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Abstract
Guidance has been proposed as a conceptual framework to understand how mixed-initiative visual analytics approaches can
actively support users as they solve analytical tasks. While user tasks received a fair share of attention, it is still not completely
clear how they could be supported with guidance and how such support could influence the progress of the task itself. Our
observation is that there is a research gap in understanding the effect of guidance on the analytical discourse, in particular,
for the knowledge generation in mixed-initiative approaches. As a consequence, guidance in a visual analytics environment
is usually indistinguishable from common visualization features, making user responses challenging to predict and measure.
To address these issues, we take a system perspective to propose the notion of guidance tasks and we present it as a typology
closely aligned to established user task typologies. We derived the proposed typology directly from a model of guidance in the
knowledge generation process and illustrate its implications for guidance design. By discussing three case studies, we show how
our typology can be applied to analyze existing guidance systems. We argue that without a clear consideration of the system
perspective, the analysis of tasks in mixed-initiative approaches is incomplete. Finally, by analyzing matchings of user and
guidance tasks, we describe how guidance tasks could either help the user conclude the analysis or change its course.

1. Introduction

In the traditional visual analytics (VA) process, knowledge is gen-
erated by users from data by exploiting visualizations, interaction,
and the modelling capabilities of VA environments [SSS*14]. Users’
domain knowledge is distilled into goals and hypotheses that are
fed to the interactive system as actions. The result of the machine
processing is shown back to the user, who interprets it into useful
insights and integrates it as new knowledge that can be used for
decision-making [KKEM10]. The conventional information visual-
ization process has begun to be expanded into what are known as
mixed-initiative approaches [CCI*15], where the system plays an ac-
tive role in the analytical discourse through the incorporation of dif-
ferent degrees of agency. Guidance [CAS*18; CGM*16; CGM19a;
SJB*21] has been developed as a theory to understand and encapsu-
late this phenomenon which goes beyond information visualization
and is at the core of the VA promise.

Guidance in VA is characterized as an active process addressing
“knowledge gaps” of the users that hinder their analytical progress
by identifying them and providing orienting, directing, and prescrip-
tive guidance [CGM*16]. This dimension, namely the “guidance
degree”, has been identified over single- and mixed-initiative sys-
tems [CGM19a], proving to be an effective model to analyze sys-
tems with active user-supporting (i.e., guiding) capabilities.

Additionally, taxonomies of interaction tasks have had an impor-
tant role in the design and understanding of user-initiative interac-
tive visualization systems [BM13], as user tasks are considered the

building blocks of higher-order intellectual processes in VA. How-
ever, interaction tasks describe only one part of the story, as they
only depict user intentions and interactions. System-side intelligent
agents are left out of this narrative as well as their supporting role
in human decision-making [DS21] and the proactive guidance they
provide to the user. This makes it difficult to understand the complex
behavior that arises when both human and system interact [SJB*20].
Thus, we are left with the following questions: (1) How can we clas-
sify the system’s intentions and tasks? (2) How does guidance con-
tribute to the knowledge generation process? (3) How are the ana-
lytical discourse and the user’s tasks affected by the guidance?

In this paper, our aim is to answer these questions from a theoret-
ical perspective. To accomplish this, we first extend the Knowledge
Generation Model by Sacha et al. [SSS*14] by taking into account
the contribution of the guidance system to the generation of insights
and knowledge. We show that at the crossroad of human and ma-
chine agency, the analytic discourse can take different paths. We
further analyze the interaction between human and machine inten-
tions using the model provided by Brehmer and Munzner [BM13],
as it succinctly captures the intentions, operations, and input/outputs
of user action. We then introduce the notion of guidance tasks and
derive our own typology of guidance actions. We illustrate in sev-
eral case studies the application of our typology to show how it can
be used to decompose the analysis into a series of user and system
tasks by making explicit the role of guidance in VA.

We contribute the following: (1) An expansion of the Knowledge
Generation Model in guidance-enriched VA environments showing
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the interaction between user and guidance systems, from which we
derive (2) a model of guidance degrees and how they relate to user
tasks, which we call perspective change dynamics; (3) a typology
of system guidance tasks covering the why, how, what, and when
of guided interactions, whose use is demonstrated through (4) three
case studies.

2. Related Work

To arrive at a better understanding of the role of guidance in the
VA discourse, we first review the literature on guidance, analytic
models, and analytical tasks.

Guidance. The term guidance was first introduced by Schulz et al. to
unify under a common framework terms as “recommender systems”,
“user support” and “assistance” within VA [SSMT13]. Ceneda et
al. define guidance as “a computer-assisted process that aims to
actively resolve a knowledge gap encountered by users during an
interactive visual analytics session”[CGM*16, p. 2]. Several aspects
of guidance have been characterized and used to classify the existing
literature [CGM*18], and to describe mixed-initiative approaches,
in which both the user and the VA system are considered to have an
active role in analysis [CGM19b] and adapt to each other [SJB*20;
SJB*21]. The study of guidance has led to novel VA techniques
[SBS*18] and guidelines for design [CAA*20]. Different types of
knowledge and their importance for guidance have been described
[CAS*18; FWR*17]. What is still missing, though, is a deeper
understanding of the role of guidance in the way insights are gained
from the data and in analytical processes.

Models of Analytic Discourse. Models of analytic discourse
(knowledge generation, sense-making, information retrieval, etc.)
have up to now dealt only with user-initiative systems, i.e., systems
where the computer plays no role apart from executing the user’s
explicit actions. To arrive at an understanding of the interactions be-
tween user and system, we must extend these models to consider a
higher degree of freedom in the computer, i.e., a system initiative.

Our model, which will be presented in the following sections, ex-
tends the Knowledge Generation Model proposed by Sacha et al.
[SSS*14]. We chose it because it captures many preceding mod-
els and is, to the best of our knowledge, the most VA-specific. This
model shows data-driven knowledge acquisition by users as a struc-
tured process composed by the computer (with a visualization sys-
tem) and three cognitive loops that build upon each other. This model
is not a stand-alone piece and we can trace its elements back to pre-
vious models. The coarse structural foundation can be found already
in Norman’s model for cognitive engineering that pictures how the
human actor interacts with the computer (or any physical system)
by leaping twice through the gulf that separates them: first by trans-
lating goals into actions (the gulf of execution) and then back by
interpreting the feedback of the system into something meaningful
(the gulf of evaluation) [Nor86]. Norman’s model is not specific to
data-driven research, but it captures the challenges any human un-
dergoes when becoming a “user”.

The idea that there is more than one process at work in the cog-
nitive effort of the user, an interaction-intensive low-level loop and
a more intellectual high-level loop, can be found 20 years later in
Pirolli and Card’s Sensemaking Process consisting of the Foraging

Loop and the Sensemaking Loop [PC05]. The computer part of the
Knowledge Generation Model (see center part of Fig. 1) was first
introduced by Keim et al. [KKEM10] showing how data, visualiza-
tion, and model connect to human knowledge. Extending this sim-
ple model with the ideas from Norman’s model and the Sensemak-
ing model, we retrieve the main structure of the Knowledge Genera-
tion Model, where user interaction is found in the Exploration Loop,
which is controlled by the hypotheses and insights gained in the
Verification Loop. The outermost loop, the Knowledge Generation
Loop, includes the internalization and socialization of new knowl-
edge [SSS*14]. In section 3, we describe a similar nested structure
for what we call the "Guidance Process".

Analytical Tasks. The concept of analytical tasks is of utmost im-
portance for mixed-initiative VA [CCI*15], as VA has been de-
scribed as a task-driven process [KAF*08; MA14]. Amar et al. ar-
gue that, for the design of effective systems, tasks must prime over
representation [AES05]. The analytical discourse has been modelled
as a hierarchical structure, where low-level actions are derived from
high-level goals [GZ09; RAW*16], hinting that the opposite (deriv-
ing goals from actions) is possible, although this might be very chal-
lenging [BWD*19]. Furthermore, open-ended exploration in visual
analysis has been empirically characterized as task-driven [BH19].

Work describing visualization tasks is abundant and special-
ized (e.g., for biological pathways [MMF17], network evolution
[APS13], genomic data [NHG19]), however, the first to traverse the
gap between high- and low-level tasks was Brehmer and Munzner’s
multi-level task typology [BM13]. This general typology also al-
lows the construction of complex task structures. Similarly, a simpli-
fied schema of Norman’s cognitive engineering model [Nor86] has
been used to elicit complex skill chains in computer games [Coo21;
HCD17]. This model consists of four steps (Thinking, Action, Sys-
tem, Feedback) that form a “skill atom”, which is a single piece of
knowledge about the game mechanics acquired through the success-
ful completion of an interaction loop.

Until now, analytical tasks have been reserved for users and ana-
lysts, as only humans are involved in the analysis process as decision-
makers [DS21]. We do not intend to challenge this, however, the
role of guidance is to support analysis and, consequently, it takes
part in the decision-making process. Thus, it is necessary to comple-
ment user’s tasks models with guidance.

3. Model of Knowledge Generation in Guided VA

As we have seen, guidance and its role in the analysis are not
typically considered when describing how knowledge is gener-
ated. Hence, in this section we provide an expanded version of
the knowledge generation process, with the inclusion of guidance.
We performed this expansion after analyzing existing guidance ap-
proaches [CGM19a]. We chose as a base for our discussion the
Knowledge Generation Model described by Sacha et al. [SSS*14]
because it provides a fine-grained view of the analysis process,
matching well with the visualization tasks perspective, and for it be-
ing a fundamental inspiration for this work. The User Side is kept
the same as in the original model (see top portion of Fig. 1). Our ex-
pansion considers the addition of a “Guide Side” (bottom portion of
Fig. 1), opposed to the User Side, which interacts with the Computer
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Figure 1: The Model of Knowledge Generation in Guided VA show-
ing how guidance contributes to the progress of the analysis. The dif-
ferent arrows model the interactions between User (top) and Guide
(bottom). Downstream (User-to-Guide) and Upstream (Guide-to-
User) arrows signal the two directions in which information can
flow. The model is an expansion of the well-known Knowledge Gen-
eration Model. [SSS*14].

through a Guidance Loop (mirroring the User Exploration Loop),
which is controlled by an Inference Loop (mirroring the User Veri-
fication Loop). Then, we show how the information flowing from
the Guide to the User can affect user actions and the progress of
the analysis. In the following, we start introducing the well-known
model for knowledge generation and then show how we expanded it
to include guidance.

The Knowledge Generation Model. In the Knowledge Generation
Model, as described by Sacha et al. [SSS*14], information flows
downstream from the user to the system and upstream from the sys-
tem to the user. Information can also move sideways from the up-
stream side to the downstream side, but not the other way around (as
in Fig. 1, no arrow flows from left to right). This allows information
to circulate in loops, but only the innermost, the Exploration Loop,
has a direct input/output relation with the system. The Verification
Loop has a similar relation to the Exploration Loop: Findings, i.e.,
trivially verifiable patterns in the data [ALA*18], serve as input for
the Verification Loop, which can be interpreted as Insights and in-
form the generation of a Hypothesis that shapes the next Actions
to be taken.

The Guidance Loop. We now show how guidance is generated
and provided to the user by introducing two additional information

loops, represented in Fig. 1. The first one is the Guidance Loop
which is the main loop of any guidance system. It directly connects
with the VA system by an input/output relation, handling the down-
stream information coming from the user that is useful for guidance
generation (see the Observations block in Fig. 1) and enacting con-
sequent guidance actions (the Provision block). Observations are
user interactions seen from the system perspective (downstream in-
formation, also called soft data [EFN12]) and can be used to drive
the guidance that is forwarded to the user. For instance, a system can
observe the user to determine when to provide guidance, what path
or target to suggest, or with which guidance degree. An observation
can be anything that stems from a user decision, e.g., a change in
the current view, a movement of the mouse, and also the lack of in-
teraction. However, a guidance system can also provide guidance
without considering user-input, i.e., without making adaptations to
the guidance (e.g., in Ip and Varshney [IV11]). These latter systems
provide guidance based mostly on the dataset under analysis, and
make their suggestions available from the beginning of the session,
suggestions which will not undergo any changes unless the data un-
der analysis does. The Provision block encompasses the actual ac-
tions and modalities of suggestion (degrees) that the guidance sys-
tem can provide and how they are provided. Having the innermost
Guidance Loop is the minimal requirement for a system to be con-
sidered guidance-enriched.

The Inference Loop. The Inference Loop is the second-order loop
of the Guidance process. It steers the Guidance Loop similarly to
how Insights and Hypotheses steer the Exploration Loop [SSS*14]
on the user side; but in this case, it is information coming from the
user that triggers changes on the guidance loop. Guidance inference
has been defined by Ceneda et al. as the process by which guidance is
derived [CGM19a]; the Inference Loop steers the Guidance Loop by
capturing user intentionality [PSCO09]. On the downstream side of
the Inference Loop we find the Expectation block, which receives
information from the Observations block. Expectations have been
defined as previous notions the system could possess about the
user or the tasks [SJB*21]. By comparing the expectations of the
system with the observations, i.e., with what the user is actually
doing, the system adapts what it knows about the tasks and the
user in the Adaptation block and derives new intentions and goals
for the next round of guidance. For example, a system can start a
session by assuming every data point to be equally interesting to
the user, and then update this expectation based on what the user
interacts with the most. When expectations are met (or not), this
information is used to trigger an Adaptation process that will affect
how guidance is provided in the future, and also how future (or even
past) observations are weighted to steer guidance.

Guidance Information Flowing to the User. As the user feeds ac-
tions to the system, guidance is provided, and it is perceived by the
user as the rest of the information coming from the visualization.
The guidance information flows upstream (from the system to the
user) similarly to the visual information about the data (and other
abstract forms of information as uncertainty [SSK*15]). The guid-
ance suggestions reach at some point, unless unnoticed or imme-
diately discarded, the status of a Finding. From there, suggestions
can follow two different paths (as illustrated in Fig. 1 by the blue
and red paths): it can either be interpreted along with other findings
into Insight, which will naturally have an effect on the Hypothesis
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Figure 2: Perspective change dynamics. Users performing a task
of a certain search type (a) can be supported by providing guidance
of a certain degree (b). Our observation is that guidance can make
a search type become a different one (c). White arrows indicate tar-
geted search type and black arrows resulting search type. Directing
(dashed line) and Prescribing (solid line) guidance induce perspec-
tive change on the user, pushing their current search towards an-
other one, while Orienting (dotted line) does not (bottom).

generated or confirmed (effectively having an influence on the fol-
lowing analytic discourse) or it can be “automatically” transformed
into actions, by moving sideways through the Exploration Loop (as
it most usually happens with findings). When guidance is provided,
usually the next action of the user is either accept or choose one of
the suggestions, a one-click decision. Therefore, the guidance infor-
mation about whether or not it was accepted is fed back to the sys-
tem almost unchanged. The result is that the Exploration Loop can
be short circuited by the guidance system, as the user willingly dele-
gates agency to the guidance. This is illustrated in Fig. 1 by the red
path that goes all around the Exploration Loop (information from the
guidance system) and the green line that stops at the Action block
(information from the user). Thus, guidance can be double-edged: it
can make analysis more fluid and enrich it, but it can also disrupt
downstream flow (i.e., information-rich interaction from the user),
which carries information about the users’ goals, and constrain their
decisions. We formalize this effect of guidance in the next section.

4. Perspective Change Dynamics

The model we introduced depicts the normal interaction between
users and guidance. However, what happens when the user does
not know how to continue the analysis, i.e., there is a knowledge
gap? How can guidance close the user’s knowledge gap is an open-
ended question. In the following, we show how providing different
guidance degrees can affect the way a knowledge gap is solved.
We do this by describing how guidance influences the way a user
searches for information during the analysis, i.e., the path/target
known/unknown dimension that is common to both user search type
[BM13] and knowledge gap [CGM*16].

Each analysis can be seen as the efforts users make while search-
ing for specific information. Our assumption is that guidance can

affect users’ tasks by constraining or re-targeting their search space:
users are pushed towards a narrower set of options or pulled to con-
sider something different. We call the effect that guidance can have
on the user Perspective Change, as it occurs in the theoretical tran-
sition space where the user’s goals are mapped to actions known as
the Perspective Dimension [RAW*16].

Search Types. There are four types of search operations that can be
performed by a user during visualization tasks [BM13]. The search
type depends on the level of knowledge that users hold about the
object of the search and the path to reach it (see yellow boxes in
Fig. 2a): if users do not hold any hypothesis yet (if the analysis is,
for instance, an open-ended search) they are performing an explore
task; if users know the characteristics of their target but not where to
find it, they are performing a locate task; if users know their target is
within a set of elements, they are performing a browse task; finally,
if the users know both what their target is and where to find it, they
perform a lookup.

Thanks to the model of guidance we introduced earlier, we show
how the provision of guidance can change and influence these search
tasks. In particular, how they can change and evolve when supported
with different guidance degrees (Fig. 2b). Our approach can be
imagined as a function that takes a guidance degree and a search
type and maps them to a search type resulting from the perspective
change incurred:

perspectiveChange(searcha,degree)→ searchb.

Some guidance degrees do not change the search type (when
searcha ≡ searchb), and some degrees change the search type (when
searcha 6= searchb). We call the former non-disruptive guidance, and
we differentiate them from disruptive guidance degrees, in the lat-
ter case. Moreover, to differentiate guidance degrees which starting
from a search type can lead to more than one search type, we intro-
duce second-order degrees ((degree,searcha,searchb)→ degree′).
Second-order degrees are an additional specification of a guidance
degree that specify the role that the degree has when applied to a spe-
cific search task. The contribution presented here is thus twofold: we
produce the mapping function of user search types when supported
by guidance and a finer-grained set of guidance degrees (Fig. 2c).
In the following, we describe the second-order degrees, grouped by
disruptive (deriving from prescribing and directing guidance) and
non-disruptive (derived from orienting guidance).

4.1. Disruptive Guidance

Among all guidance degrees, we identify those that are disruptive,
i.e., directing and prescribing guidance. Such guidance degrees can
have a direct influence on the user’s task. In fact, they can make the
user’s task change as a consequence of the Exploration Loop “short-
circuit”, which was described in section 3. These higher degrees of
guidance are typically used to directly address a user’s knowledge
gap. However, since the knowledge gap is elusive in practice, it is
hardly the case that there is a perfect match between the provided
guidance and the identified gap. This mismatch, in conjunction with
the fact that such degrees limit the user’s freedom, could lead to
unwanted behaviors and hence to their disruptiveness. Considering
this is important for guidance design because it affects the use of
the system and could lead to a series of undesired effects, such as
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the system’s tools getting trampled by guidance (as the user task
for which they were designed may get “overwritten” by disruptive
guidance) and a decrease in user interaction (as users simply select
the “guide’s pick”) to feed the guidance and inference loops.

We use the notation degree→ searcha ⇒ searchb to say that
search type searcha, targeted by a guidance degree degree, is
changed to searchb. Degree represents the second-order guidance
degree that is meant to support the user’s search task.

Prescribing guidance. When “the system establishes a set of
mandatory actions, or specifies a step-by-step instruction the user
should take to proceed” [CGM19a, p. 3] we say the system is pro-
viding prescribing guidance. When actions are prescribed, the user’s
freedom is restricted to only accepting or declining the system’s
suggestion, thus making any other kind of search impossible at that
moment, as the system has decided on both target and path. Thus
we say that the user’s search is reduced to a lookup:

Prescribe→Explore/Locate/Browse ⇒ Lookup. Prescribing
guidance makes explore, locate, browse tasks become a lookup task.
Consequently, there is only one type of prescribing guidance, with
no second-order opera-
tors. Prescribing guid-
ance is the degree with
the highest chance of incurring in information loss, i.e., of nullify-
ing possible analytic paths stemming from the user. We can find pre-
scribing guidance in Horvitz et al. [HBH*13] and Ip and Varshney
[IV11].

Directing guidance. Directing guidance can be considered as a
“partial prescribing” since it can address only one type of knowledge
gap at a time (target or path), thus leaving some options for the user
to choose from. When directing guidance is provided, a perspec-
tive change happens because the users’ search is pushed towards a
browse or locate search task. In fact, the user can locate or browse
within the options suggested by the directing guidance, as direct-
ing actively reduces the user’s options to an ordered few, e.g., when
using a map application, we are provided with a few path options to-
wards our destiny, ranked by trip-duration. However, directing guid-
ance can also be used to expand the search space [PSCO09] when
the user is performing a lookup. To differentiate between directing
guidance provided to constrain the search space from guidance pro-
vided to broaden the search we use the terms converging and diverg-
ing, respectively. The former is the most common use of directing
guidance, as the purpose of guidance is generally for user and sys-
tem to arrive together to a solution, reducing at each step the result
set. In spite of this, (diverging) guidance can also be used as a tech-
nique to make the users consider different options when their search
has reached its bottom, e.g., to promote a breadth-first search.

As mentioned, directing guidance can push user tasks to evolve
towards browsing or locating. This entails directing guidance can
produce two different effects (perspective changes) over the user
search. Which of these is the case depends on the knowledge gap to
overcome: a path unknown or a target unknown gap. The former is
solved by the guidance suggesting a direct path, which pushes user’s
search task to become a browse task (see Fig. 2c). The latter is solved
by suggesting a direct target, which makes the user search become a
locate task. This is independent of the converging/diverging nature
of the provided guidance, as the type of answer (path/target) is

specific to each resulting user search (locate/browse).

Direct target→Explore/Lookup ⇒ Locate. An explore or a
lookup task when supported with target-directing guidance becomes
a locate task. When enough information about the characteristics of
the users’ search is
available to the system
(e.g., after the user has
done some exploration and focused on certain elements/areas), the
system can provide target-directing guidance. For instance, Wong-
suphasawat et al.[WMA*15] present a guidance system to support
exploratory data analysis of a relational table that recommends ap-
propriate views and encodings for the data, thus closing the target
unknown gap and making the user’s task change from an explore to
a locate search.

Direct path→ Explore/Lookup⇒ Browse. An explore or lookup
task provided with path-directing guidance becomes a browse task.
Path-directing guidance narrows the search space to a few ranked
options, i.e., it provides
a direct answer to the
users’ task by automat-
ically choosing a path to possible targets to their search. Examples
of this are providing lists of suggestions based on previous users’
searches [DLB13] or automatic layout suggestions in graphic de-
sign tools [OAH15].

4.2. Non-disruptive Guidance

Non-disruptive guidance preserves the user search type, as it does
not constrain the original freedom of the user within the VA inter-
face. However, orienting guidance provides the user with some new
information of assistance, and this information can vary depending
on the kind of search type the orienting guidance is designed to sup-
port. Because of the freedom it leaves to the user, non-disruptive
guidance is mainly associated to this search type. We use the nota-
tion orienting→ search⇔ degree′ to say that when orienting guid-
ance is applied to support a search task search, we call degree′ the
second-order complement to that task.

Orienting guidance. Orienting guidance has been described as
the lowest guidance degree, whose main function is to preserve or
enhance the users’ mental map, usually by adding an extra layer of
information to the visualization [CGM*16]. This definition points
out that orienting is a non-disruptive form of guidance, i.e., the user
goals-to-action mapping is not directly affected by the provided
guidance. Thus, we observe that when orienting guidance is chosen,
the guidance task depends on the search type of the user task. This
gives rise to four subtypes of orienting guidance: pinpoint, which is
the kind of orienting guidance provided for lookup tasks; indicate,
stemming from browse tasks; lead, associated to locate; and steer,
to support explore tasks.

Orient→Lookup ⇔ Pinpoint. Pinpoint is the orienting guid-
ance complement of lookup tasks, where target and path are
known by the user. In lookup tasks, although little guidance may
be needed, help can be pro-
vided still to pinpoint the in-
formation searched and avoid mistakes in the operation. For in-
stance, pointer magnet, word autocomplete, automatic zooming,
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slider marks of relevant values, etc., are all examples of pinpointing
guidance. Pinpoint does not require complex knowledge from the
user and should work for all targets alike.

Orient→Browse ⇔ Indicate. Indicate is the orienting guidance
complement of browse tasks, where only the path is known
by the user. Browsing is a limited kind of exploration, where
usually the search is con-
strained to a small subset of
the data, and so indications should be provided within this context
to find the searched information. For instance, Koop et al. [KSC*08]
provide indications in the form of previsualizations while users
browse a list of automated suggestions of visualization pipelines.

Orient→Locate ⇔ Lead. Lead is the orienting guidance com-
plement of locate tasks, where only the target is known by the
user. While locating, users may search different areas of the
visualization while inspecting
non-spatial features of data,
and so leads can be provided about which features may be more
interesting. Examples of leading can be found in systems that sug-
gest data dimensions and relations, such as Morpheus [MAK*08],
Stratomex [LSS*12] and Domino [GGL*14].

Orient→Explore ⇔ Steer. Steer is the orienting guidance com-
plement of explore tasks, when both path and target are unknown
to user. Exploration is a common open-ended phase of anal-
ysis that usually leads to
clearer goals and to locate and
browse searches. Exploring allows users the highest degree of free-
dom, and orienting guidance has a very important role here, as it is
able to steer the users’ wandering without constraining their freedom
but helping to maintain flow and propitiating findings. For instance,
Gladisch et al. [GST13] provide steering guidance for the navigation
of large graphs through glyphs embedded on the exploratory view.

5. Typology of System Guidance Tasks

We have shown how the provided guidance degree interacts with the
users’ search. To tie this in with abstract user visualization tasks, in
this section we introduce the notion of guidance tasks.

We propose a typology of system guidance tasks to describe and
analyze guidance systems in VA and their interaction with users
and their tasks. With this last objective in mind, we designed our
typology to be compatible with the multi-level visualization task
typology [BM13], but it also draws elements from previous work on
guidance [CGM*16; CGM*18]. Our typology – portrayed in Fig. 3
– spans the three main dimensions of user tasks: Why (describing the
intent of the guidance), How (showing how an intent is translated
into actions) and What (input/output). An extra dimension is added
as context: the When, capturing the analytic objective that frames
the user-guidance task complex.

5.1. When

When is the dimension that represents the analytical context dur-
ing which the task takes place and thus affects both user and system
tasks. Its only category, Objective, was introduced as analytical ob-
jective by Ceneda et al. [CGM19a] to categorize guidance accord-
ing to which phase of analysis it supported. It is divided into: Data

Transformation, Visual Mapping, Parameter Setting, Model Visual-
ization, Model Building, Exploration and Knowledge Generation
(for a detailed description, see Ceneda et al. [CGM19a]. Users and
system must share the same when (e.g., transforming the data or per-
forming data exploration) for the provided guidance to be effective.

5.2. Why

The second dimension we examine when analyzing guidance tasks is
the why which considers the intentions of the system when it decides
to support user’s tasks. The why dimension can be considered as a
reflection of the intent with which the system was designed, which is
manifested in the high-level activities it performs, i.e., the guidance
tasks. The why goes from high-level (process vs. explain) to mid-
level (guidance degree) to low-level (second-order degrees).

Guide. The main function of guidance is to provide active support
to users. It achieves this with the four processes described in the
Guided Knowledge Generation Model (section 3): provide, observe,
expect, adapt, corresponding to the four blocks in the Guide Side
(Provision, Observation, Expectation, Adaptation; Fig. 1). Although
all of these processes have influence on the guidance provided at
a given time, we focus this typology only on the provide function,
i.e., the part of the loop that produces the concrete actions taken to
support the user’s analysis. As described, we imagine the intent of
the system (ideally) as a mirror of the user’s intent, and the why
dimension of the visualizatoin task typology [BM13]. In other words,
the role of the guidance, as we have seen, is supporting search tasks.

Explain. A guidance system can explain its decisions to the user or
prompt the user for feedback. Explain is a different function from
support and not a main element in the Guided Knowledge Genera-
tion model, since the information it communicates is not about the
data being analyzed, but about the guidance itself. Explain tasks,
in other words, serve as a complement to the guidance tasks and
concur to their effectiveness. In Fig. 3 we can see how the Explain
block is connected to the whole Guide block since an explain task
can take place at any moment, i.e., either during the main Guidance
Loop or the Inference Loop. Specifically, this dimension considers
the case in which the system informs the user about its current inter-
nal state, the analysis state, or other relevant information about the
guidance and inference process. If the user has the possibility to ask,
the system task can also be to clarify the system’s knowledge to the
user and explicit guidance decisions, which otherwise would remain
hidden, not to disturb the analytical discourse. Also, when the sys-
tem’s intent is to ask the user, or prompt it for feedback. Correct is
a modality of explaining where the system provides negative feed-
back to the users, i.e., the system signals the users that they have at
some point taken a path considered misleading.

Degree. Depending on the number of targets or paths returned to
users by the guidance function, the guidance task is said to be one
of three degrees (previously defined in section 4) [CGM*16], which
correlate with the query dimension of user tasks [BM13] in the fol-
lowing way: prescribing gives users only one option to follow next,
and is meant to complement users’ identify task; directing returns
two or more ranked suggestion, in response to a compare task; and
finally orienting returns multiple points (e.g., by highlighting or ag-
gregating into a new encoding), as to support a summarize task, on
the user side.
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Figure 3: Typology of system guidance tasks. It spans the three dimensions of the multi-level visualization task typology [BM13] plus a new
dimension that captures the analytical objective of an analysis phase (when?). It allows describing: system task intent (why?) by different detail
levels (aim, first- and second-order degree), also with an accompanying explanation task (explain); the suggestion method (how?) in terms of
data manipulations and means of communication; and the information inputs and type of output relative to the targeted user task (what?).

Second-order degrees. Orienting and directing guidance can have
different modalities depending on the user task they target. As this
dimension depends on both guidance degree and the type of search
the user is performing, they are linked by a dotted line in Fig. 3.
Orienting can be further structured in four second-order degrees,
which directly depend on the user task: pinpoint, indicate, lead, and
steer. Directing has two second-orders: path and target. The full
description of second-order degrees is found in section 4.

5.3. How

The how part of our guidance typology refers to the data interaction
methods. Like a user, the guide can perform data manipulation tasks,
as these are non-persistent, but it can also introduce persistent data
(e.g., from web sources).

Manipulate and Introduce. As guidance provides suggestions for
the user to do, guidance tasks are equivalent to user tasks in the
dimension concerned with formal data operations that take place
within visual analytical discourse. In other words, since the analyti-
cal discourse takes place through the same medium (a screen and a
visualization), the way the guidance is provided to the user matches
the way the user can interact with it. Thus, we keep manipulate and
introduce as the same categories used to describe user tasks. For a
description of available actions, see Brehmer and Munzner [BM13].

5.4. What

The what dimension is divided into input and output. It encapsulates
the origin source of the information used to provide guidance and
what is communicated to the user.

Input. Input is the (static) information sources from which the
guidance system obtains its parameters for the guidance task. It is
different from information coming from an observation related to
a task, as observations are derived from real-time user interaction
(downstream flow). For a detailed description of possible input
sources, see Ceneda et al. [CGM*16].

Output. The Output is what guidance directly passes on to the user,
and it is divided in answer, the solution to the knowledge gap, and
means, through which media and channels it is conveyed. Answer,
as described by Ceneda et al. [CGM*16], is the content of the
guidance solution to the identified knowledge gap. It is classified
by its relation to the knowledge gap: a direct answer is such that it
contains a possible solution state of the user task (i.e., it is a target
for the task), while an indirect answer is of a different nature than a
solution state of the user task (i.e., it is a path for the task). Means
are the visual (or otherwise) channels that will convey the answer
to the user, as any how action taken by the guidance system must
be communicated somehow to the user, and it could potentially
be conveyed in different ways. It can turn the users’ attention by
highlighting visual variables; produce a new encoding of its own; use
animation through the continuous motion of visual variables; use the
sound channel to convey information; use text to deliver a message in
natural language; and video to illustrate with a prerecorded sequence.
For a detailed description of means, see Ceneda et al. [CGM*16].

6. Case Studies

To show the practical utility of our typology, we analyze in this
section three different mixed-initiative VA systems found in the lit-
erature: Topic-Tree [ESD*18], ForceSPIRE [EFN12], and Design-
Scape [OAH15]. We have chosen this particular set of systems as
they provide us with a certain diversity of guidance behaviors (see
The Guidance Spectrum, section 7). We first explain how the typol-
ogy can be used to generate a user-guidance task decomposition.

How to use our Typology. Our guidance task typology was de-
signed to be used in conjunction with a user task typology, in particu-
lar with the multi-level abstract visualization task typology [BM13],
which was also designed for describing complex interconnected task
sequences. This interconnection between typologies allows to suc-
cinctly describe guidance-enriched VA systems in a modular way.

The description of guidance tasks must be preceded by a descrip-
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Figure 4: UT and GT decomposition of Topic-Tree [ESD*18]. The decomposition is split into two objectives (when), as the system uses
guidance to support parameter setting (left connected component) and model building (right connected component).

tion of the user tasks within the VA system which is designed to sup-
port them. This method assumes that a VA system can be thought
of as independent of the guidance solution and hints that tasks can
be, thanks to their modular nature, recombined to produce varying
guidance behaviors.

Once user tasks (UTs) and guidance tasks (GTs) are described,
each task should be associated and target one or more UTs. Target-
ing means establishing one of the following relationships among
tasks, which derive from the Guided VA Model (Fig. 1): observing,
providing, or co-adaptive (which includes both). While observing
the targeting GT is meant only to passively receive downstream in-
formation, but not to provide explicit guidance (UT output to GT
input). A providing relation means that the targeting GT is meant
only to provide guidance, but not to observe downstream informa-
tion (GT output to UT input). Finally, a co-adaptive relation among
tasks has both observing and providing links, and thus is guidance
that is sensitive to the real-time information flow of the input UT
(using the full guidance loop in Fig. 1).

The construction of user-guidance task descriptions can be sum-
marized in the following rules, accompanied by their rationale:
1. UTs and GTs are first described independently of one another:

the VA system and the guidance system are, at least abstractly,
separable entities. The former affords UTs, the latter supports
them.

2. UTs and GTs are assigned to analytical objectives: GTs can
only target UTs within the same objective. This is important to
consider because of the situational nature of tasks.

3. Each GT must target at least one UT: The purpose of guidance is
to support the user, and so the idea of guidance as an analytical
task in and by itself makes no sense. A GT must always be
coupled to a UT, namely, its target.

4. A targeting relation can be observing, providing, or co-adaptive,
indicating the direction of the information flow: A GT may feed
(have an observing relation) from one UT while targeting (pro-
viding) to another one, or have both (co-adaptive).

5. Produce tasks may only be targeted by observing relations: Pro-
duce tasks [BM13] are common in VA, as analyses usually deal
with creating or refining a certain artifact (e.g., a model). Unlike
consume tasks, this kind of tasks does not possess a search type.

Guidance, in our model, is only understood through its effect on
perspective (section 4), thus, it has no effect on tasks without a
search type. A GT may get its input from a produce task and use
it to provide guidance to a different UT.

In the visual diagrams presented next, UTs and GTs are encoded
in gray and blue boxes, respectively. The same colors are used for
lines denoting UT dependencies and guidance relations.The why for
both kinds of tasks is specified, while the how has been ignored for
clarity as it does not fulfill a structural role in the decomposition.
The what is specified next to the input/output symbols for GTs (see
Fig. 4 Guidance Relations) and on the dependency lines for UTs.

6.1. Case Study 1: Topic-Tree

El-Assady et al. present a mixed-initiative VA system for document
collection segmentation [ESD*18]. In this approach, a topic model is
presented to the user as a topic-tree, which supports a comparison of
two models. In the main interaction loop, the system adds documents
as leaves of the topic-tree one by one, so the user can follow and
stop the hierarchical clustering algorithm at any time to manually
change its decisions or instruct it to follow a different strategy.
Several side panels inform the user on the details of documents, the
overall quality of the model, and of the possible strategies to adopt,
which the user can preview. It uses speculative execution (SpecEx)
as a guidance mechanism (described abstractly by Sperrle et al.
[SBS*18]). We describe the general workflow of this feature-rich
system in terms of interrelated UTs and GTs, as shown in Fig. 4.

Before entering the topic-tree view, users can prime the model
with their domain knowledge by setting model priors (Fig. 4 UT1):
introducing representative keywords for each topic. Users are as-
sisted in their search for keywords (Fig. 4 UT2) by an automatically
ranked keyword suggestion list extracted from the data (Fig. 4 GT1).
GT1 provides directing guidance to UT2 (an ordered list of possible
words) so that the users can browse and select between words that
they may not have contemplated before (diverging guidance) and
so enrich the produced backbone priors. These tasks pertain to the
Parameter Setting objective and thus are independent of the rest of
the task decomposition.
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Figure 5: UT and GT decomposition of the ForceSPIRE main inter-
action loop [EFN12].

Following the Parameter Setting, Model Building is the core
objective of the system. Three main UTs are identified revolving
around the refinement of a topic-tree: explore strategies (Fig. 4
UT3), where users can use speculative execution to observe the con-
sequences of predetermined actions, explore model-space (Fig. 4
UT4), where the topic-tree is visualized and users can directly ma-
nipulate the model, and compare trees (Fig. 4 UT5), where they can
compare a speculative tree to the current tree in a differential topic-
tree view. These tasks depend on each other forming a loop (address-
ing the iterative, human-in-the-loop approach of the system). Then,
we identify three GTs: show quality (Fig. 4 GT2), which encodes
the quality metrics to orient the user about the progress of the model
and of speculative models; suggest strategy (Fig. 4 GT3), which pro-
poses ranked actions to undertake on a parallel model; and encode
stress (Fig. 4 GT4), which shows the quality of each topic cluster,
indirectly leading to certain paths and targets.

Observations. We can see that the SpecEx employs directing guid-
ance (GT3) to constrain the users’ exploration, the paths they can
take through the model-space, to a browsing task. In this system’s
quantitative evaluation, users were asked to rank variations of the
system based on their subjective appreciation of the results: (1) as
it is, (2) with GT3 turned into prescriptive guidance (i.e., automati-
cally selecting the best-ranked strategy) and (3) without GT3. They
consistently chose directing guidance (1) as giving the best results,
followed by no guidance at all (3) and lastly by prescriptive guid-
ance (2), even though the calculated quality metrics on the system
indicate that automatic SpecEx (2) yields the better results. Thanks
to the abstraction made possible by our typology, this could point
out to a generalizable result about guided interaction.

6.2. Case Study 2: ForceSPIRE

ForceSPIRE is a VA system for the refining of topic models in col-
lection of documents presented by Endert et al. [EFN12]. It is based
on a particular interaction technique called spatialization, which
is a kind of semantic interaction, in turn an idea derived from the
“human-is-the-loop” VA paradigm [EHR*14]. Spatialization allows
the users to be “shielded from direct model steering” [EFN12], in
the sense that they can iteratively refine a model by an intuitive in-
terface that uses spatial interaction as its main language: users can
freely move documents around and see the others react to this move-
ment, revealing their underlying relations (an exploratory move), or
they can force two documents closer together to signal the system
their common entities should increase in weight, thus updating the
relations in the whole corpus (an expressive move).

From a visualization tasks perspective, we can see that the users
are involved in the production of a new model with each expres-
sive move, and they do not do this directly but by rearranging the
spatialization (Fig. 5 UT1). Users can then explore the result of the
spatialization (Fig. 5 UT2). This analysis is still incomplete as it
misses the agency of the guide that generates the reaction to the spa-
tial interactions with the model and thus steers the users towards
interesting features of the current model (Fig. 5 GT1). The guidance
thus observes the output of the produce task and targets the explore
task with a guidance degree. Considering this, UT2 actually corre-
sponds with the exploratory move described in the system, where
users learn about the model by observing the simulated reactions of
the system to their actions that comes from the provided steering
guidance in the form of the animated rearrangement of documents.
GT1 feeds on both the model and the downstream user actions, and
provides a direct answer to the user knowledge gaps “how do other
documents relate to this particular document (i.e., their transitive re-
lationships)?” and “how do these (transitive) relations change if I
change the model?”.

Observations. Both the iterative and mixed-initiative nature of the
analytic discourse within ForceSPIRE, as seen in Fig. 5, are captured
by our representation: the flow of information of the user-guidance
task complex forms a loop where there is not an order of tasks
imposed on users (they are free to start at any UT and to change
tasks whenever they please). We can explain that the users of the
conducted study “treated their investigation not as steering a model,
but rather synthesizing information” [EFN12] through the fact that
the steering is actually delegated to the orienting GT, so the users
can focus on their upstream (synthesizing) flow.

6.3. Case Study 3: DesignScape

DesignScape is a non-VA tool which nonetheless introduces guid-
ance components into its workflow [OAH15]. Its aim is to support
users on the task of creating posters or graphical layouts in general.
It has a similar interface to end-user programs such as Adobe In-
Design, however, it adds two guided modes of use called the “sug-
gestive interface” and the “adaptive interface”. The former provides
predominantly prescribing guidance while the latter directing guid-
ance, although the algorithms behind both are the same.

To analyze this system, we first decompose the procedure of
creating a graphical layout with a visual interface without guidance
(Fig. 6 UT1-3). It can be described in the following way: the users
introduce elements as images and text (Fig. 6 UT1), then explore
possible layouts within a large “design space” (Fig. 6 UT2), to
finally reach a more or less satisfying state where they will fine-tune
the positions (lookup precise alignments, margins, etc.; Fig. 6 UT3).

UT3 is commonly supported in current editors by automatically
snapping to grid the objects according to the bounding boxes of sur-
rounding elements: this is a kind of pinpoint guidance, as a lookup
is being targeted by orienting guidance (this is the only guidance of-
fered in the baseline “direct interface”, Fig. 6 GT4). The “suggestive
interface” adds two panels to the normal interface where two kinds of
layout proposals are presented (Fig. 6 GT2-3): design tweaks that im-
prove the layout by making only small changes (which are reactive
to the user’s movements), and design brainstorms, where only possi-
bilities that are far in the design space are shown (nonreactive to the
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Figure 6: UT and GT decomposition of DesignScape [OAH15].
The three types of interface present in the system have each some
guidance tasks associated.

user’s movements, but only to introduced elements). These two GTs
target UT3 and UT2, correspondingly. Both, however, offer direct-
ing guidance by signaling a few (shorter or longer) paths in the de-
sign space to reach a myriad of target states. Finally, the “adaptive in-
terface” (Fig. 6 GT1-2) also offers the side-panel for brainstorm sug-
gestions, but instead of directing to fine-tuning solutions, it automati-
cally enacts them without asking the user (sometimes with an impor-
tant effect on the current layout), thus prescribing guidance (GT1).

Observations. Being this a tool aimed at supporting a creative task,
it is understandable from this analysis that in the reported results of
O’Donovan et al. [OAH15], users felt in the end frustrated by their
lack of agency in solutions they found nonetheless good (better than
what they thought they could achieve by themselves), as, according
to the dynamics of the user-guidance complex, their exploration is
reduced in the “adaptive interface” to a lookup and in the “suggestive
interface” to a browsing.

7. Discussion

Our framework shows that guidance works in more varied ways
than previously known. Its core value lies in providing a structured
but expressive view of mixed-initiative approaches by considering
both sides of the VA spectrum.

The Guidance Spectrum. Another relevant aspect that arises from
our model is the difference between upstream (system-provided)
and downstream (user-provided) guidance. The observation that in
some systems, some types of guidance may appear more prevalent,
or not appear at all, leads us to imagine of a two-dimensional guid-
ance spectrum where systems can be placed. Each axis of this spec-
trum is the quantity or importance of each kind of guidance pro-
vided, and we can produce a phase space with four kinds of sys-
tems: weak or no guidance systems, proactive guidance systems
(mostly providing “static” suggestions, as in Fig. 4), passive sys-
tems (mostly learning from the user but providing weak guidance
features, as in Fig. 5), and co-adaptive systems (having both direc-
tions strongly represented, as in Fig. 6). This coarse-grained clus-
tering of guided approaches leads us to ask how do users respond
to each kind of system, considering that the response of the sys-
tem is different in each case? We imagine that in co-adaptive sys-
tems, complex behaviors should be expected as users learn that they
can tune the provided guidance by modifying their own behavior.
If such a co-adaptive system also possesses an inference loop, this

would mean that the
system could also re-
spond dynamically to
this kind of user be-
havior (e.g., by ob-
serving and adapt-
ing to user interac-
tion while trying dif-
ferent local optima in
a “guidance space”).
We can think of an
emergent “agonistic”
behavior, where each
agent plays its moves
in consideration of
eliciting an expected response from the other (as in partisan games).

Limitations. Our work can easily fall prey to its own reductionist
approach. Its fundamental assumption, that guidance can be encap-
sulated as a phenomenon perfectly independent of the classical VA
system, is certainly debatable (e.g., by asking, where do we draw the
line between visualization features of a system and providing orient-
ing guidance) and can be held as a reification of guidance [KK17].
Inheriting from Brehmer and Munzner’s typology, our task decom-
position schema is certain to produce different results, as at least
some derivation variables depend on the analysts’ tailoring (includ-
ing: level-of-detail, which can even bring one task to be represented
as many interdependent tasks with their own iteration loops; pre-
sumed user knowledge, which can change the search type of a UT;
and presumed user intentionality, which can make the when struc-
ture of the task decomposition generate different connected compo-
nents). The idea that variations in the decomposition can have an
effect over the following analysis also calls the validity of our ob-
servations into question. Our case studies are limited but to some
extent diverse, suggesting the applicability of our method to extant
systems. Furthermore, appropriate guidelines would we beneficial
to develop new approaches, which we are planing as future work.

8. Conclusion

We have presented a typology of system guidance tasks that enables
a joint analysis of user and guidance task interdependence, illustrat-
ing it with different examples. We have also shown the effects of
guidance over user tasks and vice versa, deriving finer-grained guid-
ance degrees in the process. This is supported with a model of guid-
ance within the VA knowledge generation process. Our typology ap-
pears to serve well the purpose of describing, abstracting, and gen-
eralizing VA systems with mixed-initiative approaches, providing
succinct representations that we hope will enrich the incursion into
guidance design and improve the communication of results, stimu-
lating the production of guidelines that, with time and testing, may
expand design considerations in VA.
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