
EUROGRAPHICS 2023
A. Bousseau and C. Theobalt
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 2

STAR – State of The Art Report

Neurosymbolic Models for Computer Graphics

Daniel Ritchie1 Paul Guerrero2 R. Kenny Jones1 Niloy J. Mitra2,3 Adriana Schulz4 Karl D. D. Willis5 Jiajun Wu6

1Brown University 2 Adobe Research 3University College London 4University of Washington 5Autodesk Research 6Stanford University

Figure 1: Neurosymbolic models produce visual data via a combination of symbolic programs and machine learning. From left to right:
outputs of CAD programs written by a neural network [XWL∗22]; inferring a 2D drawing program that reproduces an input hand-drawn
diagram [ERSLT18]; procedural material programs (i.e. node graphs) generated by a neural network [GHS∗22].

Abstract

Procedural models (i.e. symbolic programs that output visual data) are a historically-popular method for representing graphics
content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations,
high-quality outputs, compact representation, and more. But they also have some limitations, such as the difficulty of authoring
a procedural model from scratch. More recently, AI-based methods, and especially neural networks, have become popular for
creating graphic content. These techniques allow users to directly specify desired properties of the artifact they want to create
(via examples, constraints, or objectives), while a search, optimization, or learning algorithm takes care of the details. However,
this ease of use comes at a cost, as it’s often hard to interpret or manipulate these representations. In this state-of-the-art report,
we summarize research on neurosymbolic models in computer graphics: methods that combine the strengths of both AI and
symbolic programs to represent, generate, and manipulate visual data. We survey recent work applying these techniques to
represent 2D shapes, 3D shapes, and materials & textures. Along the way, we situate each prior work in a unified design space
for neurosymbolic models, which helps reveal underexplored areas and opportunities for future research.

CCS Concepts
• Computing methodologies → Shape modeling; Reflectance modeling; Texturing; Neural networks; Computer vision; • Soft-
ware and its engineering → Domain specific languages; Programming by example;

1. Introduction

Throughout the history of computer graphics, progress in the field
has often been driven by advancements in representations of vi-
sual data. New representations of visual data have enabled new cre-
ative capabilities, or have facilitated existing capabilities more effi-
ciently. For example, texture maps as a representation of surface de-

tail have enabled virtual objects to efficiently mimic the appearance
of real-world objects [Cat74]. Level-of-detail systems for polygo-
nal meshes have enabled the rendering of densely-populated virtual
scenes at interactive rates [Cla76]. Various types of splines have en-
abled higher-fidelity modeling of smooth, curved surfaces [dB78].
Implicit surface representations have enabled beautiful scenery

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14775

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14775

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

to be encoded in compact algebraic expressions [Ini] and have
proven useful for reconstructing 3D geometry from image obser-
vations [NZIS13, MST∗20].

One broad class of representation that has been historically pop-
ular throughout computer graphics is procedural models: symbolic
programs that output some visual datum when executed. Proce-
dural models are in some sense as old as computer graphics it-
self, dating back to the constraint programs used to produce engi-
neering sketches in Ivan Sutherland’s SketchPad system [Edw63].
Nowadays, procedural approaches are widely used for modeling
certain classes of 3D shapes, including trees and other vegeta-
tion, buildings, and whole cityscapes [IDV,Esr,Sid]. They are also
used for modeling object surface appearance, i.e. materials and
textures [Adoa], and even the behaviors of virtual characters in a
crowd [Mas]. Procedural models have achieved such longevity and
popularity because they have many desirable properties. They of-
fer interpretable parameters that can be manipulated to change at-
tributes of the visual data they generate (e.g. the height of a vir-
tual building). Furthermore, randomization of these parameters al-
lows a single procedural model to generate a wide variety of differ-
ent visual outputs—this is useful for rapidly exploring their design
space or for populating large virtual worlds with non-repetitive con-
tent. Procedural models do have some limitations, though. First and
foremost, creating a procedural model is challenging: doing so typ-
ically requires both programming expertise and artistic/design acu-
men, a combination that only certain practitioners possess. Also,
the types of variations achievable by a single procedural model are
usually limited to parametric variations; more complex structural
variations usually require non-trivial modifications to the structure
of the procedural model itself (e.g. changing a model of sports cars
to produce trucks).

Recently, machine learning models have become popular for
producing visual data, with deep neural networks being especially
prevalent. Use of such models has rapidly become widespread
for applications in image synthesis, processing, and manip-
ulation [IZZE17, ZPIE17, GEB15, KLA21, RDN∗22, SCS∗22,
RBL∗22], 3D shape modeling [WZX∗16, LXC∗17, MGY∗19,
JBX∗20,CZ19,LLHF21,HLHF22,ZVW∗22], material and texture
modeling [FAW19, DAD∗18, HDMR21], 2D drawing and sketch-
ing [HE17, RBCP20, VPB∗22], and more. In principle, these mod-
els are easy to create: just provide examples/training data, and a
learning algorithm takes care of the rest. What’s more, they are
quite general: the same model architecture (and sometimes even the
same trained model) can represent a huge variety of different kinds
of visual data (e.g. the space of all human faces). They are not with-
out their own limitations, however. The representations these mod-
els learn are usually opaque and uninterpretable, making them hard
to edit or manipulate (though some researchers have made progress
in this space [BZS∗20, BLW∗20]). Additionally, as machine learn-
ing methods produce statistical approximations of the true function
implied by their training data, such models may generate outputs
that exhibit artifacts: failing to generalize beyond their training set,
producing e.g. blurry images, blobby geometry, etc.

As summarized in Table 1, procedural/symbolic models and
learned/neural models have complementary strengths and weak-
nesses. One might naturally ask: can one get the best of both worlds

Property Procedural/Symbolic Learned/Neural

Ease of authoring Hard Easy
Interpretability High Low
Output artifacts No Yes

Output variability Medium High

Table 1: Procedural/symbolic models and learned/neural models
have complementary strengths and weaknesses for generating and
manipulating visual data. This report discusses research that com-
bines them to get the best of both worlds.

by somehow combining these two types of representations? In this
report, we summarize the state-of-the-art for research that focuses
on such neurosymbolic models which generate visual data using
symbolic programs augmented with AI/ML techniques. We first
define a design space for such neurosymbolic models, taxonomiz-
ing the ways in which neural and symbolic representations can be
hybridized to represent visual data (Section 3). We then survey re-
cent work which applies these representations to several different
computer graphics domains: 2D shapes, 3D shapes, and materi-
als/textures (Sections 5-7; see Figure 1 for examples). In the pro-
cess, we situate each prior work within our design space. Finally,
we conclude with a look at open problems and future research op-
portunities in the field, including pointing out potentially fruitful
regions of the neurosymbolic design space which have yet to be
explored (Section 8).

2. Background & Scope

The subject matter of this report may be of interest to many poten-
tial readers; we have written it with new graduate students in vi-
sual computing (e.g. computer graphics, computer vision) in mind.
We assume the reader has a solid background in the fundamen-
tals of computer graphics (including its mathematical prerequisites,
e.g. linear algebra). We also assume some familiarity with basic
machine learning concepts (e.g. training vs. test datasets, overfit-
ting) and basic neural network concepts (network weights, stochas-
tic gradient descent, etc.) Some familiarity with basic program-
ming language concepts is also helpful (e.g. different programming
paradigms, abstract syntax trees).

To keep this report clear and concise, it is intentionally limited
in scope. Specifically, we focus on the task of generating visual
data using symbolic programs augmented with AI/ML techniques.
In this report, when we say that a neurosymbolic model “uses sym-
bolic programs”, we mean that it explicitly constructs an interme-
diate symbolic representation of the visual data it generates: the vi-
sual data is represented by discrete symbols composed into a struc-
ture using one or more symbolic operators (i.e. functions with well-
defined symbolic implementations). By contrast, visual data may
be represented with non-symbolic functions (e.g. a neural network
which generates the data) or data structures (e.g. a raster image or
a signed distance field).

Research on neurosymbolic modeling is interdisciplinary, draw-
ing on ideas from deep learning, procedural modeling, and program
synthesis. Each of these areas would itself merit a full report; in this

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

546

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

section, we discuss which material from each is relevant to our dis-
cussion, and which is out of scope.

2.1. Deep Learning

Deep learning and neural networks have seen widespread adop-
tion across the field of computer graphics. Neural networks are
often used as learned function approximators: given a source do-
main X and a target domain Y , a neural network can find a map-
ping from X to Y using gradient-based optimization techniques
[LBH15]. In deep learning, complex neural architectures are de-
veloped by composing many simple neural layers and non-linear
operations together. These approaches have found success across
many computer graphics tasks that can be framed as mapping prob-
lems (e.g. feature detection, denoising, rendering, animation, etc.)
[MKG∗18]. The questions of how deep learning should be applied,
and when it will be successful, are complex and dependent on many
problem-specific factors outside the scope of this report.

Neural approaches have proven useful for reconstruction tasks.
With enough data and compute, learning-based methods are able
to produce visual outputs that correspond to partially observed or
under-specified inputs. Typically, such systems learn to directly
predict visual outputs in an end-to-end, differentiable fashion (e.g.
methods for image-based 3D reconstruction [HLB19]). However,
we instead focus on approaches that create (either explicitly or im-
plicitly), a non-trivial symbolic intermediary representation capa-
ble of producing visual data. This symbolic representation must
be more than a trivial combination of primitives, and as such, we
consider neural methods that directly predict low-level represen-
tations entities (e.g. triangle meshes [NGEB20]) or even complex
geometric representations (e.g. hierarchies of bounding boxes or
boundary representations [MGY∗19,SLM∗20,GLP∗22]) to be out-
side the scope of this report. Relatedly, neural approaches have
also been investigated that learn how to represent visual data in
a structure-aware fashion [CRW∗20]. While neurosymbolic repre-
sentations are always structured, not all structure-aware represen-
tations fall under our definition of a “symbolic program”.As such,
our framework does not capture some approaches that represent vi-
sual data as sequences of discrete codes [YLM∗22], or those that
simply combine primitives or [TSG∗17] learned parts [PKGF21].
In later sections, we discuss methods for visual reconstruction tasks
that use learning methods to produce symbolic representations that,
when executed, generate visual outputs that reconstruct the input
[TLS∗19, ENP∗19, ERSLT18, JWR22].

Beyond reconstruction, neural approaches have also proven use-
ful as generative models of computer graphics content. Deep gen-
erative models learn to represent the probability distribution over
an input domain X (e.g. a collection of visual data). This probabil-
ity distribution can then be sampled to synthesize novel instances
from X (e.g. new visual data). There are a multitude of deep gener-
ative modeling paradigms [BTLLW22, CHIS22], all with different
pros and cons: generative adversarial networks (GANs), variational
autoencoders (VAEs), normalizing flows, auto-regressive models,
and diffusion models. These deep generative models have been ap-
plied across many visual domains such as natural images [KLA21],
materials [GSH∗20], sketches [VPB∗22], scenes [WSCR18], vox-
els [WZX∗16], meshes [NGEB20], implicit shapes [CZ19], and

character motion [LZCvdP20]. As in the reconstruction context,
many of these approaches have been designed to produce visual
outputs directly, without any intermediate symbolic representation,
and thus are outside the scope of what our survey covers. Gener-
ative neurosymbolic models will often use one of the aforemen-
tioned learning paradigms, but will instead train this network to
synthesize novel symbolic representations that can be executed to
produce new visual outputs.

Finally, there has been growing interest centered around ap-
proaches that represent visual data neurally [XTS∗22]. In some
applications, a neural representation will be specialized to a par-
ticular datum. For instance, in Neural Radiance Fields (NeRFs),
a scene is represented by a neural network that learns a mapping
from spatial location and viewing direction input pairs to volume
density and emitted radiance output pairs [MST∗20]. Neural repre-
sentations can also generalize across a distribution of data. For in-
stance, a neural network can learn to map a point and a latent code
to an occupancy output prediction. This network can then train on
a large collection of shapes and compress each complex geometry
into a small latent code [DNJ20]. Most approaches that represent
visual data neurally fall outside the scope of our report, as they lack
any form of symbolic representation. However, as we discuss in
Section 3.2, some neurosymbolic models augment their symbolic
languages with learned neural primitives.

2.2. Procedural Modeling

Procedural modeling, or the use of symbolic programs to generate
visual data, is as old as computer graphics itself. Procedural ap-
proaches have been proposed for data at virtually every stage of
the graphics pipeline, but they have seen the most widespread use
in 3D geometry and texture modeling. As we discuss applications
of neurosymbolic models to these domains in Sections 6 and 7, re-
spectively, we review some relevant background material here. A
full treatment of the history of these fields is outside the scope of
this report.

Note that throughout this report, we use “procedural model” to
refer to a program in any symbolic programming paradigm which
generates visual data. In the programming languages literature, the
term “procedural programming” is sometimes used to denote a pro-
gramming paradigm in which a program is interpreted as a se-
quence of instructions to be executed; this is contrasted with other
programming paradigms, such as functional and declarative pro-
gramming. In this report, we refer to programs which provide se-
quences of instructions as “imperative programs,” to avoid over-
loading the word “procedural.”

Procedural geometry: The earliest application of procedural ge-
ometric modeling is to computer-aided design (CAD), dating back
to Ivan Sutherland’s SketchPad system [Edw63]. A CAD model
consists of a set of parameterized operations (possibly including
constraints); these parameters can be adjusted and the modeling
program re-executed to produce updated geometry. Constructive
solid geometry (CSG) is one such programming model for 3D ge-
ometry generation: sets of parametric primitives which are com-
bined via Boolean set operations (intersection, union, difference)
to create more complex shapes [Gha08]. By construction, CSG

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

547

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

Figure 2: Procedural modeling as applied to CAD: using feature-based modeling to produce solid geometry as a composition of operations
on 2D sketches extruded into boundary representations [WPL∗21].

programs produce watertight surface geometry that bounds a solid
object, making it well-suited for modeling objects for manufac-
turing. Boundary representations (or B-reps) are an alternative to
CSG for representing solid geometry [Str06]. A B-rep consists of
a set of connected surface patches (of any manifold shape) which
collectively form the boundary of a solid region. One can perform
Boolean operations on B-reps (as with CSG), but they also support
additional useful modeling operations, such as filleting or chamfer-
ing edges. They are also often authored by lifting 2D engineering
sketches into 3D via extrusion, revolution, or other operations (Fig-
ure 2). Taken together, this paradigm of solid modeling is typically
referred to as feature-based modeling [Hof89]; it is now the dom-
inant form of solid modeling adopted by industry-standard CAD
software [Das, Auta]. We survey neurosymbolic CAD modeling
work in Section 6. Some prior work seeks to infer B-reps from
“raw” input geometry such as point clouds [GLP∗22]; such in-
ference systems do not consider the higher-level CAD programs
which could produce such B-reps and thus fall outside the scope of
this report.

Context-free grammars are another popular paradigm for proce-
dural geometry generation. L-systems are a particularly prominent
example: context-free string rewriting systems whose output strings
are interpreted to produce geometry [PHHM96]. Their recursive
nature makes them well-suited for modeling naturally-occurring
fractal structures such as trees and other types of vegetation [PL96,
PJM94]. Other popular instantiations of context-free grammars in-
clude shape grammars: rewriting systems that operate directly on
geometry, typically by subdividing regions of space [SG71]. They
are widely used for regular, repeating structures, particularly those
occurring in architecture: buildings [MWH∗06], facades [MVG13],
and cities [Kel21]. The neurosymbolic modeling techniques we dis-
cuss later in this report are applicable to such grammars, because
they apply to programs in any language (of which context-free
grammars are a subset).

Since trees are common use case for procedural models: there
exists prior work on inferring tree models from unstructured inputs
(e.g. images or point clouds), much of which uses non-procedural

tree representations [FBA22,LGB∗21,LKK∗21]. Such work is out-
side the scope of this report.

Procedural textures: Procedural techniques have also been pop-
ular for creating textures, as they can create intricate details with
infinite spatial resolution. The foundation of most procedural tex-
turing systems is a library of primitive patterns, especially noise
functions such as Perlin noise [Per85] and Worley noise [Wor96].
More complex textures can then be created by systematically com-
posing these texture primitives via various mixing and blending
functions. This paradigm, first elucidated in the Shade Trees pa-
per [Coo84], has become widespread in commercial modeling and
rendering software, such as Maya’s Hypershade [Autb] and Sub-
stance Designer [Adoa]. We survey neurosymbolic modeling work
applied to material and texture authoring in Section 7.

2.3. Program Synthesis

Program synthesis is an important area of research in program-
ming languages that investigates methods for automatically gen-
erating programs that satisfy some high-level specifications. While
the dream of automating code generation can be traced back to the
birth of computer science, and the first paper that proposed a syn-
thesis algorithm dates from 1957 [BBB∗57], it was not until the
last couple of decades that the field saw great advances in what is
called inductive synthesis [SLTB∗06, ABJ∗13]. In inductive syn-
thesis, users give a (potentially partial) specification to describe the
desired intent, and search methods are used to explore the space
of possible programs generating one that satisfies the specifica-
tions. This involves (i) developing methods for specifying user in-
tent, (ii) defining a search space by restricting an existent language
or designing novel domain-specific languages, and (iii) developing
search algorithms to efficiently explore this space.

The field of program synthesis has advanced by proposing dif-
ferent interfaces for specifying intent, ranging from input-output
examples, demonstrations, natural languages, partial programs,
and assertions. Search algorithms include enumeration, constraint
solving, probabilistic search, and combinations thereof. The first

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

548

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

commercial application of program synthesis was FlashFill in
Excel 2013, which derives small programs from data manipu-
lation examples [Gul11]. Today, program synthesis is used in
many applications, and frameworks such as Sketch [SLTB∗06] and
Rosette [TB13] make it easy to develop synthesis tools for new lan-
guages. We refer the reader to [GPS∗17] for an overview of tradi-
tional synthesis techniques; we will discuss search algorithms rele-
vant to neural symbolic reasoning in further detail in Section 3.3.

In recent years, program synthesis techniques have also been ap-
plied in novel and exciting ways to solve problems in computer
graphics. These applications are inspired by procedural represen-
tations of shapes which transform modeling into a code gener-
ation task. Recent work includes reverse-engineering CAD pro-
grams from 3D shapes [DIP∗18,NWP∗18] and shape program ma-
nipulation [HLC19].

More recently, work in program rewrites has been used to
generate 3D CAD code that is more compact and easy to ma-
nipulate [NWA∗20]. They leverage a data structure called E-
graphs [NO80]. E-graphs are popular for code optimization, which
requires searching over a large number of programs that are syn-
tactically different but semantically equivalent. The key insight is
that programs are typically viewed as treelike structures containing
smaller sub-programs, many of which are shared across the differ-
ent semantically equivalent variations. The E-graph data structure
is capable of representing many equivalent programs efficiently by
sharing sub-programs whenever possible, and further supports op-
erations for extracting programs that have minimal cost. Please re-
fer to [WNW∗21] for a more comprehensive overview. While such
program optimization methods live at the boundary of program
synthesis and compilers, they are becoming increasingly popular
within computer graphics, for example, to optimize design and fab-
rication plans for carpentry [ZWZ∗21, WZN∗19].

Despite these advances, there are still fundamental challenges
in expanding the reasoning capabilities of synthesis techniques to
complex domains. This is because (i) the search space grows expo-
nentially with the size of the synthesized code and (ii) because in-
ferring intent from natural forms of human interaction is challeng-
ing [GSLT∗18]. Inspired by deep learning’s successes over search
and inference tasks, the programming languages community has
looked for ways to apply these ideas to enable automatic code gen-
eration; for instance, synthesizing complex code fragments from
natural language specifications [LCC∗22]. We refer the reader to a
recent survey on neurosymbolic programming [CEP∗21] for more
examples outside the domain of computer graphics.

We also note that some research has explored using neurosym-
bolic methods for computer graphics applications, but does not rep-
resent visual data with a neurosymbolic model. For example, recent
work uses neurosymbolic representations and search algorithms to
discover demosaic algorithms that trade-off performance and out-
put quality [MGA∗22]. This line of work, however, is concerned
with finding transformative programs (that take input data to out-
put data), instead of generative programs (that generate some visual
datum) and therefore falls outside the scope of our report.

3. A Design Space for Neurosymbolic Models

Thus far, we have described neurosymbolic models in broad terms:
symbolic programs augmented with machine learning. There are
many possible realizations of this core idea; in this section, we at-
tempt to organize these different instantiations into a formal de-
sign space. For our purposes, a design space is a set of design axes
along which the design of a system may vary, coupled with a set of
design choices for each axis. The design space we present in this
section was created to span a large set of neurosymbolic models
presented in prior research, which we will discuss later in this re-
port. Given its ability to fit such a broad range of work under its
umbrella, we believe that this design space should remain a use-
ful intellectual framework for the field of neurosymbolic modeling
as it progresses. In Section 8, we highlight some new, unexplored
points in this design space that may merit further investigation.

Figure 3 gives a diagrammatic overview of our design space, or-
ganized left to right according to the pipeline of stages followed
by typical neurosymbolic models. A neurosymbolic model takes as
input some specification of user intent (Section 3.1) and produces
programs (Section 3.3) which can then be executed (Section 3.4)
to produce visual data which satisfies the user intent. This output
visual data might then be further refined by a non-symbolic (e.g.
neural) postprocessing step (Section 3.5). To perform this task, the
model must also take as input a specification of the language in
which its output program should be expressed (Section 3.2); some
neurosymbolic models will make changes to this language as part
of their operation. Various stages of the model contain neural com-
ponents which much be learned in some way (Section 3.6).

Figure 3 uses specific colors to refer to different neurosymbolic
model stages, and it uses specific icons to refer to different design
choices. These colors and icons will be used throughout this report
to identify where in the design space different prior works fall. Fi-
nally, we note that some of the design choices identified here are
speculative, in that they are possible design choices but have not
yet been executed by any prior work of which we are aware. We
identify these design choices with an italic font.

3.1. Task Specification

The task that a neurosymbolic model should perform can be spec-
ified by its given inputs and the outputs it should produce. In gen-
eral, a neurosymbolic model will take some user input about the
kind of visual data the user would like the model to generate; it
will then provide as output one or more programs, which can be
executed to generate visual data which satisfies these inputs. The
model is also typically given a formal specification for the lan-
guage in which these output programs should be expressed (see
Section 3.2).

There are many ways for a user to specify their intent to a neu-
rosymbolic model. Potential user inputs include (but are not limited
to):

• Visual Target: A single visual datum (e.g. an image or a 3D
shape) to be reconstructed.

• Visual Examples: a collection of visual data whose distribu-
tion should be emulated.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

549

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

Task Spec (§ 3.1): Input

Visual Target

Visual Examples

Black-Box Generator

Text Prompt

Objective Functions

DSL (§ 3.2)

Paradigm:

Primitives:

Mutability:

Functional

Imperative

Constraint

Neural

Hard-Coded

Fixed

Preprocessed

Evolving

Invented

Program Synthesizer (§ 3.3)

Priors: ...

Search Alg:

Explicit Enumeration

Stochastic Search

Constraint Satisfaction

Neural Guidance

Task Spec (§ 3.1): Output

Deterministic Program

Probabilistic Program

Program Distribution

one program

Execution Engine (§ 3.4)

Direct

Solver

Learned Proxy

(optionally) updated DSL

Neural Refinement (§ 3.5)

Neural Refiner

Neural Guidance

Final visual output

End-to-end Training (§ 3.6)
Smooth Relaxation

Reinforcement Learning

Modular Training (§ 3.6)

or

? Domain TranslationSupervised Learning
Maximize Likelihood

of data from:
People

Bootstrapping

Database Retrieval

User-in-the-loop

Figure 3: The design space of neurosymbolic models. A neurosymbolic model takes as input a specification of user intent and a domain-
specific language (DSL), and it synthesizes programs that output visual data that satisfy the user intent. The visual output may then be further
refined in a non-symbolic, neural postprocess. Several approaches have been proposed for learning the various neural components of such
a model. Note: the icons and color scheme introduced in this figure are used throughout the report to identify where in this design space
different prior works fall.

• Black-Box Generator: an existing visual data generator
whose behavior should be emulated (e.g. a pretrained deep gen-
erative model of 3D shapes [LLHF21, WZX∗16, HLHF22]). We
are not aware of any existing work which implements this par-
ticular design choice.

• Text Prompt: a natural-language description of the type of
visual data to generate. We are not aware of any existing work
which implements this particular design choice.

• Objective Functions: functions which map a program’s vi-
sual output to a desirability score (e.g. the stability of a generated
3D shape under gravity [MBBO22]). We are not aware of any
existing work which implements this particular design choice.

As output, the neurosymbolic model could produce:

• Deterministic Program: a single program that returns the
same visual output each time it is executed. Such a program
could include continuous parameters that can be varied to pro-
duce a range of possible visual outputs. Many CAD programs
fall into this category [WPL∗21, WXZ21].

• Probabilistic Program: a single program that makes ran-
dom choices, producing a different visual output each time it
is executed (e.g. the type and position of wings on a space-
ship [RJT18]). As these random choices can affect both continu-
ous and structural elements, these programs can capture a wider
variety of visual inputs compared with Deterministic Programs.

• Program Distribution: a sampler for a distribution of differ-
ent programs. Sampled programs could have a range of different
structures, allowing this representation to capture an even wider
range of visual outputs than either of the two previous types. In
the works we will survey in this report, such samplers are usually
represented generative neural networks that output programs.

Additionally, the model may produce a new language in which its
output programs are expressed (if no such language was provided

as input, or if the input language was modified by the neurosym-
bolic model).

3.2. Domain-Specific Language (DSL)

The heart of a neurosymbolic model is the programs it produces; in
order to specify a program, one needs a language in which those
programs are to be expressed. Although it is in principle possi-
ble to use general-purpose programming languages such as C++
or Python, the standard practice is instead to use a domain-specific
language, or DSL: a language whose data types and operators are
specialized for a particular domain of interest (e.g. generating 3D
shapes) [Fow10]. Such languages allow useful programs in that do-
main to be expressed more concisely, which makes them both easier
to use and modify as well as easier for the neurosymbolic model to
produce (as the space of possible output programs is smaller).

For the purposes of neurosymbolic modeling, there are several
important design axes to consider when specifying a DSL:

Programming paradigm: A DSL can adopt any of the many pro-
gramming language paradigms. The work we survey in this report
includes examples of Functional languages (e.g. node-based
dataflow programs representing procedural materials [GHS∗22]),

Imperative programs (e.g. scalable vector graphics, SVG, files
describe sequence of drawing commands [CDAT20, RGLM21]),
and Constraint languages (e.g. CAD engineering sketch lan-
guages which specify constrained relationships between the geo-
metric attributes of different sketch elements [SZRA22, GBL∗21,
PBG∗21]).

Primitive types: One of the ways that a symbolic program can
be augmented with machine learning is to have learned Neu-
ral Primitives within the language—either primitive data types or

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

550

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

primitive functions. For example, a language for 3D shapes could
include a library of 3D parts, each of which is represented by a
learned neural field [DKD∗22]). If a DSL does not have such prim-
itives, we say that it uses Hard-coded Primitives only.

Mutability: The language given as input (if any) to a neurosym-
bolic model isn’t necessarily fixed; the model could choose to mod-
ify the language, if this allows the model to better explain the visual
data it is trying to produce. We classify a language’s mutability into
one of the following categories:

• Fixed: the language given as input remains unchanged.
• Preprocessed: the language given as input is modified by the

neurosymbolic model in a preprocessing step before the model
learns to produce programs (e.g. by finding common patterns in
some example programs and factoring them out into new proce-
dures [JCG∗21]).

• Evolving: the language given as input is continually modi-
fied by the neurosymbolic model as it learns to produce programs
(e.g. by discovering increasingly complex subroutines which
make it easier to produce more complex programs [EWN∗21]).

• Invented: no language is given as input; the neurosymbolic
model invents the entire language itself. The process of “invent-
ing” a language would involve proposing a set of primitive data
types and functions which combine those data types to parsimo-
niously represent visual data from a particular domain. We are
not aware of any existing work which implements this particu-
lar design choice. We briefly discuss potential future work ideas
along this direction in Section 8.

3.3. Program Synthesizer

Given a task specification and a domain-specific language (DSL),
the neurosymbolic model must produce generative programs that
satisfy the specification in that DSL. This problem is fundamen-
tally a search program: searching through the space of programs
expressible in the DSL to find satisfying ones. This is a challenging
search problem, and there are many possible strategies for solving
it. We can organize these strategies along the following design axes:

Program priors: In any nontrivially complex DSL, it is likely
there will exist multiple programs that satisfy the input specifica-
tion equally well. To disambiguate between them, we must ask our-
selves the question: what kind of programs would we prefer a pri-
ori? To the extent that this question has been considered by prior
work (in both neurosymbolic models for graphics and in the field of
program synthesis more generally), the answer has been to prefer
shorter/simpler programs (i.e. following Occam’s razor). This de-
sign axis could admit different/additional priors, however; we will
come back to this point in Section 8.

Search algorithm: The heart of a program synthesizer is the algo-
rithm it uses to search through the (typically vast) space of possible
programs. Prior work has used methods of the following types:

• Database Retrieval: the simplest form of program “synthe-
sis”: rather than generate a new program, retrieve one from a
database of existing programs. Some methods will then modify
the retrieved program, e.g. by tweaking its parameters to better
satisfy user goals.

• Explicit Enumeration: deterministic exploration of possi-
ble programs in the language. Enumeration can proceed either
in top-down or bottom-up fashion, i.e. whether the search starts
from the root or the leaves of the program’s abstract syntax
tree. This approach is typically only viable for finding short pro-
grams in relatively simple languages; additional techniques are
often required to make the search tractable in more complex set-
tings. The most common such approach is to restrict the search
space using some heuristic(s). Greedy search is the most extreme
form of restriction. Variants of beam search are also widely
used [Red76]. In top-down search, the branch and bound strat-
egy can be applied [Cla03]. A more recent class of techniques in-
volves compressing the search space by compactly representing
large classes of equivalent sub-programs; these representations
include version spaces [Mit77] and e-graphs [TSTL09].

• Stochastic Search: for languages with very large program
spaces where enumeration is not tractable, a randomized form
of search can be a viable alternative. These algorithms start with
some initial program(s) (which could be random programs from
the language or initialized using some heuristic) and then iter-
atively make random changes to the program(s) in the hopes
of improving them. Some of these algorithms maintain a sin-
gle candidate program: these include Markov Chain Monte Carlo
(MCMC) [AFDJ03] and simulated annealing [vLA87]. Other al-
gorithms maintain a set, or population, of programs; the random
changes the algorithm uses may involve reasoning about multi-
ple programs at once. Examples of such algorithms include Se-
quential Monte Carlo (SMC) [DDFG01] and genetic program-
ming [Koz92].

• Constraint Satisfaction: in some cases, it is possible to con-
vert the task specification into a set of constraints and treat the
problem as one of constraint satisfaction. One common approach
is to convert the spec into a Boolean satisfiability problem. If this
can be done without intractable blowup in the size of the prob-
lem, then efficient SAT solvers can be applied [VWM15]. If such
a conversion is not possible, it may be possible to convert the
spec into a first-order logic satisfiability problem, which permits
the use of SMT solvers [BT18].

• User-in-the-loop: rather than synthesize a program automat-
ically, involve a person to help the synthesizer make decisions
about what different parts of the output program should look like
(e.g. sparse user scribbles to guide the decomposition of a texture
image into multiple procedural components [HHD∗22]).

Finally, it is worth discussing the search algorithm’s termina-
tion conditions. The enumeration-based and constraint-based al-
gorithms will terminate once they have explored all possible pro-
grams; in practice, reaching this termination condition can require
an intractable amount of computing time. Furthermore, the stochas-
tic search algorithms have no natural termination condition: they
can, in principle, be run forever and may continue to produce better
programs. With the above in mind, most program synthesizers treat
their search algorithms as anytime algorithms, terminating and re-
turning the best program(s) found so far once some fixed compute
budget is exceeded.

Neural Guidance: Many of the search algorithms discussed
above have steps that can benefit from some form of heuristic guid-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

551

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

ance: beam search needs to rank the set of possible next search
states to explore; branch-and-bound needs to bound the possible
score of part of the search tree before deciding whether to ex-
pand it; stochastic search methods can use non-uniform distribu-
tions for their random changes. In prior work thus far, this is the
most common place for machine learning to come into play: learn-
ing a search guidance heuristic. This heuristic often takes the form
of “suggestions for what to add to the program next.” As such,
autoregressive language models are the most widely-used neural
guidance architectures, particularly transformers [BMR∗20]. Some
past work also uses pointer networks [VFJ15], so that the neu-
ral guide can suggest repetitions of prior parts of the program
(e.g. variable re-use). Various forms of graph convolution net-
works [GSR∗17, BHB∗18] have also been applied, though these
have largely fallen out of favor since the advent of transformers
and other attention-based models. For systems that “synthesize”
programs by retrieving them from a database, a learned deep fea-
ture space (where similarity search is performed) acts as a form of
neural guidance. Section 3.6 discusses how to train these guidance
networks.

We note that some models in prior work perform program syn-
thesis via a single forward pass of such a guide network, i.e. there
“is no search” being performed. In our categorization of prior work,
we label such models as either using Explicit Enumeration
with neural guidance if the network takes the argmax over discrete
program choices (i.e. beam search with a beam width of one) or

Stochastic Search with neural guidance if it randomly samples
them (i.e. Sequential Monte Carlo with a single particle).

3.4. Execution Engine

When the neurosymbolic model has produced a program, its job is
not yet finished—the program must then be executed to produce a
visual output. The process of executing a program can take different
forms:

• Direct: the program is linearized and its operations executed
in sequential order. This type of execution is most common; it
corresponds to the execution model used by most (non-parallel)
general-purpose programming languages (whether interpreted or
compiled).

• Solver: in some languages, executing the program requires
solving a search, optimization, or constraint-satisfaction prob-
lem. We think it worthwhile to assign such execution engines a
distinct point in the neurosymbolic model design space for two
reasons. First, using them can make the neural components of
the model harder to learn, if learning requires computing gradi-
ents w.r.t. the execution engine (see Section 3.6). Second, just as
search during program synthesis presents opportunities for neu-
ral guidance, so too does search during program execution.

• Learned Proxy: instead of a hardcoded execution engine
(either direct or solver-based), one may instead opt to learn a
mapping between program text and program output. As with any
learned function, such an executor can only be approximately
correct; however, it can have advantages for learning the other
neural components of a neurosymbolic model (see Section 3.6).

3.5. Optional Neural Postprocessing

There is one final place in a neurosymbolic model where learn-
ing can come into play: applying learned postprocessing to the vi-
sual data output by a synthesized program. Such a step can help
close the “reality gap” between procedurally-generated data and
data which is acquired from the world via sensors (as the former is
almost always “cleaner” than the latter).

3.6. Learning Algorithm

At this point, we have completed our tour through the pipeline of a
neurosymbolic model: from input specification to final visual out-
puts. However, there is still one critical design axis to discuss; one
that touches multiple parts of the neurosymbolic model: how are its
learnable components trained?

End-to-end (Unsupervised) Training: The most obvious ap-
proach is to train all the neural components of the model at once
by backpropagating the final task loss function through the entire
model. This is desirable because it is conceptually simple and does
not require any ground-truth supervision for intermediate steps in
the pipeline—most notably, no pairs of (input space, ground-truth
program) need be provided. As part of this process, loss gradi-
ents must be backpropagated through every choice the synthesizer
guide network makes in constructing the program. If those choices
represent continuous values in the program, then this backpropa-
gation is well-defined. However, programs also typically exhibit
complex structure dictated by discrete choices (e.g. branching de-
cisions, types of primitives to use). Gradients through such discrete
choices are not well-defined. There are at least two approaches to
work around this conundrum:

• Smooth Relaxation: defining a continuous relaxation of
discrete structural program choices, so that a single program
can smoothly blend between different discrete structures. This
strategy also requires the design of a program executor which
can produce a correspondingly (and semantically meaningful)
smoothed output in the program’s output domain. Designing
such relaxations (and their executors) is challenging, time-
consuming, and domain-specific: the creation of a new relaxation
typically warrants a research publication [KZK20, RZC∗21].
Some methods use end-to-end differentiable learning to train
only the continuous parts of their model; for simplicity, we also
group such methods under this category.

• Reinforcement Learning: specifically, policy gradient
RL with a score function gradient estimator (e.g. REIN-
FORCE [Wil92] or PPO [SWD∗17]). These algorithms stochas-
tically estimate gradients and do not require any part of the
model to be differentiable (aside from the neural networks
themselves). While unbiased, these gradient estimates can have
extremely high variance, resulting in training that converges
slowly, to a poor local optimum, or not at all.

It is worth noting that using a solver-based executor in end-to-end
training requires running an iterative solver loop within the outer
iterative optimization loop of neurosymbolic model training, which
will be slow, not to mention likely not (easily) differentiable. Thus,
it is usually best to use a learned proxy executor instead, whenever

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

552

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

the approximation error from doing so is acceptable. On a related
note: in the end-to-end learning paradigm, a learned proxy executor
may be incompatible with having neural primitives in the program
(as gradients may never propagate through the actual executor in
order to train the neural primitives).

Modular Training: The alternative to end-to-end training is to
train different stages of the neurosymbolic model separately. This
often, but not always, necessitates supervision in the form of
ground-truth outputs for the stage of the model being trained. For
some stages, this supervision is easier to come by than others (e.g.
a “ground-truth program” for a given input spec may be difficult
to obtain). In the remaining paragraphs in this section, we describe
how modular training can be applied to different stages of the neu-
rosymbolic modeling pipeline from Figure 3:

Modular training for a program synthesizer guidance network:
If one can produce paired (task spec, program) data, then this net-
work can be trained to maximize the likelihood of that data. There
are several ways such data could be obtained/constructed:

• People: in the best-case scenario, one has access to a cu-
rated set of programs written by people to satisfy a particular
task specification. Such data is rare, but examples do exist; see
Section 4.

• Synthetic Programs: in the absence of “ground-truth” pro-
grams created by people, one can instead write a procedure to
create a variety of synthetic programs along with task specs that
they satisfy. Such a procedure could be as simple as sampling
random derivations from the DSL grammar, or it could make use
of domain knowledge. Models trained on such data typically do
not generalize well to actual task specs of interest, so they are
usually only used to provide an initialization for another learn-
ing method.

• Bootstrapping: starting from a model pretrained on syn-
thetic data, some algorithms can improve the model by it-
eratively training on variations of the model’s own predic-
tions [JWR22].

Alternatively, the Smooth Relaxation or Reinforcement
Learning approaches can be used here (typically also initialized
with maximum likelihood pretraining on synthetic data).

Modular training for a learned proxy execution engine or a
solver guidance network: Both types of networks can be trained
using supervised learning on (program, program output) pairs. As
with training a synthesizer guidance network, such data can be ob-
tained by by creating and executing synthetic programs; however,
networks trained on such data may not generalize to “real” data
presented to the model at inference time.

Modular training for a neural refinement network: Refining the
output of a procedural modeling program can be phrased as a type
of domain translation problem: transforming the output of the pro-
gram from the “looks procedurally-generated” appearance domain
to the “looks realistic” appearance domain. Since one typically
does not have access to paired (procedural, real) data, unpaired do-
main translation approaches are useful here [ZPIE17, SWB21].

Modular training for neural language primitives: We are un-
aware of any existing work which learns neural language primi-
tives using a modular training paradigm. If one could obtain (input,

output) example pairs for the part of the program’s execution that
a neural primitive should perform, then such a primitive could be
trained with supervised learning. It is less clear how to learn neu-
ral primitives in the absence of such data (i.e. when only the entire
program’s desired output is available as a training signal) within a
modular training regime; this remains an open problem for future
work.

4. Datasets for Neurosymbolic Modeling

Several neurosymbolic methods that we discuss in this paper re-
quire some form of supervision. For some of the methods, a tradi-
tional dataset such as a set of 3D shapes or 2D images is sufficient.
Other methods, however, require more structured data as supervi-
sion that is more amenable to neurosymbolic modeling. Here, we
give an overview of datasets that provide a more symbolic represen-
tation of the data, for example in the form of a program or a high-
level structure. Examples of several of these datasets are shown in
Figure 4.

2D Shapes: Several datasets provide higher-level descriptions of
2D shapes, such as their composition from parametric primitives,
or the set of strokes that were used to create a sketch. CAD pro-
grams are a possible source for this type of data. They typically
provide an interface for authoring 2D engineering sketches. These
sketches are represented by parametric primitives, such as circles,
lines, and arcs, and spatial relationships between primitives, such
as adjacency or tangency. Two datasets provide 2D sketches from
CAD programs. SketchGraphs [SOZA20] provides 15 million 2D
sketches from OnShape [PTC]; however, it is known to contain a
significant amount of duplication in the data samples. The CAD as
Language dataset [GBL∗21] contains roughly 4.5 million sketches,
also scraped from OnShape, and tries to address some of these is-
sues. Wong et al. [WMG∗22] introduce two procedurally generated
datasets of 2D drawings. The first contains 1k drawings from cat-
egories such as furniture, vehicles, and gadgets, each consisting of
simple primitives like lines and curves. The second dataset contains
1k sketches of simple 2D buildings such as towers, bridges, and
houses composed of blue and red blocks. Several datasets provide
high-level information about strokes in sketches, in the form of vec-
torized strokes and the order in which they were drawn. The Om-
niGlot dataset [LST15, LST19] contains 1.6k handwritten charac-
ters from 50 different alphabets, each drawn by 20 different people.
The Quick, Draw! [HE17, Qui] dataset contains 50 million draw-
ings across 345 categories. Scalable Vector Graphics (SVG) is a
popular format for vector graphic content and can be seen as a sim-
ple programming language to generate parametric shapes. Several
datasets provide 2D shapes in this format. DeepSVG [CDAT20]
introduced the SVG-Icons8 dataset, which consists of 100k icons
obtained from the Icons8 [Ico] website. The icons depict vari-
ous categories of objects, such as beds, bicycles, and cups. SVG-
Fonts [LHES19] provides 14 million vectorized characters in dif-
ferent fonts.

3D Shapes: Three datasets provide higher-level structural infor-
mation for 3D shapes, in addition to meshes. PartNet [MZC∗19] is
a dataset that provides 26k synthetic 3D shapes across several cat-
egories of manufactured objects typically found in interior scenes,

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

553

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

PartNet Fusion 360 GalleryABC

Substance SourceSketchGraphsSVG-Icons8

3D Shapes

2D Shapes Materials and Textures

Figure 4: Examples of datasets that provide structured data that is more amenable to neurosymbolic models. We show examples of datasets
for 2D shapes, 3D shapes, and materials. All datasets provide some form of structural information, such as part decompositions, construction
sequences, or geometric relationships between parts.

such as chairs, tables, and lamps. These shapes originate from the
ShapeNet [CFG∗15] dataset, and PartNet additionally provides a
hierarchical decomposition of each shape into its constituent parts.
For example, a chair could be first decomposed into backrest, seat,
and base parts, which could be further decomposed into smaller
constituent parts. This decomposition is consistent across all shapes
of a category. The ABC dataset [KMJ∗19] contains a set of one mil-
lion mechanical parts and assemblies that were created with the On-
Shape [PTC] CAD modeling software. In addition to the meshes,
the ABC dataset provides the parametric boundary curves and sur-
faces that were used to author each shape. The Fusion 360 Gallery
dataset [WPL∗21, WJC∗22] is based on 20k designs created with
the Autodesk Fusion 360 CAD modelling software [Auta]. In ad-
dition to meshes, several different types of high-level informa-
tion are provided, including a hierarchical decomposition into sub-
assemblies, joints between parts, holes, contact surfaces, ‘sketch
and extrude’ construction sequences of some designs, and a seg-
mentation of each shape into the modeling operations used to create
each part of the surface.

Materials and Textures: Procedural materials used in practice
are typically defined as node graphs, which are visual representa-
tions of functional programs. Several recent neurosymbolic meth-
ods have experimented with synthesizing these node graphs. Three
main data sources are available, only two of which are public. Sub-
stance Source [Ado21b] is a dataset of roughly 7k node graphs

that were generated by professional material artists. It was used
as the training set by MatFormer [GHS∗22], but is not publicly
available. A public alternative is the Substance 3D Community As-
sets [Ado21a], which is a website containing publicly available
node graphs created by users of Substance 3D Designer [Adob].
However, the graphs on this website have not been assembled into
a dataset yet. Nvidia vMaterials [Nvi22] is a dataset of over 800
realistic materials that also provide node graphs.

5. Application: 2D Shapes

From freeform sketches of ideas, to detailed technical drawings, 2D
shapes are a building block of human communication. Augmenting
peoples’ ability to communicate and express concepts is at the heart
of research in neurosymbolic 2D shape creation. 2D shapes can also
play a foundational role in the creation of 3D shapes, as discussed
in Section 6. In this section, we review the application areas of
layout generation, engineering sketch generation, vector graphics
generation, and inverse 2D graphics. Table 2 situations each prior
work we discuss within our design space.

5.1. Layout Generation

The problem of layout generation arises in a number of domains,
including graphic design layout, floor plan synthesis, and furniture
layout. Common across these domains is the spatial and topolog-
ical arrangement of layout primitives (potentially to meet a set of

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

554

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

Task Spec DSL Synthesizer Execution Refinement Learning

Method Input Output Paradigm Primitives Mutability Search Guidance End-to-end Modular

Para et al. [PGK∗21]
PlanIT [WLW∗19]
CurveGen [WJL∗21]
SketchGen [PBG∗21]
CAD as Language [GBL∗21]
Vitruvion [SZRA22]
SkexGen [XWL∗22]
SVG-VAE [LHES19]
DeepSVG [CDAT20]
Im2Vec [RGLM21]
DeepVecFont [WL21]
Ellis et al. [ERSLT18]
Guo et al. [GJB∗20]
Ellis et al. [ENP∗19]
SPIRAL [GKB∗18]
DreamCoder [EWN∗21]
Yang et al. [YP22a]

Neural Visual Target Visual Examples Deterministic Program Probabilistic Program Program Distribution Functional
Imperative Constraint Hard-coded Primitives Fixed Preprocessed Evolving Database Retrieval
Explicit Enumeration Stochastic Search Constraint Satisfaction User-in-the-loop Direct Solver Learned Proxy
Smooth Relaxation Reinforcement Learning Programs from People Synthetic Programs Boostrapping

Table 2: A summary of the work on neurosymbolic 2D shape modeling discussed in Section 5, where each approach is situated in our design
space.

Figure 5: Neurosymbolic layout generation via learning to syn-
thesize layout constraint programs. Left: A graph neural net-
work synthesizes a constraint graph specifying furniture spatial
relationships; a neurally-guided search then finds object place-
ments that satisfy those constraints [WLW∗19]. Right: A trans-
former + pointer network architecture synthesizes a floor plan lay-
out constraint program, which is then solved to produce a floor
plan [PGK∗21].

constraints). In floor plan synthesis, for example, an adjacency con-
straint may dictate that the master bedroom reside next to an en
suite bathroom, forming a spatial and topological relationship be-
tween the two rooms. A significant amount of research related to
layout generation exists; here, we cover only select works that fall
under the neurosymbolic modeling umbrella.

Floor plan synthesis involves the generation of realistic floor
plans to meet a series of architectural constraints. Para et
al. [PGK∗21] introduce a neurosymbolic approach for this task.
First, a transformer network is used to generate constraints on the
parameters of layout elements (e.g. room type and width/height
ranges); second, relationship constraints (e.g. door or wall edges)
are generated between elements using pointer networks. These con-
straints together make up a constraint program which is then exe-
cuted (i.e. solved) to generate a spatial layout consistent with the
constraints (Figure 5 right). The goal of furniture layout, or more
generally scene generation, is to position objects (e.g. furniture)
in a scene (e.g. an empty bedroom with a given shape) in a re-
alistic manner. PlanIT [WLW∗19] divides the problem into a plan-

Figure 6: Engineering sketches form the 2D basis of parametric
CAD. Geometric primitives, such as circles and lines (left), are rep-
resented as nodes in the first column. Sketch constraints are applied
to the geometric primitives and represented as nodes in the second
column. The third column lists the constraint types in order of fre-
quency. The order of nodes (top to bottom) follows the generation
order of the learned model from Ganin et al. [GBL∗21].

ning phase and an instantiation phase. In the planning phase, a deep
graph convolutional generative model is used to synthesize relation
graphs which form a constraint program: nodes indicate objects
to be placed in the scenes, and edges indicate spatial relationship
constraints between them. In the synthesis phase, a backtracking
search is used to find placements for the objects implied by the
graph nodes. This search is guided by a convolutional network that
operates on top-down views of the partial scene (Figure 5 left).

5.2. Engineering Sketch Generation

Software for the creation of 2D engineering sketches dates back to
the very first CAD system [Edw63]. Engineering sketches form the
2D basis of parametric CAD, the foremost 3D modeling paradigm
used to design manufactured objects from automobile parts, to
electronic devices, to furniture. Engineering sketches (as shown

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

555

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

Figure 7: The Im2Vec system learns a neural network that can
reconstruct, synthesize, and interpolate between vector graphics
programs [RGLM21]. It uses an end-to-end training setup with
a differentiable vector graphics rasterizer, avoiding the need for
ground-truth SVG programs as training data.

in Figure 6) consist of composite curves made up of 2D geo-
metric primitives (e.g. lines, arcs, circles), topological information
about how these primitives connect together, and constraints de-
fined using topology (e.g. coincidence, tangency, symmetry). Es-
sentially, an engineering sketch is a program: given a change to
its parameters, the program can be re-executed to produce new
2D geometry (which satisfies any constraints). The ability to gen-
erate high-quality engineering sketches is an enabling technol-
ogy for the automatic generation of parametric CAD files suit-
able for manufacturing. The availability of large-scale engineer-
ing sketch datasets (see Section 4) has enabled learning-based ap-
proaches to engineering sketch generation. A number of concurrent
works [WJL∗21,PBG∗21,GBL∗21,SZRA22] approach the task of
engineering sketch generation by treating the sketch as a sequen-
tial language that can be modeled using Transformers, either with
or without constraints. Providing control over the generation of en-
gineering sketches is another outstanding challenge, as designers
need ways to influence the generated shape. One approach is to
condition the network on user-provided images [GBL∗21] or hand-
drawn sketches [SZRA22]. Another approach, introduced by Skex-
Gen [XWL∗22], is the use of codebooks [RVdOV19] to separate
control of sketch geometry and topology into learned codes that
can be selected to guide the generation of topologically or geomet-
rically similar shapes. Yang et al. [YP22b] learn modular ‘concepts’
from engineering sketch graphs to capture repetitive design patterns
and aid with image-conditioned generation and auto-completion
tasks. Transformer-based generation approaches have several lim-
itations. Spatial resolution is currently limited and addressed by
using quantized vertex positions on a 8 bit grid or smaller. Higher
spatial resolution allows more accurate sketches to be generated but
vastly increases the size of the prediction space. Another limita-
tion, due to the well known issue of modeling long sequences with
Transformers, is generating complex sketches with higher numbers
of curves.

5.3. Vector Graphics Generation

Adjacent to engineering sketches is the domain of vector graph-
ics, which also makes use of 2D geometric primitives, such as
lines and Bézier curves, to represent scalable graphical artwork. An
SVG file is essentially a simple program, which uses compositions
of parametrized functions (e.g. moveTo, lineTo, cubicBezier) to
produce geometry. SVG-VAE [LHES19] was one of the first deep

Figure 8: Example learned library routines using Dream-
Coder [EWN∗21] on a LOGO graphics task. The learned rou-
tines include both parametric routines for drawing families of
curves (left) as well as higher-order functions that take entire sub-
programs as input (right).

learning-based approaches to generate vector graphics using an
LSTM-based VAE trained on font characters. DeepSVG [CDAT20]
demonstrated both font character and icon generation using a non-
autoregressive Transformer-based architecture. Although promis-
ing, both works produce results lacking the regularities found in
human-designed vector graphics, such as symmetric, concentric, or
tangent curves. To address this limitation, recent work has lever-
aged alternate representations to sequences of vector graphic prim-
itives. DeepVecFont [WL21] uses a hybrid raster/vector represen-
tation where the raster graphic is used as a supervision signal to
improve the vector program output. This approach combines the
benefits of learning human-designed curve topology from vector
supervision (i.e. how curves are connected together) and curve ge-
ometry from raster supervision (i.e. the location of the curves). As
vector graphics do not conform well to a grid structure, like engi-
neering sketches do, higher spatial resolution is required. The geo-
metric loss provided by raster supervision appears to be critical at
this time to get good visual results.

5.4. Inverse 2D Graphics

In addition to the generation of graphics, the inverse problem of
recovering a 2D shape program from approximate input, such as
an image or hand-drawn sketch, has been studied in recent litera-
ture. Ellis et al. [ERSLT18] introduce an approach to convert sim-
ple hand drawings into a program representation that captures the
regularities commonly found in human design, such as symme-
try, repetition, and structural reuse. This approach uses neurally-
guided search to extract primitive graphical elements from the input
sketch, followed by constraint-based program synthesis to find a
program that generates those primitives. Guo et al. [GJB∗20] show
how neural guidance can be used to learn an L-system represen-
tation of pixel images with branching structures, as found in trees
and other natural patterns. Ellis et al. [ENP∗19] use reinforcement
learning to synthesize simple 2D CAD programs that reproduce an
input shape; similarly, SPIRAL [GKB∗18] uses RL and adversarial
learning to synthesize simple painting programs that reproduce an
input image. Im2Vec [RGLM21], shown in Figure 7, uses a differ-
entiable rasterization pipeline and reconstruction loss between the
input image and the rasterized generated vector graphic. Dream-
Coder [EWN∗21], shown in Figure 8, can infer a LOGO graphics

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

556

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

program for a target shape. It interleaves learning to infer programs
via neurally guided search with learning new abstractions (i.e. sub-
routines) for its drawing language, which then makes it easier to
infer programs for more complex targets. DreamCoder’s discov-
ered abstractions capture complex concepts, produceing primitive
shapes such as semi-circles and polygons, as well as regularities
such as radial symmetry (Figure 8).

6. Application: 3D Shapes

The demand for 3D models has never been higher. Applications
from within entertainment & gaming systems, to augmented & vir-
tual reality, and even those in vision & robotics, all desire access to
high-quality 3D objects. Stakeholders in these areas are often not
content with unstructured assets: their applications need shapes that
are interactive & editable, yet cover a wide range of outputs while
maintaining high fidelity. Neurosymbolic methods for 3D shapes
have been explored with these criteria in mind. Table 3 situates
each prior work we discuss within our design space.

6.1. Inferring 3D Shape Programs

Many methods have investigated how to infer the underlying struc-
ture of a 3D object. For instance, if one is able to find a program
that is a good representation of an input shape, then the program
structure can be used to analyze or manipulate the underlying 3D
object. This is a sub-problem of program synthesis, where the input
specification is a visual representation of a 3D object, which the in-
ferred program’s output must geometrically match. This problem is
also sometimes referred to as visual program induction.

Within this area, a general approach is to linearize programs into
sequences of tokens. Then a program inference network can be
trained to autoregressively generate program tokens, conditioned
on visual data. In Fusion 360 Gallery [WPL∗21], a model learns
to represent 3D shapes as sequences of sketch and extrude CAD
operations by training in a supervised fashion on human-written
programs. While supervised learning is the preferred strategy when
program datasets are available, many domain+language combina-
tions lack such information. When a program dataset is not avail-
able, approaches have investigated how to use reinforcement learn-
ing to reconstruct 3D shapes as sequences of commands.

CSGNet [SGL∗18] uses beam search guided by an auto-
regressive inference network to find CSG programs that achieve
a low-reconstruction error with respect to the input. The param-
eters of these programs can be further improved with a heuristic
refinement step. Ellis et al. [ENP∗19] employ a Sequential Monte
Carlo search guided by a policy network that synthesizes code and
a value network that learns to assess the prospects of partial pro-
grams. They equip this search with access to a REPL (read-eval-
print-loop), framing program search as a Markov Decision Process
(MDP) where each network reasons over a state represented by
the executed output of partially constructed programs. While policy
gradient reinforcement learning offers a domain-agnostic solution
that does not depend on a dataset of ground-truth programs, it is no-
toriously unstable, due to high variance gradients, which can hurt
its convergence speed and performance.

To deal with more complex DSLs for 3D shapes,

Figure 9: (Top) Shape2Prog [TLS∗19] learns how to infer visual
programs that capture the structure of input shapes. The program
generator is trained in an end-to-end fashion with a learned proxy
executor. (Bottom) ProGRIP [DKD∗22] improves the reconstruc-
tion fidelity of this approach by replacing hard-coded primitives
with learned neural implicits.

Figure 10: Free2CAD [LPBM22] parses freehand drawings into
visual programs. The program is built up through an iterative pro-
cedure that alternates between (i) grouping related sketch strokes
and (ii) searching for CAD operations that correspond to the seg-
mented group.

PLAD [JWR22] introduced a self-supervised learning method
that fine-tunes an inference model for a target domain of interest.
This bootstrapping approach maintains domain-generality, while
avoiding the pitfalls of policy-gradient RL by training with
maximum likelihood updates on approximately correct (shape,
program) pairs. Alternatively, some methods have explored learn-
ing a network that acts as a differentiable relaxation of a program
executor: allowing the system to train in an end-to-end fashion
with respect to a geometric loss. Shape2Prog [TLS∗19] uses a
network that learns from synthetic data to act as a differentiable
proxy for their execution engine (Figure 9, Top). This approach has
been recently extended in ProGRIP [DKD∗22] (Figure 9, Bottom).
ProGRIP replaces the hard-coded primitives used by Shape2Prog
with learned neural primitives, which also removes the need to
pretrain any proxy network with hand-crafted synthetic data.

Some prior work has developed shape program inference ap-
proaches specially tailored for their particular domain. When in-
ferring a 3D CAD model conditioned on an input sketch, a net-
work’s noisy predictions can be regularized by mapping them
to symbolic CAD operations with a fitting procedure. In the
Sketch2CAD framework [LPBM20], a network is trained to predict
CAD operations that correspond with segmented sketch strokes.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

557

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

Task Spec DSL Synthesizer Execution Refinement Learning

Method Input Output Paradigm Primitives Mutability Search Guidance End-to-end Modular

Fusion 360 Gallery [WPL∗21]
CSGNet [SGL∗18]
Ellis et al. [ENP∗19]
PLAD [JWR22]
Shape2Prog [TLS∗19]
ProGRIP [DKD∗22]
Sketch2CAD [LPBM20]
Free2CAD [LPBM22]
Zone Graphs [XPC∗21]
Lambourne et al. [LWJ∗22]
Point2Cyl [UyCS∗22]
CSG-Stump [RZC∗21]
CAPRI-Net [YCL∗22]
ExtrudeNet [RZC∗22]
UCSGNet [KZK20]
DeepCAD [WXZ21]
SkexGen [XWL∗22]
ShapeAssembly [JBX∗20]
ShapeMOD [JCG∗21]
Ritchie et al. [RJT18] *

Neural Visual Target Visual Examples Deterministic Program Probabilistic Program Program Distribution Functional
Imperative Constraint Hard-coded Primitives Fixed Preprocessed Evolving Database Retrieval
Explicit Enumeration Stochastic Search Constraint Satisfaction User-in-the-loop Direct Solver Learned Proxy
Smooth Relaxation Reinforcement Learning Programs from People Synthetic Programs Boostrapping

Table 3: A summary of the work on neurosymbolic 3D shape modeling discussed in Section 6, where each approach is situated in our design
space. * Ritchie et al. [RJT18] use supervised training for their neural language primitives.

Figure 11: CAPRI-Net [YCL∗22] infers a CSG program that reconstructs an input shape. Its neural architecture acts as a CSG execution
engine, which limits the types of program structures that it can discover but allows the system to train in an end-to-end fashion.

Free2CAD [LPBM22] generalizes this system by additionally
learning how to segment a complete sketch into groups that can
be mapped to CAD operations (Figure 10) . As the search space of
methods that aim to reverse-engineer CAD models can be expan-
sive, some approaches have investigated heuristics that make the
problem more tractable. Zone Graphs [XPC∗21] converts a bound-
ary representation of a 3D Shape into a partition of zones. While
this partitioning permits the use of enumerative search strategies,
further guiding this search with a neural module results in improved
programs. These domain-specific methods perform well for their
respective applications, but they rely on heuristics and design prin-
ciples that do not readily generalize to other domains.

A central difficulty of neurosymbolic models is that gradients
cannot flow through symbolic elements, complicating end-to-end
learning. A workaround for this issue is to train a system where
symbolic DSL components are replaced with differentiable prox-
ies. Then at inference time, these proxies can be replaced by DSL
expressions with similar outputs. In Lambourne et al. [LWJ∗22],
a network learns to reconstruct a target shape with a collection of
differentiable extrusions learned from human-written programs. At
inference time, these extrusions are replaced with observed profiles
from an input collection, resulting in a complete sequence of CAD

operations that reconstruct the input. In Point2Cyl [UyCS∗22], a
network learns to represent a shape by combining differentiable ex-
trusion proxies with boolean operations. These proxies can then be
converted into extrusion cylinders through differentiable, closed-
form formulations in order to produce an editable CAD model. This
scheme of relaxation with replacement allows for end-to-end learn-
ing with high-fidelity outputs but often requires clever insights for
both architecture construction and the replacement scheme that are
domain-specific.

Pushing this trend further, some methods learn how to infer 3D
shape programs in a purely end-to-end fashion, by designing neu-
ral architectures that act as a smooth relaxation of a DSL execu-
tor. Some languages are more amenable to this approach than oth-
ers. For instance in CSG, primitives are easily differentiable, and
hard boolean set operations can be replaced with soft versions. The
neural architecture used often places restrictive constraints on the
structures of programs that can be found with these approaches. We
depict the architecture of one such method, CAPRI-Net [YCL∗22]
in Figure 11. In their formulation primitives are converted into con-
vexes through intersection, left and right shapes are created by
unioning convexes, and the final output is the difference between
the left shape and right shape. In CSG-Stump [RZC∗21], the out-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

558

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

Figure 12: SkexGen [XWL∗22] represents 3D shapes as sequences
of sketch-and-extrude operations, where the tokens of different op-
erator types are produced by disentangled codebooks. A Trans-
former learns over a distribution of shapes encoded in this rep-
resentation, and is able to synthesize novel 3D geometry through
auto-regressive sampling.

put CSG program is a union over intersections of either primitives
or complements of primitives. ExtrudeNet [RZC∗22] extends upon
the CAPRI-Net architecture by replacing quadric primitives with
extruded 2D sketches, while maintaining end-to-end differentia-
bility. UCSGNet [KZK20] explores a higher diversity of program
structures, by evaluating many boolean operations in parallel, but
this comes at the cost of more complex programs with worse re-
construction performance. For domains that permit baking pro-
gram execution behavior into a neural architecture, such methods
typically achieve the best geometric reconstruction performance.
The limitation of these approaches is that each architecture is in-
herently tied to a specific domain, and even within a domain, the
class of programs producible by the neural network is typically
constrained.

6.2. 3D Shape Generation

A number of techniques have also explored how neurosymbolic
models can be used to generate novel 3D shape instances. When a
dataset of ground-truth (i.e. human-written) shape programs exists,
deep generative modeling techniques can be directly employed.
DeepCAD [WXZ21], trains a transformer-based autoencoder to
auto-regressively generate sequences of sketch and extrude com-
mands conditioned on the input vector. Novel shapes are then syn-
thesized by prompting the decoder with new conditioning vectors
output by a latent GAN. SkexGen [XWL∗22] improves upon this
paradigm by designing an architecture where sub-networks are spe-
cialized for particular types of CAD operations (Figure 12) . Specif-
ically, a "Sketch" branch reasons about 2D sketches (tokens related
to their topology and geometry), while an "Extrude" branch pre-
dicts how sketches should be lifted into 3D (tokens related to an
extrusion direction).

When human-written programs are not available, an alternative
approach is to heuristically parse programs from dataset of 3D
shapes with structured annotations. ShapeAssembly [JBX∗20], in-
troduced a new DSL designed for specifying the part structure of

Figure 13: ShapeMOD [JCG∗21] takes a collection of 3D shape
programs as input and makes them more compact by automatically
discovering common macros which can be re-used across the col-
lection. Programs rewritten with these macros can benefit down-
stream applications such as generative modeling.

manufactured 3D objects. A hierarchical sequence VAE learns to
write new ShapeAssembly programs after training over a dataset
of programs parsed from PartNet shapes. One issue with pars-
ing programs directly from shape repositories is that the result-
ing programs might be overly complex. The ShapeMOD algo-
rithm [JCG∗21], addresses this issue by automatically discovering
macro operations that abstract out common structural and paramet-
ric patterns over a collection of shape programs (Figure 13). Deep
generative models can then benefit from training over program dis-
tributions that are rewritten to use macro operations.

Related to the problem of learning a generative model over a
program dataset, Ritchie et al. [RJT18] developed a procedure for
inferring probabilistic programs that explain a small set of exam-
ple shapes. As inferring probabilistic programs is very difficult, the
method makes a number of simplifying assumptions: it requires
that the input shapes have a consistent hierarchical organization
of parts and it produces programs that are similar to context-free
grammars. Under these assumptions, the method demonstrates the
power of this representation: the inferred probabilistic programs
capture both hierarchical structure and continuous relationships of
parts present in modular inputs, where part transform distributions
are parameterized by a learned network. This allows new objects in
the style of the exemplars to be synthesized by sampling from the
distributions captured by the probabilistic program.

7. Application: Materials & Textures

Procedural workflows have gained increased popularity in the ma-
terial and texture design community over the last few years, driven
by modern authoring tools [Adob, Sid, Ble]. Materials are a good
fit for procedural workflows, due to the presence of repeated struc-
tures and self-similarity, typically with some stochastic variations
between the repetitions. Figure 4 bottom-right, shows some exam-
ples of procedurally generated materials. Procedural workflows of-
fer several benefits to material artists, such as (i) a non-destructive
workflow, where any operation can be changed at any point in
the authoring process, (ii) the ability to quickly create variations

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

559

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

Task Spec DSL Synthesizer Execution Refinement Learning

Method Input Output Paradigm Primitives Mutability Search Guidance End-to-end Modular

Liu et al. [LGD∗18]
Hu et al. [HDR19]
Tchapmi et al. [TRT∗22]
MATch [SLH∗20]
Differentiable Proxies [HGH∗22]
Hu et al. [HHD∗22]
MatFormer [GHS∗22]

Neural Visual Target Visual Examples Deterministic Program Probabilistic Program Program Distribution Functional
Imperative Constraint Hard-coded Primitives Fixed Preprocessed Evolving Database Retrieval
Explicit Enumeration Stochastic Search Constraint Satisfaction User-in-the-loop Direct Solver Learned Proxy
Smooth Relaxation Reinforcement Learning Programs from People Synthetic Programs Boostrapping

Table 4: A summary of the work on neurosymbolic material & texture modeling discussed in Section 7, where each approach is situated in
our design space.

of a material by adjusting parameters of the procedure, (iii) auto-
matic tileability, since the provided procedural operations typically
ensure tileability, (iv) resolution-independence, and (v) the abil-
ity to easily scale the material up or down by adjusting the num-
ber/frequency of repetitions. Procedural materials offer an increas-
ingly fertile field for research into neurosymbolic models, as the
interest in procedural materials increases and more data becomes
available.

Early approaches for procedural materials and textures [Pea85,
Per85, WK91, Wor96, LP00, GLLD12] and some more recent ap-
proaches [LDHM16,GAD∗20] provide a black-box function to the
user and expose parameters that can be modified to control the
generated result. This black-box may, for example, implement a
parametric noise function, a reaction-diffusion approach [WK91],
a physically-inspired simulation [LDHM16], or point process basis
functions [GAD∗20].

Procedural materials that are used in practice [Adob, Sid, Ble]
also provide control over the content of the black-box using a
DSL. To create a material, the program is executed, combining
and transforming a set of initial noises and patterns through sev-
eral image filtering operations. This DSL is exposed to the user
as a node graph (Figure 4 bottom-right). Nodes correspond to im-
age filtering/processing functions, or to generators for the initial
noises/patterns. Each node has a set of inputs and outputs. Inputs
typically consist of images or scalar/vector-valued parameters, and
outputs are one or multiple processed images. Edges control the
data flow between the inputs and outputs of different nodes—in
essence, the node graph specifies a functional program.

Neurosymbolic approaches in this domain aim to synthesize
such node graph programs: either inferring a program for a given
input image, or sampling novel programs whose characteristics
match a dataset of examples. They differ in the approach used
to synthesize such programs. Typically these methods have sepa-
rate approaches to handle the generation of the program structure
(node types and edges) and the generation of the program parame-
ters (node parameters). Table 4 situates each prior work we discuss
within our design space.

Program and parameter retrieval: An early method [LGD∗18]
creates both program structure and parameters for a given visual
target image by retrieving them from a pre-defined dataset of pa-

target refined recon.procedural recon.

Figure 14: Hu et al. [HDR19] synthesize a procedural material
matching a given target image by retrieving a procedural program.
Parameters for the program that reproduces the target image are
estimated using a trained network. Additionally, Hu et al. use a
style transfer network to refine the output of the program to further
improve its match with the target.

rameterized programs. A perceptual metric based on psychophys-
ical experiments is introduced as a distance metric for both pro-
gram and parameter retrieval. Generation of programs through re-
trieval from a large dataset is limited to the programs available in
the dataset and has, therefore, limited coverage over the space of
possible visual targets.

Program retrieval, parameter synthesis: Two ap-
proaches [HDR19, TRT∗22] improve upon this work by using a
neural network to estimate parameters given a retrieved program
structure and a visual target, rather than retrieving parameters
(Figure 14). The earlier approach [HDR19] requires training a
parameter estimator for each program, while the more recent
approach [TRT∗22] improves scalability by training a single esti-
mator for multiple programs. MATch [SLH∗20] goes a different
route by directly optimizing the parameters of a retrieved program
to match the program’s output to the given visual target, rather
than using a network to amortize the optimization. This improves

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

560

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

Figure 15: MATch [SLH∗20] synthesizes a procedural material
that matches a given target image (lower right corner). A differ-
entiable procedural program is retrieved from a large dataset of
material programs, and the parameters of this program are opti-
mized to match the target using gradient descent.

accuracy over amortized optimization. The authors introduce
differentiable versions of most operators in the program to enable
optimization with gradient descent. A few examples of optimized
materials are shown in Figure 15. Since not all operators can
be made differentiable, only a subset of the program parameters
can be optimized. Differentiable Proxies [HGH∗22] tackles the
problem of non-differentiable operators by training small neural
networks to approximate these operators. The networks act as
proxies that are differentiable and have parameters that can be
optimized with gradient descent.

Program and parameter synthesis: Recently, methods have
started to synthesize the program structure in addition to the param-
eters, rather than retrieving it from a dataset. Hu et al. [HHD∗22]
propose to synthesize programs that reconstruct given target im-
ages. The programs have a special constrained structure, where pro-
cedural masks based on point process basis functions [GAD∗20]
are first used to define a tree of sub-regions in a material that con-
tains increasingly uniform texture, and noise generators are then ap-
plied to the leaves to generate a texture. The procedural masks are
found using interactive segmentation of a visual target, and noise
generators are fit to the content of a region based on local spectra.
The required user interaction for segmentation and the and the re-
duced generality of the programs due to their constrained structure
are limitations of the method. MatFormer [GHS∗22] proposes an
unconditional generator for more general material programs. It is
based on three Transformer models that are trained to synthesize
nodes, edges, and node parameters of a node graph, respectively.
Since Transformers work on linear sequences, various strategies to
linearize a node graph are proposed. Figure 16 shows an example of
a generated node graph and several examples of materials that were
created with generated node graphs. However, MatFormer does not
support conditional generation, for example, to reproduce a given
target image.

8. Conclusion and Future Work

In this report, we reviewed neurosymbolic models: techniques that
combine the best features of procedural models and machine learn-

Figure 16: MatFormer [GHS∗22] is an unconditional generator
for procedural materials represented as node graphs. It creates a
node graph with three Transformers that are trained to generate
nodes, node parameters, and edges, respectively.

ing to generate visual data for computer graphics applications. We
defined a formal design space for such models, providing a frame-
work for organizing different possible instantiations of neurosym-
bolic models. We then surveyed recent work on neurosymbolic
modeling in 2D shape modeling, 3D shape modeling, and mate-
rial & texture modeling, placing each prior work into our design
space.

In addition to organizing past work, our design space provides
another benefit: identifying areas of the space which are sparsely
populated by prior work (or empty), as such areas may warrant fur-
ther exploration. With this in mind, the following are some open
problems and opportunities for future work in neurosymbolic mod-
eling, in the context of Computer Graphics.

New application domains: Perhaps the most immediate opportu-
nity for future work is to apply some of the techniques described
in this report to modeling data in other graphics domains. Any
type of visual data is fair game, but it is especially worth look-
ing at domains where programmatic representations have already
proven useful. One such example is shader programming, a do-
main for which large repositories of data exist [Ini]. Character an-
imation & behavior modeling could also warrant investigation, as
some crowd simulation software already uses hand-authored ani-
mation procedures [Mas]. This report covered some recent work
in fabrication-aware 3D shape modeling; other fabrication-aware
design domains are worth exploring. For example, sewing patterns
for clothing exhibit recurring structural patterns which a neurosym-
bolic model could learn to predict as programs [BGK∗13]. Finally,
there also exist opportunities in non-visual domains which are rele-
vant to computer graphics. For instance, games can use procedural
representations of music to dynamically alter their soundtrack in re-
sponse to player actions [Sys]; neurosymbolic modeling techniques
might bring new capabilities to this application or could produce
such representations more automatically.

More complex programs: Learning to produce generative pro-
grams with complex structure is a challenging problem; as a con-
sequence, much of the early work in neurosymbolic modeling,
which we have covered in this report, uses simple languages (e.g.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

561

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

CSG for 3D shape modeling). To move beyond the research lab
and be useful for real-world design applications, neurosymbolic
models must be able to produce complex programs in rich, fully-
featured domain-specific languages: for example, full CAD lan-
guages such as OpenSCAD [Ope], or shading languages such as
GLSL. The MatFormer model, which produces programs in the
form of detailed Substance material graphs, is a step in this direc-
tion [GHS∗22]. However, this model was trained on a large dataset
of human-authored programs, which brings us to our next open
problem:

Learning without direct supervision: The most straightforward
way for a neurosymbolic model to learn to produce programs is
to train on programs authored by people . However, such data
is rarely available at scale for most languages of interest. Learn-
ing without such supervision, especially as the target language be-
comes more complex, remains a challenge. Our design space iden-
tifies three learning approaches for this setting: Smooth Relax-
ation, Reinforcement Learning, and Bootstrapping. Each
of these approaches warrants further investigation: can one design
more general-purpose smooth relaxations for new languages? Are
there new techniques from the RL literature which work well for
synthesizing generative programs? Can bootstrapping approaches
such as PLAD [JWR22] be extended to handle more complex lan-
guages, possibly involving hierarchical structure?

Discovering new languages: Thus far, work on neurosymbolic
modeling has targeted existing domain-specific languages, poten-
tially modifying them by adding new abstractions. Might it be pos-
sible for entirely new languages to be invented , to best fit the
domain of data being modeled? Neurosymbolic models make it
possible to consider this question: one could imagine learning a
set of neural primitives which represent the visual “atoms”
of the data domain being modeled (e.g. objects, parts) and then
learning a set of primitive functions which combine these atoms
to create more complex visual structures. The language discovered
could adapt to the particular data distribution on which it is trained,
lending a new definition to the abbreviation “DSL”: distribution-
specific languages.

Capturing user intent: The usefulness of a neurosymbolic model
is largely determined by how well its task specification captures
a user’s intent. On the input side of this specification, supporting
more input types can help make neurosymbolic models more use-
ful for a wider population of users. While defining our design space
(Section 3.1), we have already mentioned several new types of in-
put that may warrant future exploration. For instance: we are not
aware of any prior neurosymbolic models which take a text prompt

as input, though this seems like an appealing way to specify user
intent (if the recent success of text-to-image generators is any in-
dicator [RDN∗22,SCS∗22,RBL∗22]). Such natural language input
could specify desired attributes of the visual data to be generated, of
the programs which will generate that data, or both (including con-
nections between the two, e.g. that a particular program construct
should be used to generate a particular visual feature).

On the output side of the task specification, neurosymbolic mod-
els must produce programs that are usable by people. How do we

assess how usable a program is, and how can we encourage neu-
rosymbolic models to produce such programs? As mentioned in
Section 3.3, the only prior on program structure that most previous
work considers is a preference for shorter programs. This is justi-
fied with appeals to information theory or Occam’s razor, but not to
usability. In fact, excessively short programs can become unusable
(see obfuscated code contests or business card raytracers [San]).
Furthermore, different users may prefer different program struc-
tures. Are there better priors than program length for the usability
of a program? What are effective mechanisms for users to specify
their preferences about program structure?

Human interpretation and interaction: While program repre-
sentations have the key advantage of exposing an interpretable
structure, reasoning about programs and manipulating them is of-
ten quite challenging and requires domain and coding expertise. By
combining program representations with learning, we can advance
symbolic reasoning in three fundamental directions: interpretation,
manipulation, and composition.

Code interpretation refers to the ability to analyze code: expos-
ing its structure, capabilities, and potential bugs. The programming
language community has made significant advances in this space
by using theorem provers or SMT solvers to detect and expose
bugs [IK16]. Such methods, however, are still limited in scale and
domain. How can we leverage advances in machine learning to help
detect code errors and expose them? Can such systems go a step be-
yond detection and also propose solutions?

For code that generates a visual output, manipulation is ex-
tremely important to enable customization and iterative design.
While recent work describes techniques to optimize code based
on the direct manipulation of the visual output [HLC19, CSQ∗22,
GKG∗22], these methods are limited in the types of variations they
enable, only allowing the program parameters to change, but not its
structure. Furthermore, existing techniques fundamentally struggle
to infer the user intent, since direct visual manipulation is a partial
(and therefore ambiguous) specification. How can neurosymbolic
models address these challenges to enable a wider class of vari-
ations that are not limited to parameter changes but also require
program rewrites? Can we leverage existing datasets or extract in-
formation from user interactions to learn to disambiguate the partial
specifications?

Typical programs that generate visual outputs are designed with
hierarchical and compositional structures. This design decision is
not only critical for human-understandable editing and interaction,
it also allows analysis methods to reason over different semantic
parts of a visual model. Creating new visual content by mixing and
matching existing components is a fundamental design strategy in
computer graphics [FKS∗04]. However, code composition is chal-
lenging, as it requires that certain properties hold at the interface of
program components. Generating code that can be easily decom-
posed and re-used is a tedious, error-prone task. Further, under-
standing how to constrain or manipulate parts to enable seamless
compositions is challenging. Can neurosymbolic reasoning enable
design through composition with symbolic representations?

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

562

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

9. Author Bios

Daniel Ritchie is the Eliot Horowitz Assistant Professor of Com-
puter Science at Brown University. He received his PhD from Stan-
ford University. His research sits at the intersection of computer
graphics and artificial intelligence, where he is particularly inter-
ested in data-driven methods for designing, synthesizing, and ma-
nipulating visual content. In the area of neurosymbolic modeling,
he has worked on applying probabilistic programming to procedu-
ral modeling, on learning procedural models from a small number
of examples, and on deep learning models for generating/inferring
procedural representations of 3D shapes. His most recent work
focuses on learning procedural representations in the absence of
ground-truth programs.

Paul Guerrero is a research scientist at Adobe. He received his
PhD from the Institute for Computer Graphics and Algorithms, Vi-
enna University of Technology, and at the Visual Computing Center
in KAUST. He is working on the analysis of irregular and com-
positional structures, such as graphs, meshes, or vector graphics,
by combining methods from machine learning, optimization, and
computational geometry [1, 2, 3, 4, 5, 6].

R. Kenny Jones is a PhD student at Brown University where he is
supported by a Brown University Presidential Fellowship and ad-
vised by Daniel Ritchie. His research explores how machine learn-
ing and artificial intelligence techniques can be leveraged to better
understand and represent visual data. Relevant to this report, his
recent publications have investigated using neurosymbolic models
for 3D shape generation, automatic macro discovery, and inferring
visual programs.

Niloy J. Mitra leads the Smart Geometry Processing group in the
Department of Computer Science at University College London
and the Adobe Research London Lab. He received his PhD from
Stanford University under the guidance of Leonidas Guibas. His
current research focuses on developing machine learning frame-
works towards generative models for high-quality geometric and
appearance content for CG applications. He received the 2019 Eu-
rographics Outstanding Technical Contributions Award, the 2015
British Computer Society Roger Needham Award, and the 2013
ACM SIGGRAPH Significant New Researcher Award. He was
elected as a fellow of Eurographics in 2021 and was the SIG-
GRAPH Technical Papers Chair in 2022.

Adriana Schulz is an Assistant Professor at the Paul G. Allen
School of Computer Science and Engineering at the University of
Washington. She received her PhD from the Massachusetts Institute
of Technology. Her research is in the area of computational design
and fabrication. Relevant to this report, her recent work uses pro-
gramable abstractions to represent and optimize both 3D designs
and their fabrication plans. She also uses machine learning and pro-
gram synthesis techniques to support the design and manipulation
of CAD models.

Karl D.D. Willis is a Senior Research Manager at Autodesk Re-
search focused on data-driven design software for manufacturing.
He holds a PhD in Computational Design from Carnegie Mel-
lon University and has presented his research internationally at

conferences such as ACM SIGGRAPH, IEEE/CVF CVPR, and
ICML. His work at Autodesk has won numerous awards including
Fast Company Innovation By Design Honoree and Core77 Design
Awards Research and Strategy Honoree.

Jiajun Wu is an Assistant Professor of Computer Science at Stan-
ford University. He received his PhD from Massachusetts Insti-
tute of Technology. His research is in the area of computer vi-
sion, artificial intelligence, graphics, and robotics. In the area of
neurosymbolic modeling, he has worked on building and learning
structured representations for visual data of various modalities (im-
ages, shapes, videos) by integrating domain knowledge with data-
driven methods.

Acknowledgments

Daniel Ritchie was supported by NSF awards #1907547 and
#1941808. He is also an advisor to Geopipe and owns equity in
the company. Geopipe is a start-up that is developing 3D technol-
ogy to build immersive virtual copies of the real world with ap-
plications in various fields, including games and architecture. Jia-
jun Wu was supported by NSF awards #2120095 and #2211258,
Autodesk, IBM, and Salesforce. Adriana Schulz was supported
by NSF awards #2219864 and #2017927, Adobe, Intel, Meta, and
Amazon.

References
[ABJ∗13] ALUR R., BODIK R., JUNIWAL G., MARTIN M. M.,

RAGHOTHAMAN M., SESHIA S. A., SINGH R., SOLAR-LEZAMA A.,
TORLAK E., UDUPA A.: Syntax-guided synthesis. In Formal Methods
in Computer–Aided Design (FMCAD) (2013). 4

[Adoa] ADOBE: Substance Designer. https://www.adobe.com/
products/substance3d-designer.html. Accessed: 2022-09-26. 2,
4

[Adob] ADOBE INC.: Substance 3D. URL: https://www.
substance3d.com/. 10, 15, 16

[Ado21a] ADOBE: Substance 3D community assets, 2021. https://
substance3d.adobe.com/community-assets. 10

[Ado21b] ADOBE: Substance source, 2021. https://substance3d.
adobe.com/assets. 10

[AFDJ03] ANDRIEU C., FREITAS N., DOUCET A., JORDAN M.: An in-
troduction to mcmc for machine learning. Machine Learning 50 (2003),
5–43. 7

[Auta] AUTODESK: Fusion 360. https://www.autodesk.com/
products/fusion-360/. Accessed: 2022-10-16. 4, 10

[Autb] AUTODESK MAYA WIKI: Hypershade. https:
//autodeskmaya.fandom.com/wiki/Hypershade. Accessed: 2022-
10-16. 4

[BBB∗57] BACKUS J. W., BEEBER R. J., BEST S., GOLDBERG R.,
HAIBT L. M., HERRICK H. L., NELSON R. A., SAYRE D., SHERIDAN
P. B., STERN H., ET AL.: The FORTRAN automatic coding system. In
Western Joint Computer Conference: Techniques for Reliability (1957),
pp. 188–198. 4

[BGK∗13] BERTHOUZOZ F., GARG A., KAUFMAN D. M., GRINSPUN
E., AGRAWALA M.: Parsing sewing patterns into 3D garments. ACM
Transactions on Graphics (TOG) 32, 4 (2013). 17

[BHB∗18] BATTAGLIA P. W., HAMRICK J. B., BAPST V., SANCHEZ-
GONZALEZ A., ZAMBALDI V., MALINOWSKI M., TACCHETTI A.,
RAPOSO D., SANTORO A., FAULKNER R., ET AL.: Relational in-
ductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 (2018). 8

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

563

https://dl.acm.org/doi/10.1145/2897824.2925950
https://dl.acm.org/doi/10.1145/3355089.3356527
https://openaccess.thecvf.com/content_CVPR_2020/papers/Mo_StructEdit_Learning_Structural_Shape_Variations_CVPR_2020_paper.pdf
https://dl.acm.org/doi/abs/10.1145/3414685.3417812
https://dl.acm.org/doi/abs/10.1145/3414685.3417812
https://proceedings.neurips.cc/paper/2021/file/28891cb4ab421830acc36b1f5fd6c91e-Paper.pdf
https://www.adobe.com/products/substance3d-designer.html
https://www.adobe.com/products/substance3d-designer.html
https://www.substance3d.com/
https://www.substance3d.com/
https://substance3d.adobe.com/community-assets
https://substance3d.adobe.com/community-assets
https://substance3d.adobe.com/assets
https://substance3d.adobe.com/assets
https://www.autodesk.com/products/fusion-360/
https://www.autodesk.com/products/fusion-360/
https://autodeskmaya.fandom.com/wiki/Hypershade
https://autodeskmaya.fandom.com/wiki/Hypershade

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

[Ble] BLENDER ONLINE COMMUNITY: Blender - a 3D modelling and
rendering package. URL: http://www.blender.org. 15, 16

[BLW∗20] BAU D., LIU S., WANG T., ZHU J.-Y., TORRALBA A.:
Rewriting a deep generative model. In European Conference on Com-
puter Vision (ECCV) (2020). 2

[BMR∗20] BROWN T., MANN B., RYDER N., SUBBIAH M., KA-
PLAN J. D., DHARIWAL P., NEELAKANTAN A., SHYAM P., SASTRY
G., ASKELL A., AGARWAL S., HERBERT-VOSS A., KRUEGER G.,
HENIGHAN T., CHILD R., RAMESH A., ZIEGLER D., WU J., WIN-
TER C., HESSE C., CHEN M., SIGLER E., LITWIN M., GRAY S.,
CHESS B., CLARK J., BERNER C., MCCANDLISH S., RADFORD A.,
SUTSKEVER I., AMODEI D.: Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS) (2020),
vol. 33, pp. 1877–1901. 8

[BT18] BARRETT C., TINELLI C.: Satisfiability modulo theories. In
Handbook of model checking. Springer, 2018, pp. 305–343. 7

[BTLLW22] BOND-TAYLOR S., LEACH A., LONG Y., WILLCOCKS
C. G.: Deep generative modelling: A comparative review of VAEs,
GANs, normalizing flows, energy-based and autoregressive models.
IEEE Transactions on Pattern Analysis and Machine intelligence
(TPAMI) 44, 11 (2022), 7327–7347. 3

[BZS∗20] BAU D., ZHU J.-Y., STROBELT H., LAPEDRIZA A., ZHOU
B., TORRALBA A.: Understanding the role of individual units in a
deep neural network. Proceedings of the National Academy of Sciences
(2020). 2

[Cat74] CATMULL E. E.: A Subdivision Algorithm for Computer Display
of Curved Surfaces. PhD thesis, The University of Utah, 1974. 1

[CDAT20] CARLIER A., DANELLJAN M., ALAHI A., TIMOFTE R.:
DeepSVG: A hierarchical generative network for vector graphics anima-
tion. In Advances in Neural Information Processing Systems (NeurIPS)
(2020), vol. 33, pp. 16351–16361. 6, 9, 11, 12

[CEP∗21] CHAUDHURI S., ELLIS K., POLOZOV O., SINGH R.,
SOLAR-LEZAMA A., YUE Y., ET AL.: Neurosymbolic programming.
Foundations and Trends® in Programming Languages 7, 3 (2021), 158–
243. 5

[CFG∗15] CHANG A. X., FUNKHOUSER T., GUIBAS L., HANRAHAN
P., HUANG Q., LI Z., SAVARESE S., SAVVA M., SONG S., SU H.,
XIAO J., YI L., YU F.: ShapeNet: An information-rich 3D model repos-
itory. arXiv preprint arXiv:1512.03012 (2015). 10

[CHIS22] CROITORU F.-A., HONDRU V., IONESCU R. T., SHAH M.:
Diffusion models in vision: A survey. arXiv preprint arXiv:2209.04747
(2022). 3

[Cla76] CLARK J. H.: Hierarchical geometric models for visible surface
algorithms. Communications of the ACM 19, 10 (1976), 547–554. 1

[Cla03] CLAUSEN J.: Branch and Bound Algorithms-Principles and Ex-
amples. Tech. rep., University of Copenhagen, 2003. 7

[Coo84] COOK R. L.: Shade trees. In Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH) (1984), p. 223–231.
4

[CRW∗20] CHAUDHURI S., RITCHIE D., WU J., XU K., ZHANG H.:
Learning generative models of 3D structures. Computer Graphics Forum
(CGF) 39, 2 (2020), 643–666. 3

[CSQ∗22] CASCAVAL D., SHALAH M., QUINN P., BODIK R.,
AGRAWALA M., SCHULZ A.: Differentiable 3D CAD programs for
bidirectional editing. Computer Graphics Forum (CGF) 41, 2 (2022),
309–323. 18

[CZ19] CHEN Z., ZHANG H.: Learning implicit fields for generative
shape modeling. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2019). 2, 3

[DAD∗18] DESCHAINTRE V., AITTALA M., DURAND F., DRETTAKIS
G., BOUSSEAU A.: Single-image SVBRDF capture with a rendering-
aware deep network. ACM Transactions on Graphics (TOG) 37, 128
(2018), 15. 2

[Das] DASSAULT SYSTEMES: SOLIDWORKS. https://www.
solidworks.com/. Accessed: 2022-10-16. 4

[dB78] DE BOOR C.: A practical guide to splines. In Applied Mathemat-
ical Sciences (1978). 1

[DDFG01] DOUCET A., DE FREITAS N., GORDON N. (Eds.): Sequen-
tial Monte Carlo Methods in Practice. Springer, 2001. 7

[DIP∗18] DU T., INALA J. P., PU Y., SPIELBERG A., SCHULZ A., RUS
D., SOLAR-LEZAMA A., MATUSIK W.: InverseCSG: Automatic con-
version of 3D models to CSG trees. ACM Transactions on Graphics
(TOG) 37, 6 (2018), 1–16. 5

[DKD∗22] DENG B., KULAL S., DONG Z., DENG C., TIAN Y., WU
J.: Unsupervised learning of shape programs with repeatable implicit
parts. In Advances in Neural Information Processing Systems (NeurIPS)
(2022). 7, 13, 14

[DNJ20] DAVIES T., NOWROUZEZAHRAI D., JACOBSON A.: On the ef-
fectiveness of weight-encoded neural implicit 3D shapes. arXiv preprint
arXiv:2009.09808 (2020). 3

[Edw63] EDWARD S. I.: SketchPad: A man-machine graphical communi-
cation system. PhD thesis, Massachusetts Institute of Technology, 1963.
2, 3, 11

[ENP∗19] ELLIS K., NYE M., PU Y., SOSA F., TENENBAUM J. B.,
SOLAR-LEZAMA A.: Write, execute, assess: Program synthesis with a
repl. In Advances in Neural Information Processing Systems (NeurIPS)
(2019). 3, 11, 12, 13, 14

[ERSLT18] ELLIS K., RITCHIE D., SOLAR-LEZAMA A., TENENBAUM
J.: Learning to infer graphics programs from hand-drawn images. In
Advances in Neural Information Processing Systems (NeurIPS) (2018),
vol. 31. 1, 3, 11, 12

[Esr] ESRI: ArcGIS CityEngine. https://www.esri.com/en-us/
arcgis/products/arcgis-cityengine/overview. Accessed: 2022-
09-26. 2

[EWN∗21] ELLIS K., WONG C., NYE M., SABLÉ-MEYER M.,
MORALES L., HEWITT L., CARY L., SOLAR-LEZAMA A., TENEN-
BAUM J. B.: DreamCoder: Bootstrapping inductive program synthesis
with wake-sleep library learning. In ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming
and Software (SIGPLAN) (2021), pp. 835–850. 7, 11, 12

[FAW19] FRÜHSTÜCK A., ALHASHIM I., WONKA P.: TileGAN: Syn-
thesis of large-scale non-homogeneous textures. ACM Transactions on
Graphics (TOG) 38, 4 (2019). 2

[FBA22] FIROZE A., BENES B., ALIAGA D.: Urban tree generator:
spatio-temporal and generative deep learning for urban tree localiza-
tion and modeling. The Visual Computer 38 (06 2022), 1–13. doi:
10.1007/s00371-022-02526-x. 4

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN P.,
KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN D.: Modeling by
example. ACM Transactions on Graphics (TOG) 23, 3 (2004), 652–663.
18

[Fow10] FOWLER M.: Domain-specific languages. Pearson Education,
2010. 6

[GAD∗20] GUEHL P., ALLEGRE R., DISCHLER J.-M., BENES B.,
GALIN E.: Semi-procedural textures using point process texture basis
functions. Computer Graphics Forum (CGF) 39, 4 (2020), 159–171. 16,
17

[GBL∗21] GANIN Y., BARTUNOV S., LI Y., KELLER E., SALICETI S.:
Computer-aided design as language. In Advances in Neural Information
Processing Systems (NeurIPS) (2021). 6, 9, 11, 12

[GEB15] GATYS L. A., ECKER A. S., BETHGE M.: A neural algorithm
of artistic style. arXiv preprint arXiv:1508.06576 (2015). 2

[Gha08] GHALI S.: Constructive solid geometry. Springer, 2008,
pp. 277–283. 3

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

564

http://www.blender.org
https://www.solidworks.com/
https://www.solidworks.com/
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://doi.org/10.1007/s00371-022-02526-x
https://doi.org/10.1007/s00371-022-02526-x

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

[GHS∗22] GUERRERO P., HASAN M., SUNKAVALLI K., MECH R.,
BOUBEKEUR T., MITRA N.: MatFormer: A generative model for pro-
cedural materials. ACM Transactions on Graphics (TOG) 41, 4 (2022).
1, 6, 10, 16, 17, 18

[GJB∗20] GUO J., JIANG H., BENES B., DEUSSEN O., ZHANG X.,
LISCHINSKI D., HUANG H.: Inverse procedural modeling of branch-
ing structures by inferring l-systems. ACM Transactions on Graphics
(TOG) 39, 5 (2020), 1–13. 11, 12

[GKB∗18] GANIN Y., KULKARNI T., BABUSCHKIN I., ESLAMI S. A.,
VINYALS O.: Synthesizing programs for images using reinforced ad-
versarial learning. In International Conference on Machine Learning
(ICML) (2018), PMLR, pp. 1666–1675. 11, 12

[GKG∗22] GAILLARD M., KRS V., GORI G., MĚCH R.,
BENES B.: Automatic differentiable procedural modeling.
Computer Graphics Forum 41, 2 (2022), 289–307. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14475,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/
cgf.14475, doi:https://doi.org/10.1111/cgf.14475. 18

[GLLD12] GALERNE B., LAGAE A., LEFEBVRE S., DRETTAKIS G.:
Gabor noise by example. ACM Transactions on Graphics (TOG) 31, 4
(2012). 16

[GLP∗22] GUO H., LIU S., PAN H., LIU Y., TONG X., GUO B.: Com-
plexgen: Cad reconstruction by b-rep chain complex generation. ACM
Trans. Graph. (SIGGRAPH) 41, 4 (July 2022). URL: https://doi.
org/10.1145/3528223.3530078, doi:10.1145/3528223.3530078. 3,
4

[GPS∗17] GULWANI S., POLOZOV O., SINGH R., ET AL.: Program
synthesis. Foundations and Trends® in Programming Languages 4, 1-2
(2017), 1–119. 5

[GSH∗20] GUO Y., SMITH C., HAŠAN M., SUNKAVALLI K., ZHAO S.:
MaterialGAN: Reflectance capture using a generative SVBRDF model.
ACM Transactions on Graphics (TOG) 39, 6 (2020), 254:1–254:13. 3

[GSLT∗18] GOTTSCHLICH J., SOLAR-LEZAMA A., TATBUL N.,
CARBIN M., RINARD M., BARZILAY R., AMARASINGHE S., TENEN-
BAUM J. B., MATTSON T.: The three pillars of machine program-
ming. In ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (SIGPLAN)
(2018), pp. 69–80. 5

[GSR∗17] GILMER J., SCHOENHOLZ S. S., RILEY P. F., VINYALS O.,
DAHL G. E.: Neural message passing for quantum chemistry. In Interna-
tional Conference on Machine Learning (ICML) (2017), p. 1263–1272.
8

[Gul11] GULWANI S.: Automating string processing in spreadsheets us-
ing input-output examples. In ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (SIGPLAN) (2011). 5

[HDMR21] HENZLER P., DESCHAINTRE V., MITRA N. J., RITSCHEL
T.: Generative modelling of BRDF textures from flash images. ACM
Transactions on Graphics (TOG) 40, 6 (2021). 2

[HDR19] HU Y., DORSEY J., RUSHMEIER H.: A novel framework for
inverse procedural texture modeling. ACM Transactions on Graphics
(TOG) 38, 6 (2019). 16

[HE17] HA D., ECK D.: A neural representation of sketch drawings.
arXiv preprint arXiv:1704.03477 (2017). 2, 9

[HGH∗22] HU Y., GUERRERO P., HASAN M., RUSHMEIER H., DE-
SCHAINTRE V.: Node graph optimization using differentiable proxies.
In Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH) (2022). 16, 17

[HHD∗22] HU Y., HE C., DESCHAINTRE V., DORSEY J., RUSHMEIER
H.: An inverse procedural modeling pipeline for SVBRDF maps. ACM
Transactions on Graphics (TOG) 41, 2 (2022). 7, 16, 17

[HLB19] HAN X.-F., LAGA H., BENNAMOUN M.: Image-based 3D
object reconstruction: State-of-the-art and trends in the deep learning
era. IEEE Transactions on Pattern Analysis and Machine intelligence
(TPAMI) 43, 5 (2019), 1578–1604. 3

[HLC19] HEMPEL B., LUBIN J., CHUGH R.: Sketch-n-Sketch: Output-
directed programming for SVG. In ACM Symposium on User Interface
Software and Technology (UIST) (2019), pp. 281–292. 5, 18

[HLHF22] HUI K.-H., LI R., HU J., FU C.-W.: Neural wavelet-domain
diffusion for 3D shape generation. In Annual Conference on Computer
Graphics and Interactive Techniques Asia (SIGGRAPH Asia) (2022),
pp. 1–9. 2, 6

[Hof89] HOFFMANN C. M.: Geometric and solid modeling. CUMIN-
CAD, 1989. 4

[Ico] Icons8. https://icons8.com/. Accessed: 2022-20-20. 9

[IDV] IDV, INC.: SpeedTree – 3D vegetation modeling and middleware.
https://store.speedtree.com/. Accessed: 2022-09-26. 2

[IK16] ISHII Y., KUTSUNA T.: Effective fault localization using dynamic
slicing and an smt solver. In IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW) (2016),
pp. 180–188. 18

[Ini] INIGO QUILEZ AND POL JEREMIAS: Shadertoy. https://www.
shadertoy.com/. Accessed: 2022-10-16. 2, 17

[IZZE17] ISOLA P., ZHU J.-Y., ZHOU T., EFROS A. A.: Image-to-
image translation with conditional adversarial networks. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(2017). 2

[JBX∗20] JONES R. K., BARTON T., XU X., WANG K., JIANG E.,
GUERRERO P., MITRA N. J., RITCHIE D.: ShapeAssembly: Learning
to generate programs for 3D shape structure synthesis. ACM Transac-
tions on Graphics (TOG) 39, 6 (2020). 2, 14, 15

[JCG∗21] JONES R. K., CHARATAN D., GUERRERO P., MITRA N. J.,
RITCHIE D.: ShapeMOD: Macro operation discovery for 3D shape pro-
grams. ACM Transactions on Graphics (TOG) 40, 4 (2021). 7, 14, 15

[JWR22] JONES R. K., WALKE H., RITCHIE D.: PLAD: Learning to
infer shape programs with pseudo-labels and approximate distributions.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022). 3, 9, 13, 14, 18

[Kel21] KELLY T.: CityEngine: An introduction to rule-based modeling.
In Urban Informatics. Springer, 2021, pp. 637–662. 4

[KLA21] KARRAS T., LAINE S., AILA T.: A style-based generator ar-
chitecture for generative adversarial networks. IEEE Transactions on
Pattern Analysis and Machine intelligence (TPAMI) 43, 12 (2021), 4217–
4228. 2, 3

[KMJ∗19] KOCH S., MATVEEV A., JIANG Z., WILLIAMS F., ARTE-
MOV A., BURNAEV E., ALEXA M., ZORIN D., PANOZZO D.: ABC: A
big CAD model dataset for geometric deep learning. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2019). 10

[Koz92] KOZA J. R.: Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cambridge, MA,
USA, 1992. 7

[KZK20] KANIA K., ZIEBA M., KAJDANOWICZ T.: UCSG-NET - un-
supervised discovering of constructive solid geometry tree. In Advances
in Neural Information Processing Systems (NeurIPS) (2020), vol. 33,
pp. 8776–8786. 8, 14, 15

[LBH15] LECUN Y., BENGIO Y., HINTON G.: Deep learning. Nature
521, 7553 (2015), 436–444. 3

[LCC∗22] LI Y., CHOI D., CHUNG J., KUSHMAN N., SCHRITTWIESER
J., LEBLOND R., ECCLES T., KEELING J., GIMENO F., LAGO A. D.,
ET AL.: Competition-level code generation with AlphaCode. arXiv
preprint arXiv:2203.07814 (2022). 5

[LDHM16] LIU A. J., DONG Z., HAŠAN M., MARSCHNER S.: Sim-
ulating the structure and texture of solid wood. ACM Transactions on
Graphics (TOG) 35, 6 (2016). 16

[LGB∗21] LIU Y., GUO J., BENES B., DEUSSEN O., ZHANG X.,
HUANG H.: Treepartnet: Neural decomposition of point clouds for 3d
tree reconstruction. ACM Transactions on Graphics (Proceedings of
SIGGRAPH ASIA) 40, 6 (2021), 232:1–232:16. 4

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

565

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14475
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14475
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14475
https://doi.org/https://doi.org/10.1111/cgf.14475
https://doi.org/10.1145/3528223.3530078
https://doi.org/10.1145/3528223.3530078
https://doi.org/10.1145/3528223.3530078
https://icons8.com/
https://store.speedtree.com/
https://www.shadertoy.com/
https://www.shadertoy.com/

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

[LGD∗18] LIU J., GAN Y., DONG J., QI L., SUN X., JIAN M., WANG
L., YU H.: Perception-driven procedural texture generation from exam-
ples. Neurocomputing 291 (2018), 21–34. 16

[LHES19] LOPES R. G., HA D., ECK D., SHLENS J.: A learned repre-
sentation for scalable vector graphics. In IEEE/CVF International Con-
ference on Computer Vision (ICCV) (2019). 9, 11, 12

[LKK∗21] LI B., KAŁUŻNY J., KLEIN J., MICHELS D. L., PAŁU-
BICKI W., BENES B., PIRK S.: Learning to reconstruct botanical
trees from single images. ACM Trans. Graph. 40, 6 (dec 2021).
URL: https://doi.org/10.1145/3478513.3480525, doi:10.1145/
3478513.3480525. 4

[LLHF21] LI R., LI X., HUI K.-H., FU C.-W.: SP-GAN: Sphere-guided
3D shape generation and manipulation. ACM Transactions on Graphics
(TOG) 40, 4 (2021). 2, 6

[LP00] LEFEBVRE L., POULIN P.: Analysis and synthesis of structural
textures. In Graphics Interface (2000), vol. 2000, pp. 77–86. 16

[LPBM20] LI C., PAN H., BOUSSEAU A., MITRA N. J.: Sketch2CAD:
Sequential CAD modeling by sketching in context. ACM Transactions
on Graphics (TOG) 39, 6 (2020), 164:1–164:14. 13, 14

[LPBM22] LI C., PAN H., BOUSSEAU A., MITRA N. J.: Free2CAD:
Parsing freehand drawings into CAD commands. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 93:1–93:16. 13, 14

[LST15] LAKE B. M., SALAKHUTDINOV R., TENENBAUM J. B.:
Human-level concept learning through probabilistic program induction.
Science 350, 6266 (2015), 1332–1338. 9

[LST19] LAKE B. M., SALAKHUTDINOV R., TENENBAUM J. B.: The
Omniglot challenge: a 3-year progress report. Current Opinion in Be-
havioral Sciences 29 (2019), 97–104. 9

[LWJ∗22] LAMBOURNE J. G., WILLIS K. D. D., JAYARAMAN P. K.,
ZHANG L., SANGHI A., MALEKSHAN K. R.: Reconstructing ed-
itable prismatic CAD from rounded voxel models. arXiv preprint
arXiv:2209.01161 (2022). 14

[LXC∗17] LI J., XU K., CHAUDHURI S., YUMER E., ZHANG H.,
GUIBAS L.: GRASS: Generative recursive autoencoders for shape struc-
tures. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–14. 2

[LZCvdP20] LING H. Y., ZINNO F., CHENG G., VAN DE PANNE M.:
Character controllers using motion VAEs. ACM Transactions on Graph-
ics (TOG) 39, 4 (2020). 3

[Mas] MASSIVE SOFTWARE: Massive Software. https://www.
massivesoftware.com/. Accessed: 2022-09-26. 2, 17

[MBBO22] MEZGHANNI M., BODRITO T., BOULKENAFED M., OVS-
JANIKOV M.: Physical simulation layer for accurate 3d modeling. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) (June 2022), pp. 13514–13523. 6

[MGA∗22] MA K., GHARBI M., ADAMS A., KAMIL S., LI T.-M.,
BARNES C., RAGAN-KELLEY J.: Searching for fast demosaicking al-
gorithms. ACM Transactions on Graphics (TOG) (2022). 5

[MGY∗19] MO K., GUERRERO P., YI L., SU H., WONKA P., MITRA
N., GUIBAS L.: StructureNet: Hierarchical graph networks for 3D shape
generation. ACM Transactions on Graphics (TOG) 38, 6 (2019). 2, 3

[Mit77] MITCHELL T. M.: Version spaces: A candidate elimination ap-
proach to rule learning. In International Joint Conference on Artificial
Intelligence (IJCAI) (1977). 7

[MKG∗18] MITRA N. J., KOKKINOS I., GUERRERO P., THUEREY N.,
RITSCHEL T.: CreativeAI: Deep learning for graphics. In SIGGRAPH
Asia 2018 Courses (2018). 3

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: NeRF: Representing scenes as neural
radiance fields for view synthesis. In European Conference on Computer
Vision (ECCV) (2020). 2, 3

[MVG13] MARTINOVIC A., VAN GOOL L.: Bayesian grammar learning
for inverse procedural modeling. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2013), pp. 201–208. 4

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. In Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH) (2006),
pp. 614–623. 4

[MZC∗19] MO K., ZHU S., CHANG A. X., YI L., TRIPATHI S.,
GUIBAS L. J., SU H.: PartNet: A large-scale benchmark for fine-grained
and hierarchical part-level 3D object understanding. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2019). 9

[NGEB20] NASH C., GANIN Y., ESLAMI S. M. A., BATTAGLIA P. W.:
PolyGen: An autoregressive generative model of 3D meshes. In Interna-
tional Conference on Machine Learning (ICML) (2020). 3

[NO80] NELSON G., OPPEN D. C.: Fast decision procedures based on
congruence closure. Journal of the ACM (JACM) 27, 2 (1980), 356–364.
5

[Nvi22] NVIDIA: VMaterials, 2022. https://developer.nvidia.com/
vmaterials. 10

[NWA∗20] NANDI C., WILLSEY M., ANDERSON A., WILCOX J. R.,
DARULOVA E., GROSSMAN D., TATLOCK Z.: Synthesizing struc-
tured CAD models with equality saturation and inverse transforma-
tions. In ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (SIGPLAN)
(2020), pp. 31–44. 5

[NWP∗18] NANDI C., WILCOX J. R., PANCHEKHA P., BLAU T.,
GROSSMAN D., TATLOCK Z.: Functional programming for compiling
and decompiling computer-aided design. In ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP) (2018). 5

[NZIS13] NIESSNER M., ZOLLHÖFER M., IZADI S., STAMMINGER
M.: Real-time 3D reconstruction at scale using voxel hashing. ACM
Transactions on Graphics (TOG) (2013). 2

[Ope] OPENSCAD: OpenSCAD - the programmers solid 3D modeler.
https://openscad.org/. Accessed: 2022-10-21. 18

[PBG∗21] PARA W. R., BHAT S. F., GUERRERO P., KELLY T., MI-
TRA N., GUIBAS L., WONKA P.: SketchGen: Generating constrained
CAD sketches. In Advances in Neural Information Processing Systems
(NeurIPS) (2021). 6, 11, 12

[Pea85] PEACHEY D. R.: Solid texturing of complex surfaces. ACM
Transactions on Graphics (TOG) 19, 3 (1985), 279–286. 16

[Per85] PERLIN K.: An image synthesizer. In Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH) (1985). 4,
16

[PGK∗21] PARA W., GUERRERO P., KELLY T., GUIBAS L., WONKA
P.: Generative layout modeling using constraint graphs. In IEEE/CVF
International Conference on Computer Vision (ICCV) (2021), pp. 6670–
6680. 11

[PHHM96] PRUSINKIEWICZ P., HAMMEL M., HANAN J., MĚCH R.:
L-systems: From the theory to visual models of plants. In CSIRO Sym-
posium on Computational Challenges in Life Sciences (1996). 4

[PJM94] PRUSINKIEWICZ P., JAMES M., MĚCH R.: Synthetic topiary.
In Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH) (1994), pp. 351–358. 4

[PKGF21] PASCHALIDOU D., KATHAROPOULOS A., GEIGER A., FI-
DLER S.: Neural parts: Learning expressive 3D shape abstractions with
invertible neural networks. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2021). 3

[PL96] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorithmic Beauty
of Plants. Springer-Verlag, Berlin, Heidelberg, 1996. 4

[PTC] PTC INC.: OnShape. URL: https://www.onshape.com/. 9, 10

[Qui] The Quick, Draw! Dataset. https://quickdraw.withgoogle.
com/data. Accessed: 2022-20-20. 9

[RBCP20] RIBEIRO L. S. F., BUI T., COLLOMOSSE J., PONTI M.:
Sketchformer: Transformer-based representation for sketched structure.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2020). 2

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

566

https://doi.org/10.1145/3478513.3480525
https://doi.org/10.1145/3478513.3480525
https://doi.org/10.1145/3478513.3480525
https://www.massivesoftware.com/
https://www.massivesoftware.com/
https://developer.nvidia.com/vmaterials
https://developer.nvidia.com/vmaterials
https://openscad.org/
https://www.onshape.com/
https://quickdraw.withgoogle.com/data
https://quickdraw.withgoogle.com/data

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

[RBL∗22] ROMBACH R., BLATTMANN A., LORENZ D., ESSER P.,
OMMER B.: High-resolution image synthesis with latent diffusion mod-
els. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2022). 2, 18

[RDN∗22] RAMESH A., DHARIWAL P., NICHOL A., CHU C., CHEN
M.: Hierarchical text-conditional image generation with CLIP latents.
arXiv preprint arXiv:2204.06125 (2022). 2, 18

[Red76] REDDY D.: Speech understanding systems: summary of results
of the five-year research effort. Computer Science, Carnegie-Mellon
University, Pittsburgh, PA (1976). 7

[RGLM21] REDDY P., GHARBI M., LUKAC M., MITRA N. J.: Im2Vec:
Synthesizing vector graphics without vector supervision. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(2021), pp. 7342–7351. 6, 11, 12

[RJT18] RITCHIE D., JOBALIA S., THOMAS A.: Example-based au-
thoring of procedural modeling programs with structural and continuous
variability. Computer Graphics Forum (CGF) 37, 2 (2018), 401–413. 6,
14, 15

[RVdOV19] RAZAVI A., VAN DEN OORD A., VINYALS O.: Generating
diverse high-fidelity images with VQ-VAE-2. In Advances in Neural
Information Processing Systems (NeurIPS) (2019), vol. 32. 12

[RZC∗21] REN D., ZHENG J., CAI J., LI J., JIANG H., CAI Z., ZHANG
J., PAN L., ZHANG M., ZHAO H., ET AL.: CSG-Stump: A learn-
ing friendly CSG-like representation for interpretable shape parsing. In
IEEE/CVF International Conference on Computer Vision (ICCV) (2021),
pp. 12478–12487. 8, 14

[RZC∗22] REN D., ZHENG J., CAI J., LI J., ZHANG J.: ExtrudeNet:
Unsupervised inverse sketch-and-extrude for shape parsing. In European
Conference on Computer Vision (ECCV) (2022). 14, 15

[San] SANGLARD F.: Decyphering the business card raytracer. https://
fabiensanglard.net/rayTracing_back_of_business_card/. Ac-
cessed: 2022-10-19. 18

[SCS∗22] SAHARIA C., CHAN W., SAXENA S., LI L., WHANG J.,
DENTON E., GHASEMIPOUR S. K. S., AYAN B. K., MAHDAVI S. S.,
LOPES R. G., ET AL.: Photorealistic text-to-image diffusion models
with deep language understanding. arXiv preprint arXiv:2205.11487
(2022). 2, 18

[SG71] STINY G., GIPS J.: Shape grammars and the generative specifi-
cation of painting and sculpture. Information Processing (1971). 4

[SGL∗18] SHARMA G., GOYAL R., LIU D., KALOGERAKIS E., MAJI
S.: CSGNet: Neural shape parser for constructive solid geometry. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2018). 13, 14

[Sid] SIDEFX: Houdini. https://www.sidefx.com/products/
houdini/. Accessed: 2022-09-26. 2, 15, 16

[SLH∗20] SHI L., LI B., HAŠAN M., SUNKAVALLI K., BOUBEKEUR
T., MECH R., MATUSIK W.: MATch: Differentiable material graphs for
procedural material capture. ACM Transactions on Graphics (TOG) 39,
6 (2020), 1–15. 16, 17

[SLM∗20] SHARMA G., LIU D., MAJI S., KALOGERAKIS E., CHAUD-
HURI S., MECH R.: Parsenet: A parametric surface fitting network for
3d point clouds. In Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part VII
(2020), Vedaldi A., Bischof H., Brox T., Frahm J., (Eds.), vol. 12352
of Lecture Notes in Computer Science, Springer, pp. 261–276. URL:
https://doi.org/10.1007/978-3-030-58571-6_16, doi:10.1007/
978-3-030-58571-6_16. 3

[SLTB∗06] SOLAR-LEZAMA A., TANCAU L., BODIK R., SESHIA S.,
SARASWAT V.: Combinatorial sketching for finite programs. In Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2006), pp. 404–415. 4, 5

[SOZA20] SEFF A., OVADIA Y., ZHOU W., ADAMS R. P.: Sketch-
Graphs: A large-scale dataset for modeling relational geometry in
computer-aided design. In International Conference on Machine Learn-
ing Workshops (ICML Workshop) (2020). 9

[Str06] STROUD I.: Boundary representation modelling techniques.
Springer Science & Business Media, 2006. 4

[SWB21] SASAKI H., WILLCOCKS C. G., BRECKON T. P.: UNIT-
DDPM: Unpaired image translation with denoising diffusion probabilis-
tic models. arXiv preprint arXiv:2104.05358 (2021). 9

[SWD∗17] SCHULMAN J., WOLSKI F., DHARIWAL P., RADFORD A.,
KLIMOV O.: Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 (2017). 8

[Sys] SYSTEMS I. M.: Intelligent music systems. https://www.
intelligentmusicsystems.com/. Accessed: 2022-10-19. 17

[SZRA22] SEFF A., ZHOU W., RICHARDSON N., ADAMS R. P.: Vitru-
vion: A generative model of parametric CAD sketches. In International
Conference on Learning Representations (ICLR) (2022). 6, 11, 12

[TB13] TORLAK E., BODIK R.: Growing solver-aided languages with
rosette. In ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (SIGPLAN)
(2013), pp. 135–152. 5

[TLS∗19] TIAN Y., LUO A., SUN X., ELLIS K., FREEMAN W. T.,
TENENBAUM J. B., WU J.: Learning to infer and execute 3D shape pro-
grams. In International Conference on Learning Representations (ICLR)
(2019). 3, 13, 14

[TRT∗22] TCHAPMI L. P., RAY T., TCHAPMI M., SHEN B., MARTIN-
MARTIN R., SAVARESE S.: Generating procedural 3D materials from
images using neural networks. In International Conference on Image,
Video and Signal Processing (IVSP) (2022), p. 32–40. 16

[TSG∗17] TULSIANI S., SU H., GUIBAS L. J., EFROS A. A., MALIK
J.: Learning shape abstractions by assembling volumetric primitives.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2017). 3

[TSTL09] TATE R., STEPP M., TATLOCK Z., LERNER S.: Equality satu-
ration: a new approach to optimization. In ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software (SIGPLAN) (2009), pp. 264–276. 7

[UyCS∗22] UY M. A., YU CHANG Y., SUNG M., GOEL P., LAM-
BOURNE J., BIRDAL T., GUIBAS L.: Point2Cyl: Reverse engineering
3D objects from point clouds to extrusion cylinders. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2022). 14

[VFJ15] VINYALS O., FORTUNATO M., JAITLY N.: Pointer networks. In
Advances in Neural Information Processing Systems (NeurIPS) (2015),
vol. 28. 8

[vLA87] VAN LAARHOVEN P. J. M., AARTS E. H. L.: Simulated an-
nealing: Theory and applications. In Mathematics and Its Applications
(1987). 7

[VPB∗22] VINKER Y., PAJOUHESHGAR E., BO J. Y., BACHMANN
R. C., BERMANO A. H., COHEN-OR D., ZAMIR A., SHAMIR A.: CLI-
Passo: Semantically-aware object sketching. In Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH) (2022). 2,
3

[VWM15] VIZEL Y., WEISSENBACHER G., MALIK S.: Boolean satisfi-
ability solvers and their applications in model checking. Proceedings of
the IEEE 103 (2015), 2021–2035. 7

[Wil92] WILLIAMS R. J.: Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine Learning 8
(1992). 8

[WJC∗22] WILLIS K. D., JAYARAMAN P. K., CHU H., TIAN Y., LI
Y., GRANDI D., SANGHI A., TRAN L., LAMBOURNE J. G., SOLAR-
LEZAMA A., MATUSIK W.: JoinABLe: Learning bottom-up assembly
of parametric CAD joints. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2022), pp. 15849–15860. 10

[WJL∗21] WILLIS K. D. D., JAYARAMAN P. K., LAMBOURNE J. G.,
CHU H., PU Y.: Engineering sketch generation for computer-aided de-
sign. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPR Workshop) (2021). 11, 12

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

567

https://fabiensanglard.net/rayTracing_back_of_business_card/
https://fabiensanglard.net/rayTracing_back_of_business_card/
https://www.sidefx.com/products/houdini/
https://www.sidefx.com/products/houdini/
https://doi.org/10.1007/978-3-030-58571-6_16
https://doi.org/10.1007/978-3-030-58571-6_16
https://doi.org/10.1007/978-3-030-58571-6_16
https://www.intelligentmusicsystems.com/
https://www.intelligentmusicsystems.com/

D. Ritchie, P. Guerrero, R. Jones, N. Mitra, A. Schulz, K. Willis, & J. Wu / Neurosymbolic Models for Computer Graphics

[WK91] WITKIN A., KASS M.: Reaction-diffusion textures. ACM
Transactions on Graphics (TOG) 25, 4 (1991), 299–308. 16

[WL21] WANG Y., LIAN Z.: DeepVecFont: Synthesizing high-quality
vector fonts via dual-modality learning. ACM Transactions on Graphics
(TOG) 40, 6 (2021). 11, 12

[WLW∗19] WANG K., LIN Y.-A., WEISSMANN B., SAVVA M.,
CHANG A. X., RITCHIE D.: PlanIT: Planning and instantiating indoor
scenes with relation graph and spatial prior networks. ACM Transactions
on Graphics (TOG) 38, 4 (2019). 11

[WMG∗22] WONG C., MCCARTHY W. P., GRAND G., FRIEDMAN Y.,
TENENBAUM J. B., ANDREAS J., HAWKINS R. D., FAN J. E.: Identi-
fying concept libraries from language about object structure. In Annual
Meeting of the Cognitive Science Society (CogSci) (2022). 9

[WNW∗21] WILLSEY M., NANDI C., WANG Y. R., FLATT O., TAT-
LOCK Z., PANCHEKHA P.: egg: Fast and extensible equality satura-
tion. Proc. ACM Program. Lang. 5, POPL (Jan. 2021). URL: https:
//doi.org/10.1145/3434304, doi:10.1145/3434304. 5

[Wor96] WORLEY S.: A cellular texture basis function. In Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH)
(1996), p. 291–294. 4, 16

[WPL∗21] WILLIS K. D. D., PU Y., LUO J., CHU H., DU T., LAM-
BOURNE J. G., SOLAR-LEZAMA A., MATUSIK W.: Fusion 360
Gallery: A dataset and environment for programmatic CAD construction
from human design sequences. ACM Transactions on Graphics (TOG)
40, 4 (2021). 4, 6, 10, 13, 14

[WSCR18] WANG K., SAVVA M., CHANG A. X., RITCHIE D.: Deep
convolutional priors for indoor scene synthesis. ACM Transactions on
Graphics (TOG) 37, 4 (2018). 3

[WXZ21] WU R., XIAO C., ZHENG C.: DeepCAD: A deep generative
network for computer-aided design models. In IEEE/CVF International
Conference on Computer Vision (ICCV) (2021), pp. 6772–6782. 6, 14,
15

[WZN∗19] WU C., ZHAO H., NANDI C., LIPTON J. I., TATLOCK Z.,
SCHULZ A.: Carpentry compiler. ACM Transactions on Graphics (TOG)
38, 6 (2019), 1–14. 5

[WZX∗16] WU J., ZHANG C., XUE T., FREEMAN W. T., TENENBAUM
J. B.: Learning a probabilistic latent space of object shapes via 3D
generative-adversarial modeling. In Advances in Neural Information
Processing Systems (NeurIPS) (2016), pp. 82–90. 2, 3, 6

[XPC∗21] XU X., PENG W., CHENG C.-Y., WILLIS K. D. D., RITCHIE
D.: Inferring CAD modeling sequences using zone graphs. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021). 14

[XTS∗22] XIE Y., TAKIKAWA T., SAITO S., LITANY O., YAN S.,
KHAN N., TOMBARI F., TOMPKIN J., SITZMANN V., SRIDHAR S.:
Neural fields in visual computing and beyond. Computer Graphics Fo-
rum (CGF) (2022). 3

[XWL∗22] XU X., WILLIS K. D., LAMBOURNE J. G., CHENG C.-Y.,
JAYARAMAN P. K., FURUKAWA Y.: SkexGen: Autoregressive gener-
ation of CAD construction sequences with disentangled codebooks. In
International Conference on Machine Learning (ICML) (2022). 1, 11,
12, 14, 15

[YCL∗22] YU F., CHEN Z., LI M., SANGHI A., SHAYANI H.,
MAHDAVI-AMIRI A., ZHANG H.: CAPRI-Net: Learning compact CAD
shapes with adaptive primitive assembly. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2022), pp. 11768–
11778. 14

[YLM∗22] YAN X., LIN L., MITRA N. J., LISCHINSKI D., COHEN-OR
D., HUANG H.: ShapeFormer: Transformer-based shape completion via
sparse representation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2022), pp. 6239–6249. 3

[YP22a] YANG Y., PAN H.: Discovering design concepts for cad
sketches. In Advances in Neural Information Processing Systems
(NeurIPS) (2022). 11

[YP22b] YANG Y., PAN H.: Discovering design concepts for cad
sketches. In Advances in Neural Information Processing Systems
(NeurIPS) (2022). 12

[ZPIE17] ZHU J.-Y., PARK T., ISOLA P., EFROS A. A.: Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In IEEE/CVF International Conference on Computer Vision (ICCV)
(2017). 2, 9

[ZVW∗22] ZENG X., VAHDAT A., WILLIAMS F., GOJCIC Z., LITANY
O., FIDLER S., KREIS K.: LION: Latent point diffusion models for 3D
shape generation. In Advances in Neural Information Processing Systems
(NeurIPS) (2022). 2

[ZWZ∗21] ZHAO H., WILLSEY M., ZHU A., NANDI C., TATLOCK Z.,
SOLOMON J., SCHULZ A.: Co-optimization of design and fabrication
plans for carpentry. arXiv preprint arXiv:2107.12265 (2021). 5

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

568

https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

