Real-time simplification of vector map data such as lines and poly-
gons is a well studied problem in on-the-fly cartographic general-
ization [WBO08]. Also, real time 3D rendering of large vector map
data is a well studied problem in interactive geographic visual-
ization [DMKO5]. However, combining these two disciplines, i.e
interactive exploration and display of vector data at continuously
varying LODs poses new challenges. To the best of our knowl-
edge, LOCALIS [ADP20] is the only work so far that offers effi-
cient algorithms and data structures to satisfy local LOD demands
and line-intersection queries during rendering time. While it brings
these two worlds one step closer, it is limited to line simplification.
In this paper we take the next step by introducing an algorithm for
real-time simplification of both lines and polygons. In the rest of
this chapter, we discuss the related work from these two disciplines.

2.1. Real-time Simplification Algorithms

Automatic line simplification algorithms are developed to reduce
the manual work of map generalization. Douglas-Peucker [DP73]
is one of the early algorithms that simplifies lines based on
a distance error metric and retains the most critical points.
Other simplification algorithms have different properties such as
Wang-Miiller [WM98], Visvalingam-Whyatt [VW93], and Zou-
Jones [ZJO5] that retain critical bends, effective areas, or weighted
effective area respectively, as well as H-tree [ALLOS5] which is
particularly suitable for progressive transmission. In addition to
these general purpose line simplification algorithms, there are al-
gorithms for special use cases, e.g for simplification of building
footprints [HW10] or contours [GS04]. Automatic line simplifica-
tion introduces extra problems such as unwanted self intersections
or intersections with other lines which is addressed by algorithms
such as Star-shaped DP [WMO3], or gaps appearing where adjacent
polygons share edges, which is addressed by [SC13].

In addition to a fundamental line simplification algorithm, ap-
propriate data structures are needed for improving the performance
of such algorithms when applied to large-scale datasets. The data
structure can be a dynamic convex hull created at run-time [HS94],
or a binary line generalization tree (BLG-tree) created in the pre-
process [VOVDB®89]. While these data structures work on individ-
ual entities, higher level data structures are used to enhance access
and spatial queries on a larger scale of a dataset, such as Reactive-
tree [VO92], GAP-tree [VO9S5] or Multi-VMap [VMPRO06].

Even though the aforementioned algorithms support data struc-
tures for on-the-fly generalization of vector maps, such as
GiMoDig [SSS*05], their performance is far from being usable in
real-time 3D rendering systems. This is true especially when the
algorithm is running in a highly parallel computing environment
such as a GPU, where for each pixel contributing to a line, the cor-
responding hierarchical data structure should be traversed once.

2.2. Vector Data Visualization

There are four categories of approaches for overlaying 2D vector
data over a 3D terrain. In the first category, the vector data is raster-
ized and used as a texture over the terrain. Since the resolution of
a single texture is limited and can appear pixelated when zoomed
in, the texture-based approaches employ hierarchical texture pyra-
mids. Such textures can be generated in a preprocess [SLLOS] or at
render time [KD02, WLB09]. The second category of approaches
creates 3D meshes for the vector data and renders them normally as
a part of the scene [WKW*03,QWS* 11, WSFL10, SLLOS]. These
techniques adjust the generated meshes to match the terrain eleva-
tion. The terrain can also be adjusted for a better match [SLT*20].
Such matching is challenging when the terrain is not static, e.g.
in variable-LOD terrains, and results in artifacts where the vector
mesh and the terrain intersect. The matching can be done at render-
ing time, e.g. by draping the vector mesh over the terrain [TD19].

The third category of approaches creates shadow volumes by ex-
truding the vector data into polyhedral meshes [DZY08, YZK* 10,
KS13]. By applying the shadow stencil technique [DZYO08,
YZK*10,KS13], it can be determined where they intersect with the
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terrain. These methods are limited in the number of shadow vol-
umes they create and produce artifacts when the intersections are
smaller than a pixel. The fourth category draws the vector data in
screen space [SZT*17,TBP16, TBP18,FEP18, ADP20] using a de-
ferred fragment shader pass. Each pixel is back-projected into the
vector data space and is tested for an overlap with any vector entity.

We use such a screen-space vector visualization technique in our
work because it can handle large vector datasets, produce pixel-
precise results, and is more flexible by directly accessing the vector
data. Therefore, this approach is also suitable for algorithms that
rely on processing the vector data while rendering them, such as
the one presented in this paper.

3. Locally Adaptive Line Simplification

We first review LOCALIS [ADP20] as preliminary technology
which combines a screen-space display technique called deferred
vector rendering with individually refinable line segments which
can be queried quickly via a 2D bounding volume hierarchy (BVH)
and can be overlaid over a 3D terrain, see also Fig. 2.

e — T Deferreed
— = H
H P L—— Vector
I = Z'?_’ Rendering
Refinable B b
Vector Activation
BVH L
Data

Refined Vector Data
Overlaid on Mesh

Terrain Mesh

Figure 2: Refinable vector data is stored in a BVH. For each pixel
of the terrain, the relevant line segments are queried from the BVH
and their activation is evaluated. If an active line segment overlaps
the pixel, the pixel is colored accordingly.

In the first step, a binary LOD refinement tree is created for each
polyline as illustrated in Fig. 3. Each node of such a tree contains
a point together with an error e, which corresponds to the error
introduced by removing that point from the polyline representation,
and a distance dmax which is the maximum distance between the
point and all other points in its subtree.
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Figure 3: Process of creating refinement trees. (a) Finding the far-
thest points from a line segment step by step. (b) Generated binary
tree. (c) Resolving intersection collisions, and (d) connecting the
dependent and dependee nodes.

In the second step of the initialization, any collisions are resolved
that might happen during the simplification of a polyline between
line segments of itself or other polylines. Furthermore, according
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to the tree hierarchy and the dependencies created from resolving
collisions, the saturated values é; and dmax are calculated such that
no node has higher values than its children or any dependees.

In the third step, LOCALIS breaks down the individual line-
LOD trees into individual line segments and attributes them with
two special points: a generator and a splitter. The generator is one
of the endpoints of an individual line segment and that line segment
becomes active when this point is included in the LOD representa-
tion of the polyline. The splitter is a point that causes a line seg-
ment to be replaced by two other line segments and thus becomes
inactive. In the final step of the preprocess, all the attributed line
segments are stored in the BVH which is later used during runtime
for fast LOD querying of line segments.

During run-time, LOCALIS integrates its locally adaptive
line-LOD selection method into a deferred line rendering ap-
proach [TBP16, TBP18]. A line segment is active if its generator
is included and its splitter is not included and can be determined
using the formula

ég > S(dg - Jmaxg) /\ég ?é 8(ds —dAmaxs) (1)

where é; is the saturated error of generator, &5 is the saturated error
of splitter, € is a LOD function that maps distance to error threshold,
dy is the distance between camera and generator, d; is the distance
between camera and splitter, dmaxg is the saturated maximum dis-
tance between the generator and its underlying points in the tree,
and diaxs is the saturated maximum distance between the splitter
and its underlying points in the tree.

The BVH of LOCALIS is a grid which has a quadtree in each of
its cells. The grid helps to limit the query quickly to a smaller set of
lines around the point of interest. The quadtrees narrow down the
search to a part of the set.

4. Locally Optimized Polygon Simplification
4.1. Polygon Simplification and Rendering

As polygons are defined by a closed polyline loop, they can be
simplified using similar techniques as used for lines. However, dis-
playing polygons is very different from lines in that all pixels in the
interior have to be detected and shaded accordingly. Point-inside-
polygon (PiP) tests include techniques such as stabbing (ray cast-
ing) or winding numbers. However, these techniques depend on a
certain subset of line segments which can be far from the pixel of
interest. To improve the performance of such tests, additional data
structures can be employed, such as using a quadtree for each poly-
gon [FEP18]. Nevertheless, traversing trees on the GPU is expen-
sive and if a polygon covers many pixel, the same tree is traversed
in parallel by many fragment shaders.

We explain our novel algorithm for PiP tests with the example
polygon simplification illustrated in Fig. 4(a). At each step of the
simplification, a vertex is removed until we reach a triangle which is
the simplest non-degenerate polygon. Correspondingly, a triangle is
added to or subtracted from the polygon at each step when refining
the polygon. Given that structure, we can determine the PiP state
by checking the type of triangles which are activated for the current
LOD and cover the query point. If the number of additive is more



358 Amiraghdam et al. / LOOPS

than the number of subtractive triangles, then the point is inside the
polygon at the current LOD, otherwise it is outside.

As shown in Fig. 4(c), each pixel must only be tested for the tri-
angles that overlap it: for Py, one triangle and for P;, three triangles
need to be tested. Since the number of additive triangles for these
two pixels is higher than the number of subtractive triangles, both
are inside the polygon. When the polygon is simplified in Fig. 4(d)
by deactivating the triangle of Step 1, an equal number of additive
and subtractive triangles cover P, hence, it is outside of the poly-
gon and will be colored as background.

999
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Figure 4: (a) Simplifying a polygon in 5 steps, showing additive
and subtractive triangles in green and red respectively. (b) The re-
finement tree is created based on the inverse removal order of the
vertices. (c) For activation evaluation involving all triangles, at P
one and at P three triangles need to be tested. (d) With one step of
simplification, only two triangles need to be tested for P.

Finding the order in which the vertices of a polygon are removed
for simplification is a classic problem with many solutions as dis-
cussed later in Section 4.3. When this order is known, a refinement
tree similar to the concept of BLG-trees [VOVDB®89] is built. The
tree root corresponds to the the first vertex that partitions the line
into two sets of vertices associated with the left and right subtrees.
Recursively, the next vertex will be added to the right or the left
subtree. The tree nodes store the error value of the vertex defined
by the simplification algorithm. In Fig. 4, the corresponding refine-
ment tree for the simplification process of (a) is shown in (b).

4.2. Optimized LOD Polygon Model

Although refinement trees improve the performance of refining a
polygon, traversing them on the GPU in parallel for all pixels is
inefficient. To address this, we employ the concept of splitters from
[ADP20] which allows the activation of each node of the refinement
tree being evaluated individually without knowing the rest of the
tree. For polygon simplification in Fig. 4(a), the splitter of each
triangle is the vertex for which its removal caused the triangle to
be added or subtracted. By doing so, all refinement triangles can
be stored individually in a spatial data structure, i.e. a BVH, and
indexed by their splitter, to be queried at rendering time.

To better illustrate how the refinement triangles are processed in-
dependently, we use the two examples in Fig. 5. In the first example
(1), we have a polygon composed of three vertices A, B, and C. This
polygon can be presented in two LODs. In the first representation

55 ep ol e B
A|B|C|X |V v

] ) C|I|B[D| X[ X[V
“ splitter ™ representation when 4 and B are included
" representation when 4, B and C is included “ representation when 4, B, C and D are included

P, | P, |sp |r, |rc”

Triangles

Triangles
'S
s3]
QO
A
<

Figure 5: Two example polygons and all possible representations
of them (rap, rc, and rp) that can emerge during refinement de-
pending on the inclusion state of C in (1,2) and D in (2). The tables
contain the refinement triangles created by LOOPS. Each represen-
tation corresponds to one of the last columns and is color coded.

raB, vertices A and B are included and C is not included. Hence the
triangle is not active and the polygon is not visible. In the second
representation, r¢, all three vertices are included and the polygon is
visible as the triangle in green. The table shows the only primitive
that LOOPS stores for this polygon. If we assume that AB is the
baseline of triangle ABC, C is its splitter. The reason is that when C
is not included, the polygon turns into a line with no area and is not
visible. The column r4p corresponds to the first representation in
which the splitter is not included. The last column r¢ corresponds
to the green representation in which the splitter C is included.

In the second example (2) of Fig. 5, we have an additional ver-
tex D. This polygon can thus be presented in three LOD levels:
(i) as rap, when only A and B are included and nothing is visible.
(ii) as ¢, when C is added and the polygon is one triangle shown in
green. (iii) as rp, when all vertices are included and the polygon is
the combination of two triangles ABC and CBD shown in red. For
this polygon, LOOPS stores two triangles as listed in the table. C
is the splitter of triangle ABC and D is the splitter of triangle CBD.
The column r4p corresponds to the first representation with none
of the splitters C or D included and no triangle active. Column r¢
corresponds to the green representation in which only the splitter of
ABC is included, but the splitter of CBD is not. The last column rp
corresponds to the red representation in which the splitters C and D
of both triangles are included.

In summary, we maintain all triangles from the binary refinement
trees with attributes including the splitter, saturated error of splitter
és, and saturated maximum distance of splitter dimaxs. At run time,
for each pixel and its corresponding real-world coordinate, we re-
trieve the closest triangles from the BVH. For each triangle, we then
check the following inequality. If it is valid, the triangle is active
and we include it in the number of additive/subtractive triangles.

és > ¢e(ds — dAmaxs) (2)

The difference between Eq. (2) and the second part of Eq. (1) is
the inequality condition. That is because when drawing a polygon,
the triangle is active and filled when its baseline is split. However,
when drawing a line segment, the baseline is drawn when the seg-
ment is not split, thus the inequality changes from % to >.
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A common way of representing a hole in a polygon is to model
the hole as a polygon with an opposite orientation of its vertices.
We store whether a triangle is a part of a clockwise or counter-
clockwise polygon as a property of the triangle. When counting
additive/subtractive triangles, the counter-clockwise triangles are
counted towards the opposite category, i.e. an additive counter-
clockwise triangle is counted as subtractive.

Furthermore, when simplifying polygons, unwanted self inter-
sections or intersections with other polygons can happen. To avoid
these, it is sufficient to prevent intersections of the outline of the
polygons. LOOPS avoids unwanted intersections based on a similar
mechanism as in [ADP20]. All potential vertices which can cause
intersections are identified as dependencies during the LOD gener-
ation preprocess. These dependencies between intersecting vertices
are then included in the error and distance saturation process. In this
way, the node corresponding to an intersecting vertex is assumed
to be a child of the node which its removal causes the intersection.
After saturation, the assumed parent node will have higher or equal
values for é and cfmax than the assumed child node. Therefore, the
intersecting node is not removed before the intersected node.

4.3. Line Simplification Algorithms

LOORPS is not restricted to a single simplification algorithm. Sim-
plification trees can be created based on any ordered list of tu-
ples [f1,...,t,—2] where n is the number of vertices in a line and
ti = (vk,ex), where v is a vertex and ey its corresponding error,
given that all vertices except the two endpoints appear exactly once
in the list. The goal is to suggest a gradual simplification of the
line by removing the vertices one by one. Each entry in the list rep-
resents the next point to be removed, assuming that the previous
entries have already been removed. While in general this would
follow an order of introducing the least error in each step, the error
values in the list are not required to be in ascending order. The error
metric can arbitrarily be chosen according to the intended purpose.

Following the inverse order of simplification, the last entry in
the list is assigned as the root node of the binary LOD refinement
tree. Afterwards, each entry is recursively added to the left or right
subtree based on its index in the original polyline.

To demonstrate the independence of the simplification algo-
rithm, we adapted the Wang-Miiller line simplification algorithm
which is known for retaining critical bends [WM98]. We first par-
tition the line into bends at points where the inflection angle sign
changes. In Fig. 6(a), the line has negative inflections at P, P3,
Py, and positive inflections at P5 and Pg. Therefore, the inflection
sign changes between P, and Ps and the bends will be P; P, P3Py Ps
and PyPsPgP;. To each identified bend, we assign an error value
equal to the area of the polygon created by the bend if it was
closed. The bend with the smallest error will be removed first in the
Wang-Miiller simplification. In this example, the bend Py PsPgPy is
smaller and removed first. When it is removed, in Fig. 6(b), the first
point (P4) and last point (P;) of the bend remain in the line and are
directly connected as a new segment.

Removing a bend affects its adjacent bends, so we update the
neighboring bends accordingly. Removal of the red bend changes
the green bend and together they turn into the blue bend in
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Figure 6: Using Wang-Miiller for simplification and Douglas-
Peucker for fine details. (a) Initial bends. (b) Recalculated bends
after removing the red bend. (c) The resulting refinement tree.

Fig. 6(b). The blue bend is the only remaining at this stage,
and will be removed next. Removing the red bend, removes Ps
and Pg, and removing the blue bend removes P, P3 and Pj.
For each bend individually we run the Douglas-Peucker algo-
rithm, or some other alternative, to find an order of the vertices
to be removed. In the red bend, Ps will be removed after Pg as
it is farther from the baseline, giving rise to error e;. The order
of removal is thus [(Pg,ez),(Ps,e;)]. Likewise, the order of re-
moval in the blue bend will be [(Ps,e4), (Pa,es), (P3,e3)]. Consid-
ering that the red bend is removed first, the final ordered list is
[(Ps,e2),(Ps,e1),(Py,e4),(Pa,e5),(Ps3,e3)], and the corresponding
simplification tree is shown in Fig. 6(c).

Similarly, we can integrate other simplification algorithms such
as Visvalingam-Whyatt [VW93] that retains the effective areas or
Zou-Jones [Z]05] that retains the weighted effective areas.

4.4. Triangle-based Line Drawing

The number of triangles that LOOPS store for a polygon is signif-
icantly lower than the number of line segments of the polygon’s
outline. For instance, in the first example of Fig. 5, the polygon has
three line segments but LOOPS stores one triangle. In the second
example, two triangles are stored for five line segments. To bene-
fit from this fact and to have a unified algorithms for drawing both
data types, we generalized LOOPS also for line drawing.

To correctly draw the outline of a polygon, only the sides of
the outer refinement triangles should be drawn without drawing
the sides that are inside the polygon. While splitters are enough
for drawing filled polygons, generators are additionally needed for
drawing the outlines. We have defined six rules based on the trian-
gle being generated and/or split as illustrated in Fig. 7: (1) not gen-
erated: draw none of the sides. (2) generated, but not split: draw the
base only. (3,4,5,6) generated and split: do not draw the base, draw
any side that has no splitter. As the rules suggest, we need to store
two additional attributes about the line segments: if the left/right
side has a splitter or not. We do not need to know if the left/right
side is actually split or not, we just need to know if the splitter exist.

Fig. 8(a) shows an example of applying these rules. We have
a polyline ABCDEF and its refinement triangles based on the
Douglas-Peucker algorithm. Fig. 8(b) shows the triangles after ap-
plying the above rules assuming that B and C are excluded from
the representation of the polyline. The triangles are shown in dif-
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Figure 7: The six rules for correctly drawing the sides of the refine-
ment triangles of a polygon that are needed for drawing its outline.

ferent colors only to be distinguishable. The red triangle AFD is
generated since it corresponds to the base line, and split since D is
included. Its left and right sides have splitters, so it falls into rule 6:
no sides are drawn. For this triangle, we do not need to know if the
sides (AD and DF) are actually split or not. The blue triangle DAB
is generated since D is included but it is not split since B is not in-
cluded. So it falls into rule 2: only the base is drawn. The orange
triangle BDC is not generated since B is not included. So it falls
into rule 1: no sides are drawn. The green triangle DFE is gener-
ated since D is included and split since E is included. None of its
sides have a splitter, so it falls into rule 3: left and right sides are
drawn. Eventually the drawn sides together form the expected line
in Fig. 8(c). The table is divided into two parts: The static part is
created during the preprocess and does not change during the visu-
alization. The dynamic part is calculated in run time and its content
in this example is specific to the representation shown in Fig. 8(c).
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Figure 8: (a) A line and its refinement triangles. (b) The rules of
triangle-based drawing applied to the refinement triangles in case
B and C are excluded. (c) The simplified line without B and C.

5. Customizable Parametric BVH

The BVH is a major component of LOOPS to manage the attributed
LOD triangles and efficiently query them during the deferred ren-
dering phase, and it directly influences the performance and mem-
ory consumption. Designing an efficient BVH that yields a good
ratio between performance and memory is not trivial and often in-
volves some compromises. Therefore, instead of incorporating a
fixed structure of the BVH into our algorithm, we designed a pa-
rameterized BVH that can be customized according to a use case.

The 2D BVH of LOOPS is composed of a primary tree, and a
secondary tree nested in each node of the primary tree. The max-
imum depth of the primary tree is the first parameter of the BVH
that can be adjusted. At each level, a primary node can partition

the space into four or any n X n regions. With four children at each
level, it is thus equivalent to a quadtree. However, the branching
factor of the primary tree is flexible, and with maximum depth of
Dp corresponds to an array BFj, = [by,...,bp,]. A tree of depth 1
has a root and its direct children as leafs. A primary tree node is
only subdivided if the number of its primitives is higher than some
threshold PN, which is the third parameter of the BVH.

The fourth parameter of the BVH is the maximum depth of the
nested secondary trees which depends on its level in the primary
tree. Secondary trees in nodes closer to the root of the primary tree
cover more area and thus benefit from a higher depth. Hence, this
parameter is an array Dy = [d, ...7de]. The branching factor of the
secondary trees BFs = [by, "'7bmax(d0.,u,dup)] is the fifth parameter.

The primary tree serves the purpose of efficient space subdivi-
sion and the attributed triangles are maintained in the secondary
trees of its leaves. All nodes in the secondary trees can store LOD
primitives based on a coverage measure. This coverage measures
the percentage of the child nodes that overlap with the primitive
up to a certain depth CD; from the current node. For instance, in
case of a quadtree, there is a maximum of 16 children at 2 levels
depth (CDs=2). If a primitive overlaps with 8 of them, the coverage
is 50%. The minimum coverage needed to store a primitive in an
intermediate node is MCy and is the last parameter of the BVH.

Optimization of these parameters depends on the size of the
dataset, its distribution of data, and the available memory. In Sec-
tion 6, we present the parameter settings of our experiments. They
can be used as a starting point for other datasets and hardware.

5. Implementation

The transformation of the input vector data and terrain into a visu-
alization is divided into two stages: preprocess and run time. Dur-
ing the preprocess, the input data is transformed and stored in the
buffers on the GPU as shown in Fig. 9. In the first rendering pass,
the G-buftfer is filled with normal, world position, depth and terrain
color for each pixel. In the second rendering pass, the world po-
sition from the G-buffer is used as the input of the LOD function
to calculate the error tolerance and draw the vector data (lines and
polygons) accordingly. In the last pass, the whole G-buffer is used
to shade the terrain and integrate the drawn vector data.

Input Preprocess Run Time
Vector |i,[ Line Vector Map -+ Render Pass 2| [Render Pass 3}
Data Simplifier ( Buffers
2
Terrain Preprocessor| B:Ia’ ‘ Naiig] WO'I'!d Depth ‘ Terrain Vector
Geomet 10} Position color |Map Color
Terrain — Terrain
Texture Buffers Render Pass 1

Figure 9: Overall architecture of LOOPS

Fig. 10 depicts the steps of how the input data is transformed into
what is used in the shaders. Both line and polygon primitives are
treated in the same way. In the first step, the simplification function
generates a sequence of points and errors for each primitive. Then,
for each sequence, a refinement tree is generated. After that, the
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collisions between the nodes of the trees are detected which results
in the trees being connected by dependencies. Using all the con-
nections, the e and djuqx values are saturated. Next, the refinement
triangles are extracted and stored in a BVH. Finally, the refinement
triangles are stored in three blocks of memory: Points, Triangles,
and Trees, and each block is loaded to a texture buffer.

Simplification Sequence of Tree
P points Construction
Saturation Connected Collision
Trees Detection

Refinement
Trees

Saturated BVH BVH Memory
Connected Trees Construction Mapping

Data Process | Input Output

‘ Lines

Polygons

Points

Triangles

Figure 10: Data flow during the preprocess of LOOPS

Fig. 11 shows how the three blocks of memory are structured.
Each point is stored in two blocks of four float values, in which six
values are stored: (x,y) coordinates of the point, (x,y) coordinates
of the proxy, é, and dpax. For the points without a proxy, the coor-
dinates of the point is stored for the proxy too. With this structure,
a part of the memory space is wasted. Instead, all data needed for
evaluating the activation of a triangle can be read in a single tex-
ture access at run time which retrieves four values. If the triangle is
active, the last two values are read for drawing.

Each triangle is stored in one block of four integer values: point-
ers to the two base points and the splitter. The fourth value is used
bit-wise to store the following information: which one of the base
points is the generator (1 bit), the drawing style (5 bits), if the tri-
angle is clockwise or counter-clockwise (1 bit), if it is the root of
the primitive (1 bit), if the line between P; and splitter is splittable
(1 bit), and if the line between the splitter and P, is plittable (1 bit).

The BVH buffer contains three types of data structures: primary
nodes, secondary nodes, and triangle arrays. As shown in Fig. 11,
the primary node is composed of a fixed-size and a free-size part.
The fixed-size part contains the index of the root of the correspond-
ing secondary tree, and the number of the children. The free-size
part contains the indices of the children nodes and its size depends
on the number of the children indicated in the fixed-size part. The
secondary nodes have the same structure as the primary nodes but
they store the index of a triangle array instead of the index of a sec-
ondary node. In a triangle array, we store the number of triangles at
the first position followed by the triangle pointers consecutively.

6. Results

In our experiments we used the following three datasets. (1) Wa-
ter dataset: representing all water bodies of Switzerland (20,230
polygons consisting 1,900,164 line segments in total). (2) For-
est dataset: representing areas registered as forest in Switzerland
(212,466 polygons consisting 13,390,598 line segments in total),
and (3) Street dataset: containing the whole street network of
Switzerland (1,323,900 lines consisting 11,156,345 line segments
in total). Experiments are done at 1920 x 1080 on a 3.5GHz Core
i7-3770K, 16GB RAM, GeForce GTX 1080Ti running Windows.
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Figure 11: Structure of the data buffers for points, refinement tri-
angles, and BVH.

6.1. Polygons

Our tests with both water dataset and forest dataset, show that
LOOPS can pixel-precisely visualize highly detailed polygons. It
can handle polygons with multiple holes no matter how fine the de-
tails are. The simplification happens interactively as expected with
no artifacts. Fig. 12 shows an example of a complex polygon, lake
harbor area, from the water dataset.

Figure 12: A part of lake Zurich with very fine polygonal details
visualized over a textured terrain by LOOPS.

Fig. 13 shows an experiment demonstrating how the simplifi-
cation affects the polygons when the LOD level is related to the
distance from the camera, such that the error on screen equals one
pixel as projected from world coordinates. Using two cameras, the
main camera (Cam 1) controlling the LOD and consequently the
amount of simplification, while the second (Cam 2) is fixed and
located closer to the terrain. We move the main camera gradually,
from Zoom 1 to Zoom 4, towards the secondary camera allowing
us to observe the changes. In Zoom 4, the output of both cameras
are finally, having reached the same position. Due to the error tol-
erance set for this experiment, the LOD changes that are visible in
Cam 2 happen at subpixel level and are not visible in Cam 1. The
heatmaps show the number of active triangles (additive/subtractive)
increasing as the camera Cam 1 gets closer to the terrain.

6.2. Wang-Miiller Simplification

Wang-Miiller (WM) simplification algorithm [WM98] is known for
preserving curves. Fig. 14 shows a lake from the water dataset with
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Figure 13: Main camera (Cam 1) moving towards a fixed secondary camera (Cam 2). The adaptive LOD is related to the distance from
Cam 1, therefore, the LOD changes visible in Cam 2 are not visible in Cam 1. The heatmaps show the number of active triangles.

one main polygon which has two small holes and a small sepa-
rate polygon. The lake is simplified both with DP and WM in four
different ways. In the two uniform columns, the polygons are uni-
formly simplified for two different thresholds. WM keeps smoother
curves compared to DP, however, according to the heatmaps, the
number of active triangles for the same LOD threshold is higher
when using WM than DP.

In the last two columns of Fig. 14, a refinement lens is placed
over the lake at two different positions to demonstrate the local-
ity of simplification. The LOD inside the lens is at the highest and
outside at the lowest level. Hence, nothing is required to be refined
outside of the lens. But, still a minimum amount of detail is visi-
ble since LOOPS has a conservative approach and this detail is in
fact necessary to maintain the continuity of polygons. As the lens
moves, LOOPS adapts the LOD constantly. By assigning an ap-
propriate LOD level to visible parts in a real use case like the one
in Fig. 13, the changes of the LOD are not visible since they are out-
side of the viewing area or happen at subpixel level. The heatmaps
in Fig. 14 show that LOOPS is more conservative with WM than
DP resulting in more extra details outside of the refinement lens.

The results show that the use of different simplification algo-
rithms does not affect the functionality of LOOPS, however, the
visual quality of the simplified vector data varies and should be
chosen according to the use case’s purpose and criteria.

6.3. Triangle-based Line Drawing

As explained in Section 4.4, LOOPS uses the same data structure
for both lines and polygons. Drawing lines using the refinement
triangles instead of line segments enables LOOPS to avoid half
of the primitives required for drawing lines using line segments,

while producing identical visualizations. For instance, LOOPS
stores 9,998,600 triangles instead of 20,988,790 line segments as
in [ADP20] for the street dataset. Since a primitive can appear mul-
tiple times when it overlaps multiple nodes of the BVH, the actual
number of primitives stored in the BVH is different and depends
on the settings of the BVH. We discuss this together with the data
structure in Section 6.4.

6.4. BVH and Performance

Different settings for parameters of the BVH affect the amount of
processed data that should be stored on the GPU and also the per-
formance of the algorithm. Tab. 1 contains the parameter settings
of all BVHs, named in the first column, as discussed in this section.

BVH D, BF, PN, Ds BF;
replica 1 [16] 0 [0,10] [444,44444.44]
constant 4 [100,100,100,100] 45 [0,0,0,0,0] [1
descending 4 [576,256,100,36] 45 [0,0,0,0,0] [1
ascending 4 [25,64,169,324] 45 [0,0,0,0,0] []
peak 4 [25,625,625,25] 45 [0,0,0,0,0] [1
flat6 6 [25,25,25,25,25,36] 45 [0,0,0,0,0,0,0] [1
flat7 7 [16,16,16,16,16,2525] 45 [0,0,0,0,0,0,0,0] [1
flat8 8 [9.9.16,16,16,16,16,16] 45 [0,0,0,0,0,0,0,0,0]1 T[]
size-efficient 6 [9,9.9,9,9,9] 45 [8,7,6,5.4,3,2] [4,4,4,4,444.4]
efficient 6 [9,9.9.9,16,36] 45 [8,7,6,5.4,3,2] [4,4,4,4,16,16,4,4]
even 6 [9,9,9.9,9,9] 45 [4444444] [4,4.4,4]

Table 1: Depth of the Primary tree (Dp), Branching Factor of the
Primary tree (BFp), maximum Primitive Number of Primary tree
nodes (PNp), Depths of the Secondary tree (Ds), and Branching
Factor of Secondary tree (BF;) of BVHs. In all BVHs Coverage
Depth (CDy) is 2 and Maximum Coverage (MCs) is 100%.
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Figure 14: Lake Amsoldingen rendered by LOOPS with different simplification levels using Douglas-Peucker and Wang-Miiller techniques.
Left to right: with full details, uniform simplification applied at two levels, and a refinement lens placed at two positions. The locally optimized
part inside the lens has the highest LOD and outside the lowest LOD. The heatmaps show the number of active triangle.

First, we compare the line simplification and visualization per-
formance of LOOPS with the most recent method for real-time sim-
plification of vector data [ADP20]. We replicated the test environ-
ment, using the same BVH structure and dataset, and measured the
performance with the same viewing angles. The parameters for this
replicated BVH (replica) are shown in Tab. 1. We ran this test with
both techniques of line drawing: based on refinement line segments
and refinement triangles. In Tab. 2, we compare memory consump-
tion and performance of these two cases with previous work. In
addition, we compared these cases to a basic BVH with constant
branching factor, called constant in Tab. 1, to have a baseline for
further comparisons. The comparison between the first and second
rows shows that the line drawing of LOOPS performs better, even
with a similar technique. Changing to triangle-based line drawing,
reported in the third row, both memory consumption and perfor-
mance improve. The last row shows that also the constant BVH
structure performs better but at the cost of higher memory cost.

# Mem. for # Mem. for  time time time time
BVH
ap-segs ap-segs  bvh-segs bvh-segs scenel scene2 scene3 scene 4
ADP20 ADP20 21IM 3202MB  75.1IM 2.1GB 152ms 58.2ms  39.2ms  74ms
SEG replica 21IM 3202MB  93M 1.1GB 84ms 38ms 33ms 33ms
TRI replica 10M 152.5MB  56M 773MB 58ms 27ms 28ms 29ms
TRIcons constant 10M 1525MB  119.5M 1.81GB 57ms 24ms 18ms 19ms

Table 2: Memory consumption and performance visualizing the
street data in four ways: as reported in [ADP20], segment-based
(SEG) or triangle-based (TRI) LOOPS with replica settings, and
triangle-based LOOPS with constant settings (TRIcons). The table
reports the number and memory used for storing all-possible prim-
itives (ap-prims), primitives assigned to the BVH (bvh-prims), and
rendering time for four test scenes, as shown in Fig. 15(1-4).

In order to compare BVHs with different settings, we defined a
trajectory and measured their runtime performance along it. The
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Figure 15: (/-4) Four scenes used in experiments of Tab. 2.
(5,6,7) Three heatmaps for scene (2) depicting the number of prim-
itives (lines or triangles) tested for activation, corresponding to ex-
periments SEG, TRI, and TRIcons respectively.

trajectory is composed of 4 phases: A zoom in from far away (0-
20%), panning sideways at a fixed height (20-40%), look around
(40-60%), and fly through a valley (60-100%).

In the first comparison, we investigate how an ascending or de-
scending branching factor in the primary BVH tree affects the per-
formance. To answer this question, we changed the BF), parameter
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of constant and created two BVHs, called descending and ascend-
ing (see Tab. 1). Also we compared these to a BVH with a higher
branching factor in middle nodes, called peak. The branching fac-
tors are chosen in a way to roughly use the same amount of mem-
ory. Fig. 16(a) shows the frame time along the trajectory and the
memory consumption for these BVHs. The charts show that the flat
branching factor, constant BVH, performs better than the others.

Next, we investigate how the depth of the primary tree affects
the performance, i.e comparing a deep tree with lower branching
factor to a shallow tree with higher branching factor. In Fig. 16(b),
we compare BVHS flat6, flat7, and flat8 with constant (from Tab. 1).
The branching factors are increased overall and higher in the lower
layers to have comparable memory usages. Results indicate that flat
trees with higher depth than constant are not beneficial.

By introducing the secondary tree, the number of possible BVHs
configurations increases rapidly. In our experiments with differ-
ent settings we encountered two useful BVHs which are shown
in Fig. 16(c). The size-efficient BVH using only 297MB performs
on the same level as BVHs with higher memory demand. The ef-
ficient BVH offers an excellent memory-performance ratio, while
the even BVH is a simple yet still effective BVH.

Fig. 16(d) shows the frame times for rendering the terrain,
traversing the BVH, and drawing the triangles. The chart shows that
the distribution between these tasks is stable throughout the trajec-
tory. While the time needed for rendering the terrain is insignificant
at 0.9ms average, the BVH traversal is demanding. In summary, the
analyzed BVH configurations provide a variety of starting points
for visualizing large vector datasets. Still, the settings need to be
adjusted to the dataset, available memory, and computation power.

7. Conclusions

In this paper we presented LOOPS, our locally optimized polygon
simplification algorithm for real-time visualization of large-scale
vector-based 2D line and polygon data. Our approach is capable
of handling large datasets composed of millions of line segments
forming polylines or polygons. The LOD simplification function is
highly adaptive, can vary throughout the scene, and it can be set to
a screen-space error tolerance below one pixel.

LOOPS is effective for two main reasons. First is the simplic-
ity of the primitives composing the LOD data. LOOPS transforms
both polylines and polygons into a set of attributed triangles that are
easy to store, maintain and process. Second is the autonomy of the
LOD primitives. The attributed triangles carry enough information
to evaluate their activation state independently, that is without any
information about other adjacent or nearby primitives. This prop-
erty is ideal for data-parallel computing environments like GPUs or
multi-threaded CPUs. Even though LOOPS can run on less paral-
lelized configurations, a performance comparison with a sequential
algorithm is considered for future work.

In addition, we have demonstrated that LOOPS does not depend
on one specific simplification algorithm. Any simplification algo-
rithm that exports a sequence of points and their LOD errors for a
polyline or polygon, thus indicating in which order the points can
be removed, can be integrated into LOOPS. Choosing a suitable
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Figure 16: Performance of LOOPS along a trajectory when the
BVH has (a) only a primary tree with flat, ascending or descending
branching factors, (b) only a primary tree with different depths, and
(c) secondary trees. (d) Frame time spent for rendering the terrain,
traversing the BVH, and drawing the triangles.

simplification algorithm depends on the use case. While the colli-
sion avoidance mechanism successfully works with the data used
in this paper, it is subject of improvement for datasets with a higher
rate of collisions, e.g. where polygons share boundary sections.

Moreover, we have implemented a customizable BVH that al-
lows us to explore its parameter space. By heuristically adjusting
the parameters of the BVH, we have found highly performant set-
tings that were unlikely to be found without such an available and
explorable parametrization. Our method of exploration is not meant
to cover the whole space and is prone to staying in local minima.
Using the customizable BVH to methodically find an optimal set-
ting, for a dataset and hardware, is a topic for future work.

With this work we are one step closer to combing on-the-fly
vector map generalization and real-time, adaptive-LOD vector data
rendering. However, we still require further methods that can per-
form other generalization operations such as selection, exagger-
ation or displacement interactively. LOOPS clearly demonstrates
that real-time generalization and visualization of 2D vector data in
a 3D environment is feasible.
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