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Abstract
We analyze the joint efforts made by the geometry processing and the numerical analysis communities in the last decades
to define and measure the concept of “mesh quality”. Researchers have been striving to determine how, and how much, the
accuracy of a numerical simulation or a scientific computation (e.g., rendering, printing, modeling operations) depends on the
particular mesh adopted to model the problem, and which geometrical features of the mesh most influence the result. The goal
was to produce a mesh with good geometrical properties and the lowest possible number of elements, able to produce results
in a target range of accuracy. We overview the most common quality indicators, measures, or metrics that are currently used
to evaluate the goodness of a discretization and drive mesh generation or mesh coarsening/refinement processes. We analyze a
number of local and global indicators, defined over two- and three-dimensional meshes with any type of elements, distinguishing
between simplicial, quadrangular/hexahedral, and generic polytopal elements. We also discuss mesh optimization algorithms
based on the above indicators and report common libraries for mesh analysis and quality-driven mesh optimization.

CCS Concepts
• Computing methodologies → Modeling and simulation; • Mathematics of computing → Mesh generation; Numerical
analysis;

1. Introduction

What constitutes a good quality mesh, and exactly how fine the
mesh should be, are questions that have been around since the
first mesh was generated. Despite decades of research, a high va-
riety can be found in the literature on concepts related to the
quality of a mesh. The survey papers [She88, Tha80] cover early
papers on mesh generation. In these surveys, there is little ex-
plicit mention of how to implement the first theoretical results,
such as the well-celebrated angle conditions by Zlamal [Zlá68],
and Babuska and Aziz [BA76]. However, in [Tha80] it is explic-
itly stated that elements should be roughly equilateral or insta-
bility may ensue. Among the first applications, it is worth men-
tioning the studies by Marchand, Weatherill, and Hassan on the
adaptation of unstructured tetrahedral meshes for transonic viscous
flow simulation [MWH97]. Liu and Joe [LJ94] developed simi-
lar geometric mesh quality indicators in the case of tetrahedral
meshes, which can effectively spot geometric flaws in the mesh that
can affect the numerical resolution of a PDE. Subsequent studies,
cf. [Nie97, Car97, GB98, MV99], provided a more in-depth treat-
ment of the matter, which impacted the design and development of
the first mesh-generation codes. More recent surveys exist on mesh
quality indicators [Knu01, SEK∗07] and mesh generation and pro-
cessing [BKP∗10, ACK13b, BLP∗13a, PCS∗22].

One thing we have learned from decades of research and dozens
of surveys is that the concept of quality depends on the application
context. The goodness of a tool principally depends on what that

tool is used for, therefore a mesh considered “good” for one specific
application may not work as fine for another. On the one hand, in
computer graphics, one generally thinks of mesh quality for model
reconstruction and processing, e.g. for guiding repairing operations
with dihedral angles or for simplifying the model while keeping
the mesh faithful to the acquired set of points [BKP∗10, ACK13b].
On the other hand, in the context of simulations by means of fi-
nite element methods (FEM), element quality can have a crucial
impact on error estimates and convergence rates, thus simulation
speed and accuracy [Cia02], and relevant quality indicators depend
on the type of simulation [Lis17]. The understanding of how the
accuracy of a PDE approximation depends on the mesh is still an
active field of research.

At the same time, the breathtaking explosion of the computa-
tional power available in modern computers seen in the last years
opens up new possibilities, unimaginable so far. Since one of the
few concepts universally accepted about mesh quality is that the
finer the mesh is, the more accurate results it is likely to pro-
duce [LS16], the idea of generating finer and finer meshes, regard-
less of the notion of quality, becomes terribly tempting. However,
there are still situations in which simply decreasing the size of the
elements is not enough to guarantee accurate results. Indeed, the
standard theory of spline approximation (cf. e.g. [LS07]) and the
finite element method (cf. e.g. [BS08]) requires the size of an un-
derlying partition to go to zero to demonstrate the accuracy as well
as the convergence of a numerical algorithm for solving a PDE.
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However, this fact is not enough to estimate how small the ele-
ments must become to be sufficient to guarantee accurate results.
Just to give a trivial example, let us imagine covering a triangular
domain with some squared cells: no matter how small the squares
are, they will never exactly cover the domain. Decreasing the size of
the cells surely leads to a better approximation, but there is no way
we could ever reach the same result as if we used triangular cells in-
stead. In a more realistic scenario, in presence of particularly com-
plex domains or problems, we may need to exponentially increase
the number of elements in order to slightly improve the accuracy
of the approximation. In such contexts, it may be worth consider-
ing spending some time analyzing the domain and the problem, to
generate meshes with higher quality (whatever it means) and fewer
elements.

1.1. Contribution

In the literature on PDE solvers, there are plenty of definitions and
criteria to measure the quality of elements and meshes. The fol-
lowing review is intended to cover the various flavors proposed,
also in relation to the context in which these are defined and used.
Both the engineering and the computer graphics communities have
contributed significantly to this field in the last decades, proposing
seminal ideas, theoretical insights, and practical algorithms. We be-
lieve the value of this work lies in its generality:

• It considers the widest possible class of meshes: planar, sur-
face and volumetric, structured and unstructured, from simplicial
meshes to quadrangular/hexahedral grids and generic polytopal
discretizations;

• It analyzes a similarly wide range of quality indicators: local
and global, geometric and algebraic, highlighting connections
between such indicators and theoretical error bounds estimates
or algorithms for quality optimization.

These two aspects, besides the fact of being up to date with the
most advanced notions and techniques, are the main peculiarities of
this work and the characteristics that differentiate it from previous
STARs in mesh processing and quality indicators.

1.2. Organization

The work is organized as follows. In Section 2 we set the notation
and define some basic notions and properties about meshes, poly-
topes, spectral operators, and quality indicators. Section 3 relates
the notion of mesh quality to the discretization and interpolation
error in a finite element space. We briefly review some of the his-
torical results on the angle conditions that must be satisfied by a
triangular and tetrahedral mesh to ensure a good approximation.
We discuss the different impacts that small and large angles have
on the interpolation and the condition number of the stiffness ma-
trix that results from an application of the linear Galerkin FEM to
a self-adjoint, second-order elliptic operator such as in the Poisson
equation. In Section 4 we present the main contribution of the sur-
vey: a comparative analysis of the local quality indicators available
in the literature. Such local indicators measure the geometric and
algebraic properties of the single mesh elements and deal more nat-
urally with finite element simulations. The quality of a mesh will
be here related to the performance of a numerical scheme over it,

in terms of speed and accuracy. In addition to the local indicators,
in Section 5 we present some examples of global quality indicators
that observe the quality of the mesh from a more general perspec-
tive. They measure aspects related to the consistency of the mesh
with the physical domain, the structure of the mesh, or its connec-
tivity, and are therefore more commonly used in computer graphics
problems. In Section 6 we report some applications of the above
indicators, i.e., methods for improving or optimizing the quality of
a mesh starting from a quality indicator defined over its elements or
nodes. Section 7 contains a summary of the most common libraries
and datasets for assessing the quality of a mesh and testing a qual-
ity indicator. Last, in Section 8 we draw some conclusions and final
remarks.

2. Background and Notation

We introduce some basic concepts and properties about meshes,
polytopes, and operators that will be used throughout the paper.
We focus on two- and three-dimensional meshes containing any
kind of polytopal elements with straight edges and planar faces. As
a consequence, meshes with curved elements are out of the scope
of the present work. Besides being of great interest for some types
of applications (e.g. isogeometric analysis [HCB05]), the literature
related to the quality of such types of meshes is still scarce.

2.1. Mesh Generalities

A mesh, often also called tessellation, domain discretization, do-
main partition, or grid (e.g., in the literature related to finite ele-
ment methods), is a discrete approximation of an object or a do-
main Ω ⊂Rd , partitioned into a finite collection of disjoint closed
cells. The mesh is called planar if d = 2, or volumetric if d = 3.
There exists a half-way case, i.e., meshes in R3 made by planar
cells, also known as surface meshes. We consider them together
with planar meshes, as they are locally planar, and refer to both as
“2D-meshes”, as opposed to “3D-meshes”, which refers to volu-
metric ones.

The cells (or elements) of the mesh are subsets of Rd with no
holes and no self-intersections. The boundary of a cell is composed
of 2-dimensional faces (in 3D-meshes), 1-dimensional edges and
0-dimensional nodes (or vertices), and two cells in a mesh can only
share faces (in 3D-meshes), edges, and nodes. A mesh relative to a
domain Ω with maximum edge length h (also called the mesh size)
is noted Ωh. We note by hE the diameter of an element E ∈ Ωh,
defined as the maximum point-to-point Euclidean distance in E.
Similarly, we note by h f the diameter of a face f ∈ ∂E and by he
the length of an edge e ∈ ∂ f , see Figure 1. We also indicate with ei j
the edge shared by the faces fi and f j and with fi j the face shared
by the elements Ei and E j.

A mesh is called pure if all its elements are of the same type, i.e.,
they have the same number of edges in 2D or faces in 3D. Common
examples are triangular, quadrangular, tetrahedral, and hexahedral
meshes. The number of cells adjacent to a node (equivalently, the
number of incident edges in 2D, or incident faces in 3D) is called
its valence. Meshes typically have a majority of regular nodes with
a fixed valence and a certain number of singular or irregular nodes
with different ones. A mesh is said to be structured if every internal
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(a) (b)

Figure 1: (a) polygon E with diameter hE and its edge e with length
he; (b) polyhedron E with diameter hE and its face f with diameter
h f .

node is regular; otherwise, the mesh is called unstructured. A mesh
is said to be conforming if two adjacent cells can only share a node,
a whole edge, or a whole face. Otherwise, the mesh is called non-
conforming, and the intersections inside edges or faces are called
T-junctions, or hanging nodes (see Figure 2).

Figure 2: If the rightmost cell is defined as “aebcd”, then the
mesh is conforming but not purely quadrangular. If it is defined
as “abcd” instead, the mesh is pure but non-conforming, and the
node e is a T-junction.

2.2. Polytopes Generalities

The elements in a mesh are polytopes, i.e., polygons for 2D-meshes
and polyhedra for 3D-meshes. Following [PS85], a polygon is de-
fined by a finite set of line segments such that every segment ex-
treme is shared by exactly two edges and no subset of edges has
the same property. A polyhedron is a finite set of plane polygons
such that every edge of a polygon is shared by exactly one other
polygon and no subset of polygons has the same property. As com-
monly assumed [PS85], we consider polyhedra such that no pair of
nonadjacent faces share a point.

A polytope P is said to be convex if, given any two points p1 and
p2 in P, the line segment connecting p1 and p2 is entirely contained
in P. Two points p1 and p2 in P are said to be visible from each
other if the segment (p1, p2) does not intersect the boundary of P.
The kernel of P is the set of points in the interior of P from which all
the points in P are visible. The first obvious consideration is that the
kernel of a polytope is a convex polytope. If P is convex, its kernel
coincides with its interior, because any two points inside a convex
polytope are visible from each other. A polytope may also not have
a kernel at all; in this case, we say that its kernel is empty. A poly-
tope P is called star-shaped if there exists a ball from which all the

points in P are visible, see Figure 3. Note that the requirement of
‘not intersecting the boundary’ in the definition of visibility implies
that a star-shapedness ball cannot have radius zero. Consider the
case of a polygon P̃ star-shaped with respect to a ball B̃ with zero
radius, i.e., a segment or a point. In particular, this means that P̃
contains at least one edge ẽ aligned with the points in B̃, and there-
fore it is not possible to connect a point in ẽ to a point in B̃ without
touching the other points of the boundary of P̃ (the same argument
holds for a polyhedron). A polytope is star-shaped if and only if its
kernel is not empty, therefore star-shapedness can be thought of as
an indicator of the existence of a kernel. Star-shapedness is weaker
than convexity, and it is often used in the literature as many theoret-
ical results in the theory of polynomial approximation in Sobolev
spaces rely on this condition [BS08, DS80].

(a) (b) (c)

Figure 3: The polygon (a) is star-shaped with respect to the disk
B but not with respect to the disk B′; the polygon (b) is not star-
shaped with respect to any disk; the polyhedron (c) is star-shaped
with respect to the ball B.

For every polytope P, we can define an inradius rP and an cir-
cumradius RP, which are, respectively, the radii of the maximum
inscribed and the minimum circumscribed circle (or sphere). We
note the area and the perimeter of P as AP and pP respectively, and
every time there is no place for ambiguity we omit the subscript P.
The solid angle θi at vertex vi of a tetrahedron T (v1,v2,v3,v4) is
defined to be the surface area formed by projecting each point on
the face opposite to vi to the unit sphere centered at vi, see Figure 4.
It measures how large an object appears to an observer looking at
it from a point, with a natural geometrical relationship to object
visualization. In contrast, the dihedral angle between two adjacent
faces of a tetrahedron is the angle between the intersection of the
two faces and a plane perpendicular to their common edge.

Figure 4: The solid angle θ1 at vertex v1 of a tetrahedron
T (v1,v2,v3,v4) is the surface area of the spherical triangle
T ′(v′2,v

′
3,v

′
4) (colored in red), where the v′i are the projections of

the vi on the unit sphere centered at v1.
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2.3. Spectral Operators

Consider a triangle with vertices vi = (xi,yi), for i = 1,2,3 in phys-
ical space. Let ξi, with 0 ≤ ξi ≤ 1 and ξ0 + ξ1 + ξ2 = 1, be three
logical space coordinates and define the mapping from logical to
physical space by x(ξ) = ∑ξivi with x ∈R2. This mapping can be
explicitly written as

x = (1−ξ1 −ξ2)v0 +ξ1v1 +ξ2v2 =A0u0 +v0,

with u0 = (ξ1,ξ2)
t and

A0 =

[
x1 − x0 x2 − x0
y1 − y0 y2 − y0

]
We refer to A0 as the Jacobian matrix of the triangle relative to
its vertex v0, because the columns of the matrix form the Jaco-
bian of the affine map with respect to the logical variables, i.e.,
Ai j = dvi/dξ j. We can define a Jacobian matrix for each vertex
of the triangle:

Ai :=
[

xi+1 − xi xi+2 − xi
yi+1 − yi yi+2 − yi

]
where the indices are taken modulo 3. The Jacobian matrix is not
independent of the node on which it is computed, but the determi-
nants of the three Ai coincide (and they equal twice the area of the
triangle). Therefore we omit the subscript and note J := det(Ai),
the Jacobian of the element. Analogous matrices can be defined for
a tetrahedron with vertices vi = (xi,yi,zi), for i = 1,2,3,4. How-
ever, in order to maintain the invariance of the determinant with
respect to the order of the vertices, an alternate minus sign is added:

Ai := (−1)i

xi+1 − xi xi+2 − xi xi+3 − xi
yi+1 − yi yi+2 − yi yi+3 − yi
zi+1 − zi zi+2 − zi zi+3 − zi


The determinant J of the Jacobian matrix of a tetrahedron gives
six times its volume, no matter which of the four matrices is used
[Fre97]. The concept can be extended to non-simplicial polytopes
like quadrangles and hexahedra, but in this case, the invariance is
not guaranteed. A possible solution is to consider the different ma-
trices Ai at the corners and at the center of the polytope, and define
the Jacobian as J := mini det(Ai) or as a harmonic or geometric
average of the values [Knu03].

According to [Knu99], the Jacobian matrix is the fundamental
theoretical object in structured mesh generation. It is fundamen-
tal because the columns of the matrix are vectors that point in the
direction of the tangents to coordinate lines. Their lengths control
the edge lengths of the mesh, their dot products are related to the
angles between coordinate lines, and the determinant of the Jaco-
bian matrix is simply related to the volume of the mesh element.
Several quality indicators in Section 4 will be based on the con-
dition number κ(Ai) = ∥Ai∥ ∥A−1

i ∥, or on the Jacobian J . For
instance, if J ≤ 0, the implied element is said to be irregular,
and it is considered invalid in the context of finite element meth-
ods [Knu00a, MPW71]. Sometimes a distinction is made between
degeneration (J = 0) and inversion or fold-over (J < 0). Depend-
ing on the concrete setting, such elements may lead to “inaccu-
rate solutions or no solutions at all” [Bar96], “invalidated” solu-
tions [RGPS11], or situations in which “calculations cannot be con-
tinued” [SB94]. Other useful entities are the metric tensors AT

k Ak

relative to the Jacobian matrix Ak at each vertex vk. These matri-
ces are symmetric, and we note λ

k
i j the i j-th component of the k-th

metric tensor. At the k-th node, the λ
k
ii are the squares of the lengths

of the edges incident to vk, and they coincide with the eigenvalues
λ

k
i of AT

k Ak [Knu03].

2.4. Quality Indicators

We introduce a generic notion of a quality indicator that anticipates
the more rigorous and particular definitions presented in Section 4.

A quality indicator is a function defined over a mesh, capable
of giving insights on the accuracy and the convergence speed of
a finite element scheme applied on that mesh, before solving any
numerical problem.

As we will see in the next section, quality indicators can assume
very different shapes and can be formulated in terms of different
properties, with different approaches. However, there has been in
the literature an effort to determine some basic properties that any
“good” indicator should satisfy. First of all, we point out the dif-
ference between an indicator, a measure, and a metric. We high-
light certain freedom in the literature, related to this terminology.
Indicator is a generic term, that stands for a map f : Ωh →R de-
fined on the mesh, its elements, or its nodes. By using the term
measure we assume (among other more obvious properties) that f
is positive and bounded. For instance, all indicators taking values
in the range [−1,1] can not be called quality measures unless re-
scaling them opportunely. Similarly, indicators that assume infinite
values for degenerate elements are not accepted. A metric (or dis-
tance) instead, is required to be positive but not bounded, and to
satisfy the triangle inequality. The triangle inequality is a particu-
larly strong condition, that makes several indicators not be metrics
but just semi-metrics [TV08]. It is not so obvious however that this
property is more important than others in relation to the concept of
mesh quality, therefore it is not always required.

A general property, that turns out to be particularly useful in sur-
veys and comparative works, is the universality with respect to the
spatial dimension and the element type. An ideal indicator should
be a function computable on both triangles, tetrahedra, quadran-
gles, and hexahedra, as well as on generic polytopes.

Fair indicators are defined in [Fie00] to be those that possess
four attributes: the ability to detect all degenerate elements, size in-
variance, boundedness, and normalization. An ability to detect all
degenerate elements means that f yields a value of zero for two-
(three-) dimensional elements that have no area (volume). Size in-
variance means that similar triangles (tetrahedra) or quadrilaterals
(hexahedra) should yield the same value of f . Boundedness means
that f cannot yield arbitrarily large values. Normalization forces f
to take on positive values between zero and one, allowing better
comparisons among indicators.

More properties are listed in [Knu01,Knu03], like the invariance
with respect to the orientation of the element, to translations, to the
nodes indexing. It is also required that f is referenced to an ideal
element that describes the desired geometric configuration of the
physical element and that 0 ≤ f ≤ 1, with f = 1 if and only if the
physical element attains the ideal node configuration and f = 0 if
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and only if the physical element is degenerate. It is worth noting
that size invariance may be required as a property for a good indi-
cator, but the size of the elements (area or volume) may as well be
considered a quality indicator itself.

3. Mesh Quality and the Finite Element Method

Finite element methods (FEMs) [BS08] and their many
old and recent variants, such as the Discontinuous
Galerkin method [BMM∗00], the Mimetic Finite Differ-
ence (MFD) method [BdVLM14], the Polygonal Finite Ele-
ment Method (PFEM) [ST04], the Virtual Element Method
(VEM) [BadVBC∗13], the Hybrid-High Order (HHO)
Method [DPD19], etc., as well as the Finite Volume Meth-
ods [BM04, BM07] provide very effective numerical approxi-
mation strategies on a wide range of problems involving partial
differential equations. All these methods have in common that
their formulation requires a family of properly refined meshes.
The numerical solution accuracy depends on several factors. The
most important ones are the degree of the approximation schemes,
how the mesh approximates the geometry of the computational
domain, the number of elements in the mesh, their size, and
their shape. The question we address in this section, i.e., what
constitutes an appropriate mesh for solving an elliptic PDE such
as the Poisson equation using the finite element method, is as
old as the method itself. The interplay between the continuous
formulation, its discretized form, and the mesh has a fundamental
role in determining how accurate the numerical solution is.

It must be clear that the concept of "mesh quality" when solving
real-world applications described by PDEs is inherently problem-
dependent, and assessing whether a given mesh is suitable for a
given application is more challenging than it would be for the
most straightforward, simple academic problems. Still, reviewing
the crucial mesh assumptions for the finite element method on sim-
ple academic problems makes sense, as we can use these theoreti-
cal results to establish mesh quality measurements. We will briefly
review the most significant achievements concerning the concept
of mesh quality when we apply the piecewise linear finite element
method to solving elliptic equations on meshes of simple-shaped
elements, such as triangles and quads in 2D and tetrahedra and hex-
ahedra in 3D. For the notation and specific details concerning the
FEM we refer to [BS08].

3.1. Discretization and Interpolation Errors

To discuss what a "good mesh" is in an application of the FEM, we
first make a distinction between a-priori and a-posteriori analysis.
A-priori analysis establishes the accuracy of the FEM depending
on the degree of the method and the regularity of the solution. A-
posteriori analysis determines the critical regions of the computa-
tional domain where a mesh refinement could be beneficial to im-
prove the accuracy of the numerical solution after such a solution
has been computed. We address this last topic in Section 6.

Let u be the exact solution of an elliptic problem in variational
form, and uh its numerical approximation. The discretization error
is the difference between the “true” solution u and its finite element

approximation uh. We define the discretization error using the L2

norm and the H1 seminorm

||u−uh||20,Ω :=
∫

Ω

|u−uh|2 dx, (1)

|u−uh|21,Ω :=
∫

Ω

|∇u−∇uh|2 dx, (2)

and the H1-norm

||u−uh||21,Ω := ||u−uh||20,Ω + |u−uh|21,Ω. (3)

In the a-priori analysis, we search for an upper bound to these quan-
tities. A standard result from the theory of the finite element method
applied to the variational formulation of a self-adjoint second-order
PDE indicates that the discretization error can be bounded by the
interpolation error. The interpolation error is the error committed
when we approximate some “true” function u (not necessarily the
solution of a PDE) with an interpolating function uI that belongs
to the finite element space. The interpolation uI shares the degrees
of freedom with u (for example, the values at the mesh vertices),
assuming that u is sufficiently regular. An application of the Céa’s
Lemma (cf. [BS08]), allows us to write the inequality

|u−uh|1,Ω ≤C inf
vh∈Vh

|u− vh|1,Ω ≤C|u−uI|1,Ω. (4)

Similarly, by using a duality argument usually referred to in the
literature as the Aubin-Nische’s trick [BS08], we can prove that

||u−uh||0,Ω ≤Ch|u−uh|1,Ω. (5)

Therefore, if we know an upper bound on the interpolation error in
the right-hand side of (4), we estimate the discretization error in the
H1-norm still from (4). Then, using this upper bound, we estimate
the discretization error in the L2-norm using (5).

Here, we need to make two comments. First, inequality (4)
makes it possible to control the discretization error through the in-
terpolation error. Second, constants C in these inequalities depend
on specific features of the problem. For example, the constants C
in (4) is determined by the ratio between the continuity constant
of the right-hand side functional and the coercivity constant of the
bilinear form of the variational formulation. These constant factors
are required to be independent of the mesh size parameters h and
the exact solution u. Indeed, in the a-priori estimates, we want to
outline the dependence on h to establish a convergence rate and the
dependence on a higher seminorm of the exact solution u to show
the minimal regularity that u must have for this estimate to be valid.
Still, the constant C may depend on the domain and the regularity
properties of the mesh, thus hiding how the mesh impacts on nu-
merical accuracy.

3.2. Discretization and Interpolation Errors and Mesh Quality

Following on the path drawn in [She02], it is thus natural to assess
mesh quality in relation to the discretization error and the interpo-
lation error. However, even if we make a distinction between in-
terpolation and discretization errors, these quantities are not com-
pletely independent. As we have seen in the previous subsection,
we can use the interpolation error to control the discretization er-
ror. Clearly, the discretization error can be mitigated by elements
whose shape and size are selected to reduce the interpolation error.
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However, the dependence of these two types of error on the shape
and the size of the mesh elements is different.

On one hand, the discretization error is strongly related to the
stiffness matrix: poorly conditioned matrices affect linear equation
solvers by slowing them down or introducing large roundoff errors
into their results. The relationship between element shape and ma-
trix conditioning depends on the PDE being solved and the basis
and test functions used to discretize it, and is reflected in the value
of the constant factors C in the estimates. On the other hand, the in-
terpolation error only depends on the approximation properties of
the finite element space Vh, and is, thus, independent of the partial
differential equation to be solved numerically.

Both the L2 and H1 norms are involved and must be considered.
The errors in the gradient approximation, which is measured by
the H1-seminorm, can be surprisingly important whether the ap-
plication is rendering, mapmaking, or simulation, because they can
compromise accuracy or create unwanted visual artifacts, see Fig-
ure 5. Since the finite element space Vh where we seek uI , is built
on a specific mesh (or sequence of meshes), the interpolation er-
ror strongly depends on the geometric properties of the elements
(edges, angles, area, inradius, . . .). To build a quality indicator, we
assume that the interpolation process works the best on some ideal
element, e.g., the equilateral triangle and the square in 2D, the equi-
lateral tetrahedron and the cube in 3D. Then, a straightforward in-
dication of how an element is suited to the interpolation is given by
computing some sort of “distance” between the actual element and
the ideal one.

Figure 5: A visual illustration from [She02] of how large angles,
but not small angles, can cause the H1-seminorm error to ex-
plode. In each triangulation, 200 triangles are used to render a
paraboloid.

We can also define mesh quality indicators by optimizing the
interpolation on a specific family of functions. Each finite dimen-
sional space is locally defined on a mesh element and all the ele-
mental spaces are “glued” together in a way that ensures a global
regularity property of the finite element functions. For example,
a conforming coupling of the elemental spaces ensures that the
finite element functions are globally continuous on the domain
Ω. Assuming that the elements are triangles, tetrahedra, quads or
hexagons, the finite element functions are normally polynomials
of a given degree on every mesh element. Berzins [Ber98] derives
a mesh quality indicator from the work [Nad86], which provides
a particularly suitable equation for the interpolation error when we
approximate quadratic functions by piecewise linear Galerkin finite
elements on triangles.

3.3. Angle Conditions

The L2 and H1 a priori errors estimates (1)–(2) explicitly depend
on the mesh parameter h. However, their dependence on other mesh
factors or parameters is not explicited. In fact, the quality of the
mesh is normally hidden in the various constants C that “infest”
such estimates. From such convergence estimates, we may also (er-
roneously) assume that decreasing the mesh size, i.e., considering a
sequence of meshes with smaller and smaller elements, is sufficient
to improve the accuracy of the solution. However, the constants C
still depend on the geometrical shape of the elements. This latter
one cannot be arbitrary, because, otherwise, the value of C, which
is uniform on the whole sequence of refined meshes, would deteri-
orate.

We can describe the shape of an element in terms of geometri-
cal quantities such as the internal angles, the radius of the circle
or sphere that circumscribes the element, etc. As noted in [She02],
several Authors in the literature were successful in determining a
relationship between the constant C and the geometrical quanti-
ties of a given element, thus paving the way for the formulation of
mesh indicators, many of which we will review in the next sections.
The first historical results in this direction are related to the internal
angles of a triangular mesh, and served as the foundation for the
first mesh quality assessments. This investigation begins with Zla-
mal [Zlá68], Babuska and Aziz [BA76], that prove results of the
form

||u−uh||1,Ω ≤C(θ)h|u|2,Ω where |u|22,Ω :=
2

∑
i, j=1

∣∣∣∣∣ ∂
2u

∂xi∂y j

∣∣∣∣∣
2

,

and C(θ) is a constant factor that depends on the internal angles of
the triangles forming the mesh. Zlamal demonstrates that C(θ) ≃
1/sin(θmin), where θmin = min(θ1,θ2,θ3), and θi, i = 1,2,3, is the
angle of the i-th vertex of a triangular cell. Babuska and Aziz prove
that C(θ)≃ 1/Ψ(θ), where Ψ(θ) is a positive and continuous func-
tion such that Ψ(θ)≥ Ψ(γ) for θ ≤ γ < π. Here, γ is a bound on the
maximum angle of the mesh, so that the proper condition for tri-
angles is the absence of large angles. Kr̆ìz̆ek’s [Kı92] extends the
result of Babuska and Aziz to three-dimensional tetrahedral ele-
ments.

So, according to conventional thinking, triangular and tetrahe-
dral elements should have no small or large angles wherever possi-
ble. However, internal angles impact differently on the discretiza-
tion and the interpolation error. The interpolation error requires a
maximum angle condition and is relatively insensitive to small an-
gles. This fact had a significant impact on using anisotropic meshes
for solving elliptic problems with strong anisotropies. Based on
interpolation errors, Rippa [Rip92] argues convincingly that long,
thin triangles provide a proper mesh for solving elliptic problems
with highly anisotropic coefficients. Apel and Dobrowolski [AD92]
offer a unified theory of interpolation error estimates on nonuni-
form meshes and application to finite elements for anisotropic prob-
lems.

The situation is completely different for the discretization error,
since small angles have a major impact on the conditioning of the
stiffness matrix. In fact, the condition number may arbitrarily in-
crease if just one single angle of a triangular mesh approaches zero.
We discuss this issue in the next subsection.
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3.4. Condition Number of the Stiffness Matrix

The concept that we explore in this section is that poor quality el-
ements may significantly affect the convergence and accuracy of
the Krylov iterative solvers and the direct solvers that we apply
to the system of linear equations resulting from the finite element
discretization. The parameter measuring this difficulty is the condi-
tion number, and we expect that the higher its value, the harder it is
solving such linear systems. In fact, it is possible to prove that if the
condition number is big, direct methods may have excessive round-
off errors, and iterative solvers may run slowly and even experience
non-convergence.

Let K denote the global matrix from an application of the finite
element method to the bilinear form of the variational formulation
of an adjoint, second-degree PDE like, for example, the Poisson
equation with homogeneous boundary conditions, and λmax(K) and
λmin(K) the largest and smallest eigenvalues of K. If we include the
boundary conditions, this bilinear form is symmetric, coercive, and
continuous, the corresponding matrix K is symmetric and positive
definite, and its eigenvalues are real, positive numbers. The condi-
tion number of K is defined as κ(K) = λmax(K)/λmin(K).

The minimum eigenvalue λmin(K) is related to the size of the el-
ements and the physical system that we want to model. In [Fri72],
we find an upper bound for λmin(K) that is proportional to the area
or volume of the biggest element of the mesh, and a lower bound
for λmin(K) that is proportional to the area or volume of the small-
est element. Therefore, we can claim that, in general, reducing the
size of the elements reduces its value. However, the value of the
minimum eigenvalue is not very sensitive to the elemental shape,
particularly the elemental angles.

Instead, the maximum eigenvalue λmax(K) can attain large val-
ues even if there is just a single badly-shaped element E in the
mesh. Let λmax(KE) denote the biggest eigenvalue of the elemental
stiffness matrix KE . From [Fri72], we also know that

max
E

λmax(KE)≤ λmax(K)≤ m max
E

λmax(KE),

where m is the maximum number of elements meeting at a sin-
gle vertex of the mesh. Consequently, the condition number κ(K)
is roughly proportional to the biggest eigenvalue of the elemental
stiffness matrices.

We can exemplify this situation by writing the elemental stiffness
matrix for a triangle as

KE =
1
2


cotθ2 + cotθ3 −cotθ3 −cotθ2

−cotθ3 cotθ1 + cotθ3 −cotθ1

−cotθ2 −cotθ1 cotθ1 + cotθ2


where θi, i = 1,2,3, are the internal angles of E. We can easily see
that λmax(KE) and λmax(K) approach infinity if one of the angles
θi, with i = 1,2,3, approaches 0 or π, because in these cases the
value of cotθi becomes arbitrarily large. We infer that both small
and large angles deteriorate the matrix conditioning. A similar ar-
gument holds for meshes of tetrahedra; more details and the explicit
formula for the stiffness matrix of a tetrahedral cell when using the
linear Galerkin finite element space can be found in [She02].

Conversely, suppose that there are no badly shaped triangles in

the mesh, so that for every triangle E, we can bound λmax(KE) from
below by some small constant. In this case, we can bound λmax(K)
from below by a small constant, and note that the lower bound on
the smallest global eigenvalue λmin(K) is proportional to the area
Amin of the smallest triangle, and κ = O(1/Amin). If the triangles
are of uniform size, it follows that κ(K) is proportional to ℓ−2,
where we denote by ℓ the typical edge length. This deterioration of
the conditioning of the matrix is, however, unavoidable, and shows
that, due to the finite precision of the arithmetics, reducing the mesh
size does not necessarily lead to an improvement of the numerical
accuracy.

Following similar ideas, based on explicit formulas for the stiff-
ness matrix and their eigenvalues, several authors propose mesh
quality indicators for the finite element interpolation, cf. [DWZ09].

4. Element Indicators

Element quality indicators are defined element-wise and then col-
lected into a single mesh quality score in some kind of average.
As a consequence, they are often specific to particular types of ele-
ments. In this section, we separately analyze indicators defined for
the following types of elements:

• Simplicial elements (triangles and tets): triangular elements in
a 2D-mesh with 3 nodes and 3 edges; tetrahedral elements in a
3D-mesh with 4 nodes, 6 edges, and 4 triangular faces;

• Quads and hexes: quadrangular elements in a 2D-mesh with 4
nodes and 4 edges; hexahedral elements in a 3D-mesh with 8
nodes, 12 edges, and 6 quadrangular faces;

• Polytopes: polygonal elements in a 2D-mesh that are not trian-
gles nor quads; polyhedral elements in a 3D-mesh that are not
tets nor hexes.

While a common requirement is that all mesh elements are non-
degenerate (i.e., they have a positive area or volume), different nu-
merical schemes may demand the fulfillment of additional require-
ments. For each type of element, we further distinguish between
indicators that measure the interpolation error and those that mea-
sure the discretization error. The firsts are derived straightforwardly
from error bounds or by computing some sort of distance from an
ideal element (e.g., the equilateral triangle or the square). They
typically involve geometric quantities like edges, areas, volumes,
or diameters. The latters are derived from information about the
stiffness matrix and therefore are formulated in terms of condition
numbers, eigenvalues, or matrix norms.

4.1. Simplicial Elements

We start our analysis from simplicial elements because several
indicators are firstly defined over them and then extended to
quads/hexes or polytopes. The quality of a simplex is typically in-
tended as its deviation from an equilateral triangle or tetrahedron
(at least for isotropic problems). Pathological triangular elements
can be either “needles” with one and only one angle close to 0,
see Figure 6(a), or “flat elements” with one angle close to π, see
Figure 6(b). The major difference between a triangle and a tet is
that a new entity comes to play in the latter, namely, the solid an-
gle. Pathological tetrahedra can be “needles” with one and only one
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solid angle close to 0, see Figure 6(c), “wedges” with one face with
a very small area, see Figure 6(d), or “slivers” with a vertex almost
on the plane containing its opposite face, see Figure 6(e).

Figure 6: Examples of poorly shaped triangles and tetrahedra:
(a,c) needles, (b) flat element, (d) wedge, (e) sliver.

Interpolation The simplest indicators for triangles are provided
by the ratio between the inradius r and the circumradius R of the
element, also called radius or aspect ratio, or the ratio between the
longest edge he max and the inradius:

ε1 =
r
R
, ε2 =

r
he max

, ε3 =
he max

R
. (6)

A deep analysis of these indicators is provided by [PB03], where
the authors study their extremum values and asymptotic behaviors.
A direct formula for computing ε3 for a tetrahedron in terms of
edge lengths and face areas is provided in [LJ94]. The edge ratio
instead, intended as the ratio between the shortest and the longest
edge, is not considered an interesting quality indicator as it does
not vanish over flat elements [ADL∗98].

Equally important is the angle regularity, which imposes that the
internal angles are not too different from each other. For triangles
it can be devised by measuring the sinus of the smallest angle θmin
or the widest angle θmax, or a ratio between these two:

ϑ1 = sin(θmin), ϑ2 = sin(θmax), ϑ3 =
ϑ1
ϑ2

. (7)

Several variations of the above indicators are overviewed in [Fie00]
and [SEK∗07]. The computation of the minimum solid angle of a
tetrahedron is not intuitive; a widely used formula is the one intro-
duced in [LJ94]:

ϑ4 = min
i=1,...,4

{sin(θi/2)}, where (8)

sin(θi/2) =
12V√

∏ j,k ̸=i, 1≤ j<k≤4

[
(hei j +heik)2 −h2

e jk

] .
The minimum dihedral angle can be measured as well, but it cannot
detect the degenerate case of a needle-shaped tet [ADL∗98]. In fact,
the dihedral angles of a tetrahedron remain more or less the same
as the triangular face opposite to the pointed node is getting smaller
and smaller. As already noted in Section 3.3, big angles are dele-
terious to the interpolation accuracy and the discretization error,
while small angles may also be deleterious to the condition number
of the stiffness matrix in finite element simulations [DWZ09].

Starting from tight error bounds for the interpolated function and

its gradient, accurate quality indicators are derived in [She02], for
triangles:

ρ1 =
A
R2 , ρ

∇
1 =

A
(he1he2he3)2/3

, (9)

and for tets:

ρ2 =
V
R3 , ρ

∇
2 =

V ∑
4
m=1 Am

∑1≤i< j≤4 AiA jhei j
, (10)

where the index ∇ indicates the quality indicator relative to the
quantity ∥∇ f −∇g∥∞. We only report here the smooth and scale-
invariant versions of such measures, referring to the original paper
for a more detailed analysis.

Discretization Indicators based on the Jacobian matrix have been
identified as the key measures relevant in the context of FEM
[EE20] and can be also used for curvilinear elements [MC21]. The
algebraic shape indicator from [LJ94] is expressed as the ratio of
the geometric mean to the arithmetic mean of the eigenvalues λi of
ATA:

ς1 =
3J 2/3

trace(ATA)
=

3 3
√

λ1λ2λ3
λ1 +λ2 +λ3

(11)

For this reason, it can be found under the name of mean ratio
[ADL∗98]. An equivalent version is the Frobenius ratio, which
consists of the inverse of the condition number of matrix A in the
Frobenius norm [Knu01]:

ς2 =
d

κ(A)
=

d
|A|F |A−1|F

, |A|F =
√

trace(ATA) (12)

where d is the size of the matrix, i.e., the space dimension. The
same indicator can be defined, with analog results, using any other
type of matrix norm; see [PB03] for a comparison. Other specific
shape quality indicators for triangles and tetrahedra based on the
jacobian matrix are given in [Knu03] under the formulas

ς
2D
4 =

√
3J

λ11 +λ22 −λ12
(13)

ς
3D
4 =

3 3
√

2 J 2/3

3
2 (λ11 +λ22 +λ33)− (λ12 +λ23 +λ13)

.

In [She02], two precise quality indicators are derived from tight
bounds on the minimum and maximum eigenvalues of the stiffness
matrix, respectively for triangles and tets:

ς
2D
3 =

3A

∑
3
i=1 h2

ei
, ς

3D
3 =

4V(
∑

4
i=1 A2

i

)3/4
. (14)

Similar indicators have been found in other works: in [BX96]
the quality of a triangle is set as 4

√
3A/(h2

e1 + h2
e2 + h2

e3), while
[SP92] opts for the formulation 12

√
3A/(he1 + he2 + he3)

2. Anal-
ogously, the quality of a tet is measured in [Lo97] by the formula
12

√
3V/(h2

e1 + h2
e2 + h2

e3)
3/2. In [DWZ09] a bound on the deter-

minant of the stiffness matrix in the more general setting of gen-
eral finite element spaces and general model equations is given by
∑

n+1
i=1 A2

i /V .
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4.2. Quads and Hexes

While quads may be more efficient than triangles from a compu-
tational point of view, their properties make them a more diffi-
cult primitive to handle compared to triangles. In addition to edge
lengths, quadrilaterals have one (and only one) more degree of free-
dom, provided by any of their four angles [Péb04]. This extra de-
gree of freedom gives birth to many pathological configurations,
and even simple operations present a greater challenge. In Figure 7
we introduce some quantities specific to quadrilateral elements or
faces. The normal versor associated to each vertex vi is defined as:

ni =
ei × ei+1

∥ei × ei+1∥
,

while the two principal axes of the quad are given by:

x1 = (v2 −v1)+(v3 −v4), x2 = (v3 −v2)+(v4 −v1).

If the quad is not planar, the principal axes individuate a projection
plane π. The cross derivatives of the map from parametric to world
space are oriented along

x12 = (v1 −v2)+(v3 −v4) = (v1 −v4)+(v3 −v2) = x21.

(a) (b)

Figure 7: Elements of a quadrangle: (a) normal versors ni and
principal axes xi; (b) projection plane π defined by the principal
axes.

First of all, a quad (intended as an element itself, or as a face of
a hexahedral element) is not necessarily flat, and even planar quads
may be non-convex. This can be particularly crucial in architec-
tural applications, where quad-meshes featuring this property are
often categorized as Planar-Quad [BLP∗13b]. Planarity and con-
vexity can be simply imposed as prerequisites for all the elements
in a mesh, or be the subject of some quality indicators. Robinson’s
pioneering work [Rob87a] individuates four shape parameters that
define a planar quadrilateral, shown in Figure 8(a-c): the aspect ra-
tio, the skew angle and two tapers. If the quad is not planar we
can add a fifth parameter, namely warpage, to measure planarity
(Figure 8(d)).

Interpolation The warping of a quad measures its distance from
being planar. Given the projection plane πQ defined by the prin-
cipal axes, the warping of Q is measured by the distance between
its vertices v1, . . . ,v4 and their projections v′1, . . . ,v

′
4 onto πQ, see

Figure 7(b):

ϕ1 = max
i=1,...,4

{
sin−1

(
∥vi −v′i∥

l

)}
, (15)

(a) (b) (c) (d)

Figure 8: Quality of a quadrangular element: (a) low aspect ratio,
(b) skewed element, (c) element with a significant taper along one
direction

, (d) warped element.

where l is the half-length of the shortest between the two edges
around vi [Rob87b]. In the simplest sense, ∥vi − v′i∥ is already an
estimate of the warpage [Rob94]. Alternatively, warping is mea-
sured in [SEK∗07] through the curvatures of the coordinate surface
on which the quad lies:

ϕ2 = 1−min
{
(n1 ·n3)

3,(n2 ·n4)
3
}
. (16)

Other formulations involve the coefficients of the second funda-
mental form or the mean and Gaussian curvatures of a coordinate
surface containing the quad [Lis17].

A formula for the aspect ratio of a quad can be derived from
Indicator (6) for triangles. The opposite sides of each quad should
have approximately equal lengths (this can be particularly crucial
in contexts like physical simulations), or, for anisotropic approxi-
mation, a ratio best for approximation quality. However, the simple
ratio between edges is not able to capture all kinds of pathologies,
for instance, skewness. Another formula specific to quadrilateral
quality measure has been proposed by [Rob87b] and further opti-
mized in [Fie00]:

ε1 = max
{
∥x1∥
∥x2∥

,
∥x2∥
∥x1∥

}
, (17)

while the quality measured by [FG00] involves the quad diagonals
d1,d2 and the areas At

i of the triangles formed by the two edges
incident to the i-th vertex:

ε2 =

√
∑

4
i=1 h2

ei max{hmax,d1,d2}
mini{At

i}
. (18)

In [Péb04] we find a specific formula to measure the aspect regu-
larity, intended as the departure of the cell from a rhombus:

ε3 =
1

1−
∣∣∣1− 2α

π

∣∣∣ , (19)

where α is the average between two opposite angles, no matter
which. A similar stretch indicator is given by the ratio between the
minimum edge and the maximum diagonal [SEK∗07]. In [Lis17]
the stretch is also formulated in terms of the covariant metric ten-
sor.

Regarding the angle regularity, or skewness, internal angles
should be close to 90 degrees, therefore we need to characterize
the departure of a quad from a rectangle. This is measured by the
absolute value of the cosine of the angle between the principal
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axes [Rob87b]:

ϑ1 =

∣∣∣∣ x1
∥x1∥

· x2
∥x2∥

∣∣∣∣ . (20)

It can also be described through the cosine (or the cotangent)
squared of the angle between the two tangent vectors defining the
quad [Lis17]. As pointed out in [Knu03], such skew indicators
reach their maximum also over elements that are not rectangles.
To avoid this issue, the alternative indicator is proposed:

ϑ2 =
4

∑
4
i=1 1/sin(θi)

. (21)

A further quantity that can be measured in a quad is the so-
called taper, conceived as the difference in length between opposite
edges. The tapers relative to the two couples of edges in a quad are
conventionally called the x- and y-component [Rob87a]. It can be
quantified by the maximum ratio of cross derivative magnitude to
principal axis magnitude [SEK∗07]:

τ =
∥x12∥

min{∥x1∥,∥x2∥}
. (22)

The quality indicators defined for quadrangular elements are
straightforwardly extended to hexahedral cells. In [Rob94] Robin-
son defines three skew ratios, three tapers, and six warpages for a
hexahedral element, with the same procedure used for quads. Warp-
ing, stretching, skewness, and aspect regularity of a hex can be de-
fined by the sum, the average, or the minimum/maximum of the
respective indicators on its faces [Lis17, SEK∗07].

Discretization Robinson’s efforts amply demonstrate that quadri-
laterals present much more complex geometric shapes to assess
than triangles. This complexity perhaps motivates the predominant
practice of using Jacobian determinants rather than purely geomet-
ric indicators [Fie00].

For the shape regularity, we already saw how the Jacobian can be
simply extended by considering the minimum between the values
of J at the vertices and at the center of the quad. In this sense, it
can be used in the same formulas as for triangles. In [Knu01] we
have the equivalent of Indicator (12) for quads (n = 4) and hexes
(n = 8), together with an alternative formulation ς2:

ς1 = min
i=1,...,n−1

{
d

κ(Ai)

}
, ς2 =

9n

∑
n−1
i=1 κ(Ai)2

. (23)

More advanced Jacobian-based indicators exist under the names of
weighted or scaled Jacobian [Knu00b, Knu00a]:

ς3 =
mini{Ji}
maxi{Ji}

, ς4 = min
i

{
Ji

hei−1 hei

}
, (24)

or the ones proposed in [Knu03] for quads and hexes:

ς
2D
5 =

8

∑
4
i=1(λ

i
11 +λi

22)/Ji
, (25)

ς
3D
5 =

24

∑
8
i=1(λ

i
11 +λi

22 +λi
33)/J

2/3
i

. (26)

Such indicators provide a measure of the variation in the Jacobian
across the element, and they return a general measure of the quad
shape.

Another diffused shape indicator is the Oddy metric [OGMB88],
which measures the maximum deviation of the metric tensor at the
corners of the quad. It can be defined in terms of the Jacobian ma-
trices, or through the more explicit formula given in [SEK∗07] for
quads (and then extended to hexes):

ω = max
i=1,...,4

{
(h2

ei −h2
ei+1)

2 +4(heihei+1)
2

2∥ei−1 × ei∥2

}
. (27)

4.3. Polytopes

The concept of the geometric quality of a cell becomes quite vague
when the cell is a generic polygon or polyhedron. Most of the
quality indicators defined above become meaningless when the ele-
ments have a generic number of vertices or faces, or they are at least
very difficult to extend. For instance, the Jacobian can be extended
to generic convex polygons (similarly to how we did for quads), but
the Jacobian matrix in a polyhedron vertex is defined only if such
vertex has three incident edges (e.g., a prism is fine, but a pyra-
mid is not), and in general it is not defined for non-convex poly-
topes [Knu01]. Trying to delimit the field by excluding unlikely
configurations, most mesh generators, and most numerical schemes
only allow convex or star-shaped elements. On the other side, in-
dicators defined for generic polygons can also be used to analyze
the quality of triangular and quadrangular elements, being trian-
gles and quads particular cases of polygons, and the same holds for
polyhedra and tets/hexes.

Figure 9: Polygonal element E with diameter hE , inradius rE , and
circumradius RE . Its kernel K has kernel radius rK .

Interpolation The concept of warping can be extended naturally
to polytopes. Indicator (15) remains valid, but computing the plane
on which projecting the polygon (or the polygonal faces) is less
immediate when the polygon is not a quad. Indicator (16) instead,
can be extended to polygons by adding a proper number of pairs of
normal versors ni.

The aspect ratios for polytopes are typically derived from In-
dicator (6), using the inradius r, the circumradius R, and oppor-
tunely replacing the maximum edge lengths with the diameter hE
[GRB12], see Figure 9:

ε1 =
r
R
, ε2 =

r
hE

, ε3 =
hE

R
. (28)
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A number of variations of the above indicators (only for polygons)
are overviewed in [ABB∗21], where the authors analyze the im-
pact of the different indicators on the performance of the Virtual
Element Method. Alternatively, it is always possible to decompose
a polytope into triangular or tetrahedral elements obtained con-
necting its vertices (generating a “matching simplicial submesh”
[DPD19]) and apply the simplicial shape ratio indicators.

The angle regularity of a generic polygon can be inferred by any
of the Indicators (7), while the formula for the solid angle given in
Indicator (8) is peculiar to tetrahedral elements.

If we allow for the presence of non-convex polytopes, the ratio
between the area and the perimeter 2πAE/p2

E (or the volume and
the surface area) becomes much more interesting than it was for
simplicial elements [ABB∗21]. A number of indicators involve the
kernel K of the element:

ϕ1 =
AK

AE
, ϕ1 =

VK

VE
, (29)

which returns 1 for convex polytopes, a value in (0,1) for concave
polytopes, and 0 for star-shaped polytopes. It is also possible to
measure the ratio between the inradius rK of the circle inscribed in
K and the circumradius RE , see Figure 9.

Some works on polygonal element methods also require that the
elements in the mesh have no “short edges”, meaning that the ra-
tio between the diameter and the shortest edge of the element is
uniformly bounded across the mesh [BadVBC∗13, AAB∗13, Bd-
VLR17, BGS17]. Recently, researchers noticed that the “no short
edge” requirement can be dropped in the case of Virtual Element
Methods [BS18, BadVV20]. But for other numerical methods, the
situation is not completely clear and no short edges are still re-
quired at least in some theoretical analyses [GRB12]. This, there-
fore, arises as a sufficient condition for the good behavior of the
numerical method, but it can be also intended as a quality indica-
tor. This is the approach of [SPC∗22,SBMS22b], where the authors
propose a mesh quality indicator specifically designed to work in
couple with the Virtual Element Method. It is derived from the four
geometrical assumptions required on a mesh for the convergence of
the VEM:

ρ1 = AK/AE , ρ2 = min{
√

AE ,he min}/hE

ρ3 = 3/#{e ∈ ∂E} , ρ4 = min
j

mine∈I j
E

he

maxe∈I j
E

he
,

and it is formulated as

ρ =

√
ρ1ρ2 +ρ1ρ3 +ρ1ρ4

3
. (30)

Its 3D version is derived straightforwardly in [SBMS22a], by sim-
ply extending the indicators to volumetric elements.

Numerous attempts have been made to measure the quality of a
polygon or polyhedron as “how far it is from a regular n-gon or n-
hedron” [CHSS13, Cox38, ZR04] because a unitary regular n-gon
(or n-hedron) is usually considered to be of high quality in the Eu-
clidean metric. This implies, for instance, considering the ratio be-
tween the area (volume) of an element P and the area (volume) of a
regular n-gon (n-hedron) with the same perimeter (surface area) as
P, or the difference between the angles of P and those of the ideal

element. Unlike triangles, however, n-gons with n > 3 generally are
not affine similar to a single reference n-gon [HW20]. Hence the
idea of measuring the quality of a polygonal mesh by comparing its
elements to regular n-gons through affine mappings does not work
in general. To make it work, one needs to build proper mappings
connecting arbitrary polygons with the reference ones, or re-define
reference polygons of “good quality”, or do both. However, poly-
topal element methods are defined to work over extremely generic
elements, therefore there is apparently no reason to believe that the
quality of a regular n-gon is the highest possible, or that they are
the only configurations able to reach that quality level.

Discretization As already noted, the Jacobian matrix in a poly-
hedron vertex is defined only if such vertex has three incident
edges. An exception can be made for the particular case of pyra-
midal elements, where the only vertex with valence higher than
three is the top one. As a pyramid is completely defined by the
tetrahedra associated with its base vertices, it is possible to de-
fine the Jacobian as an average of the Jacobians computed at the
base vertices, which are all well-defined. It is therefore possible
to compute Indicator (11) or (12) over “hybrid” meshes, that are
mostly tetrahedral or hexahedral, with a small number of pyramids
or prisms/wedges (whose vertices have all three incident edges) as
transition elements to connect triangular and quadrilateral element
faces [VW12, KC00, LADH22].

The Target-matrix paradigm is a generalization of this Jacobian-
based algebraic approach to mesh quality [Knu07,Knu12]. The Ja-
cobian matrices Ak are computed on a set of sample points and
compared to the relative “Target” matrices Wk, which provide the
local definition of quality. Its generality stems from the fact that the
sample points can be defined for any kind of mesh and the quality
indicator can be customized to match users’ requirements. In the
easiest case, the sample points coincide with the vertices of a sim-
plicial mesh, and the indicator is built on the matrix T = AW−1 as
Indicator (12):

ς =
d

κ(T )
=

d
|T |F |T−1|F

. (31)

A similar approach is adopted in [SDVG10], encoding the desired
target size and shape of each element into a Riemannian metric
instead of a matrix.

Another common type of polytopal meshes is Centroidal
Voronoi Tessellations (CVT), which contain convex Voronoi cells
with an undefined number of edges and faces. The quality of a CVT
is often measured through some ad-hoc CVT energy. Given a CVT
with centroids xi, i = 1, . . . ,n, defined over a domain Ω =

⋃n
i=1 Ωi

endowed with a density function ρ(x) > 0, its global energy is de-
fined as [DFG99a]:

n

∑
i=1

∫
Ωi

ρ(x)∥x−xi∥2dσ.

The CVT energy accounts for the compactness of the cells, but it
depends both on the number of cells and on the size of the shape.
To overcome this problem, in [Wan17] the author proposes to de-
fine a local quality indicator derived from the dimensionless second
moment (or variance) of the single polytope, which measures how
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far the points inside E are spread out relative to its centroid x̃:

ϑ =

∫
E ∥x− x̃∥2dx

d (
∫

E dx)(d+2)/d
. (32)

In this approach, the optimal element turns out to be the hexagon
in 2D and the truncated octahedron in 3D.

4.4. Discussion

In Table 1 and Table 2 we summarize the main quality indicator
found for 2D and 3D elements, respectively. The tables are not ex-
haustive: we reported a representative selection of the vast amount
of the existing variants for each indicator. Moreover, we occasion-
ally had to “force” the notation in favor of readability. In particular,
the rows relative to “interpolation quality” and “shape regularity”
contain all the indicators from the Interpolation and Discretization
paragraphs (respectively) that did not fit into any other category.

We briefly comment on the two tables, also with respect to the
considerations made in Section 2.4. Despite the name with which
the indicators have been originally introduced, few of them are ac-
tually measures or metrics. For instance, they take values in ranges
different from [0,1], but a deeper analysis of this aspect is beyond
the scope of this work. However, according to the results presented
in the respective papers, this does not prevent them to be accurate
and reliable in assessing the quality of an element. Indicators re-
ported in the rightmost columns are the most general: they are de-
fined over any type of cell and they are often very similar between
their 2D and 3D formulation. It is also notable how almost all the
quality indicators for hexes are simply defined as a function of the
quads quality indicators applied to their faces, exceptions made for
those based on the Jacobian.

Many indicators have been shown to be equivalent when applied
to the same type of elements. For instance, [LJ94] proved that ra-
dius ratio, mean ratio, and sine of solid angle are equivalent over
tets, meaning that they perform similarly well (or bad) over well
(or bad) shaped elements. It has also been shown how the mean
ratio performs equivalently to the Frobenius ratio [Knu01], which
in its turn is equivalent to the same ratio using any other matrix
norm [PB03]. This is the reason why they belong to the same row
in our tables. Chances are that more equivalences can be proven
among other indicators, taking advantage of formulas that allow
expressing algebraic quantities in terms of geometric ones and vice
versa. Excluded from this point are case-specific indicators like the
CVT energy or the VEM quality indicator.

The computational efforts required for some of the presented in-
dicators are discussed in [PGH94]. There exist a few works that
compare the impact of the quality indicators on various steps of the
simulation process, to evaluate how much the a-priori indicators
actually correlate with the eventually observed performance of a
mesh. A comparison of the performance of some specific quality in-
dicators for hexahedral meshes in terms of stability and accuracy is
given in [GHX∗17], with both application-dependent and indepen-
dent studies. The PEMesh graphical framework [CPS22] allows the
study of the correlations between the geometric properties of polyg-
onal meshes and the numerical performances of PEM solvers. The
user can design sets of polygonal meshes that increasingly stress

some geometric properties and study the correlation between the
performances of an external PEM solver and the geometric prop-
erties of the input mesh. More details on available software and
datasets are provided in Section 7.

(a) (b) (c)

Figure 10: Comparison between different quality indicators over
three polygonal meshes (a-c): each element is colored with respect
to its quality from blue (low) to yellow (high). From top to bot-
tom row: kernel-area ratio; angle ratio; VEM quality indicator;
H1 norm of the approximation error produced by the linear VEM.

In Figure 10 we present a visual comparison of the differences
between some quality indicators, and their relationship with the er-
rors produced in a numerical simulation. In column (a) we consider
a mesh containing only triangular elements, in (b) we introduce
some star-shaped but non-convex polygons, and in (c) some non-
star-shaped ones. In the top three rows, each element is colored with
respect to its quality according to, respectively, the kernel-area ra-
tio ϕ1 from (29), the angle ratio ϑ3 from (7), and the VEM quality
indicator ρ from (30). Such indicators were chosen as representa-
tives of the aspect ratio, skewness, and interpolation quality classes
in Table 1. All indicators are re-scaled in the range [0,1], value 0
(low quality) is associated with the color blue, and value 1 (high
quality) with the color yellow. In the bottom row, we color the el-
ements with respect to the H1 error produced by the solution of a
Poisson problem with homogeneous Dirichlet boundary conditions
through the linear VEM (the L2 and the L∞ errors produce very
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Table 1: Taxonomy of quality indicators for 2D elements.
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similar results):

ε(E) =− log
|u−uh|1,E
|u|1,Ω

, ∀E ∈ Ωh,

where the negative sign is introduced so that high error values cor-
respond in color to low-quality elements. Moreover, ε values are
re-scaled in the range [minE∈Ωh ε(E),maxE∈Ωh ε(E)] in order to
highlight differences between the elements.

We can immediately observe how all the considered quality in-
dicators perfectly "recognize" the pathological elements in (a) and
(b), assigning them a deep blue color. Regarding the triangular el-
ements, the kernel-area ratio holds 1 for all the triangles in all
three meshes, while the angle ratio and the VEM indicator ex-
hibit some differences among elements, more accentuated in the
first case. The errors in the bottom row present similar color pat-
terns, which depend on the function we are approximating (in this
case, a sinusoidal function). Besides this, it is still appreciable how
poor-quality elements produce higher errors than their neighbors,
highlighting a correlation between the quality indicators and the
numerical performance.

5. Mesh Indicators

Mesh quality indicators observe the features of the mesh from a
more general perspective. In addition to all the possible functions
that we can define collecting element indicators in some sort of
average or weighted norm across all the cells, there are indicators
related to features that cannot be measured element-wise. In this
section, we discuss possible strategies that are in the literature to
define global quality indicators. Without providing an exhaustive
survey of all the existing papers, we rather give a general taste of the
aspects of a mesh that may affect its quality. We refer the interested
reader to the original cited literature for the details and the precise
formulation of such indicators.

5.1. Consistency

We can talk about different types of consistency [Lis06]. A mesh
is considered consistent with the geometry of the domain if it faith-
fully represents its boundary and eventual sharp features. It is con-

sistent with the topology of the domain if the numbers of holes and
connected components are preserved. It is consistent with the solu-
tion of the physical problem if it reflects the features of the function
to be approximated.

For the accurate computation of the numerical solution of a PDE
defined over the domain, the requirement of consistency with the
geometry is indispensable. The mesh nodes must adequately ap-
proximate the original geometry, that is, the distance between any
point of the domain and the nearest mesh node must not be too
large, and this distance must approach zero when the number of
nodes tends to infinity. This is particularly important for nodes,
edges, or faces representing the boundary of the physical domain,
as it allows the boundary conditions to be applied more easily and
accurately.

The concept of topology consistency traditionally refers to the
connectedness properties, or which node belongs to which element.
When dealing with topological consistency the location in space of
each node is irrelevant, while it is crucial to have correct adjacency
rules among mesh elements [Pre82]. In addition, the topology of
the mesh must be coherent with that of the model. Besides simple
consistency rules such as the Euler relation, the analysis of evolv-
ing surfaces, or model deformations, requires guaranteeing the con-
sistency of the mesh with the model during the whole simulation
process. This implies sampling a model consistently [CDRR04];
identifying small defects, holes, and handles [SH97, ACK13b]; re-
moving the topological noise [WHDS04]; and even topologically
replicating the boundaries during optimization [SA21].

Another type of consistency is the one with the solution to the
physical problem. The distribution of the mesh nodes and the form
of the mesh cells should be dependent on the features of the solu-
tion, such as preferred directions (e.g., streamlines or vector fields),
localized regions of very rapid variations (i.e., regions of high gra-
dients), boundary and interior layers (e.g., in fluid dynamics, com-
bustion, solidification, solid mechanics, and wave propagation), ar-
eas of high solution error of the numerical approximation [Lis17].
In all these cases, it may be helpful to subdivide the domain into
smaller parts and mesh it locally because the uniform refinement
of the entire domain may be very costly for multidimensional com-
putations. Features lines, when present, should be explicitly repre-
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Table 2: Taxonomy of quality indicators for 3D elements.
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sented as edge sequences. For example, sharp crease lines in me-
chanical objects, or lines where some attribute other than normals
(e.g., color) varies. In this sense, the consistency with the solution
is related to the consistency with the geometry: incorporating an
input feature network into the mesh is not possible if the connec-
tivity does not align with it, even refining the mesh [LPP∗20] (see
Figure 11).

Figure 11: Key to feature preservation is the ability to align surface
edges to the input network, carefully positioning mesh singularities
(image from [LPP∗20]).

Consistency indicators should measure the distance between the
mesh and the domain, or the domain features. This is, for in-
stance, a common theme in many mesh simplification strategies,
where an explicit or implied geometric distance measure between
the original and the simplified model is used to drive the sim-
plification process [LT00]. A simple example of such measure is
given by the Hausdorff distance [DD12] that was used to guar-
antee that the simplified model is less than a certain upper bound
from the original model [RB93, KCS98]. Many other energy func-
tions have been considered in the literature, as examples, we refer
to [HDD∗93,ZOG22] and many of the optimization methods listed
in Section 6. Often, approaches based on this paradigm admit both
modifications of the local geometry and topology of the mesh.

5.2. Structure

By the structure of a mesh, we mean the way its elements are con-
nected to each other. A common classification of the mesh struc-
tures is the one originally developed for quad meshes [BLP∗13b]
and then extended to hex and hybrid meshes [PCS∗22]. The authors
call regular and irregular the structured and unstructured meshes
already introduced in Section 2.1, and they also introduce two in-
termediate configurations. The semi-regular meshes are obtained

by gluing in a conforming way a number of regular blocks. All ver-
tices that are internal to a block are regular, while vertices at the
edges or corners of a block may be irregular. The valence semi-
regular meshes contain a limited amount of irregular vertices, but
they are not connected in a way that induces a coarse block decom-
position into a few regular blocks. In some sense, irregular, valence
semi-regular, semi-regular, and regular meshes can be seen as a
continuum of cases, with an increasing degree of structure regular-
ity. Depending on the applications, either a lower or higher degree
of structure regularity is required, and this can be measured by the
number of singular nodes in the mesh. A low number of singular
nodes implies a simpler singular structure, which is more likely
to allow for a block-structured mesh. Often, also the positioning
of singular nodes is crucial: straight sequences of edges stemming
from them (a.k.a. separatrices) should connect them in a graph that
is as simple as possible, and they should appear in regions with a
strong negative or positive Gaussian curvature (other than where it
is needed to change resolution) [BLP∗13b]. Other works weaken
the concept of regular node, considering regular also nodes with
valence close to the fixed value [AYZ12].

Mesh connectivity is typically assumed to be conforming (i.e.,
free from T-junctions, see Figure 2) and pure, see Section 2.1. T-
junctions are problematic in a number of ways, for instance, they
lead to configurations in which it is not trivial to enforce conti-
nuity of the finite element functions across the edges or faces. In
this sense, quality indicators can be provided by the number of T-
junctions, or the number of non-standard elements (for instance,
the number of non-quad cells in a quad-dominant mesh). The two
above requirements can sometimes be loosened [MPKZ10], but
such topological freedom is not unlimited and may be bounded by
the specific application [PCS∗22].

5.3. Distribution

Since nodes and elements represent the only contact points between
the real world and the approximated copy that is going to be repro-
duced through the mesh, the way they are distributed in the domain
affects the quality of the final result. If a uniform distribution of the
information over the domain is needed, the element size (area, vol-
umes, or sum of the faces areas) has to be similar across the mesh.
If the mesh is pure, it is possible to measure the balance (or con-
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centration, or density) through simpler quantities like edge lengths
or diameters. In particular, in structured meshes, the change of cell
size in a certain direction or along a curve can become an indica-
tor [Lis17].

However, it is often beneficial to let the tessellation density vary
over the mesh, to adapt to local shape complexity, or to the solu-
tion of the numerical problem. In this case, the size of the elements
cannot be required to be uniform across the mesh, but it is possi-
ble to ask at least for a smooth transition by imposing a gradual size
change (neighboring elements cannot have too different sizes) [AC-
SYD05], also called mesh gradation control [BHF98]. Moreover, in
order to allow for spatial transition through different levels of reso-
lution, extra singular nodes must be included, unless T-junctions are
introduced. Therefore, in many contexts, it is desirable to achieve
the right trade-off between adaptivity and connectivity.

If the physical problem itself is anisotropic, it requires mesh gen-
eration to be guided by a prescribed anisotropy field. For instance,
in computational fluid dynamics, it is desirable to squeeze the ele-
ments in the direction normal to the wing of a plane since the most
significant physics occurs in the limit layer [Rip92, HW20]. If the
exact solution is of the type shown in Figure 12(a), a discretiza-
tion like Figure 12(c) is likely to perform much better than the one
in Figure 12(b), despite elements in the latter are more similar to
regular polygons.

(a) (b) (c)

Figure 12: Example of anisotropic problem: (a) contour plot of the
exact solution, (b,c) two possible discretizations [HW20].

6. Mesh Quality Optimization

The local and global quality indicators presented in Section 4 and
Section 5 are commonly used to investigate and improve mesh
quality. Some of them can be integrated into the mesh generation
process (e.g., in advancing front methods [Lo13]), so that at the
end of the pipeline, the output mesh already reaches a certain qual-
ity level. This is particularly true for 2D-meshes, and for indica-
tors concerning properties like structure or connectivity, which may
be essential requirements in some applications. However, the new
placement of vertices, edges, and faces can be implicitly treated as
an optimization problem. For instance, the edge collapse operation
can be stated as the problem of choosing the position of the new
vertex such that an associated objective function (sometimes called
the “edge cost”) is minimized.

In this sense, in Computer Graphics there is a large literature of
methods that set the problem of improving the quality of a mesh
as an optimization problem with respect to a functional minimiza-
tion. Among the others, we refer to the seminal work of Hoppe et

Figure 13: Impact of long and thin triangles on the model render-
ing (models taken from the Thingi dataset [ZJ16]). Artificial black
parts are visible even in regions that are geometrically flat.

al [HDD∗93]. Similarly, the majority of volumetric meshing algo-
rithms, employ a two-step process [PCS∗22]. The first step gener-
ates an initial mesh, which is expected to be dominated by well-
shaped elements, but often also contains some poorly-shaped or
even degenerate elements. This step is typically followed by an op-
timization step, whose goal is to maximize the quality of the mesh
elements and remove any degeneracy while keeping the meshed
domain boundary intact. As a mesh is defined by the nodal connec-
tions of the elements and the coordinates of the nodes, optimiza-
tion methods can be broadly grouped into two categories [Lo14]:
(i) geometrical methods that involve a change of element shapes by
means of shifting of nodal points; and (ii) topological methods that
involve a change in the element connections to the nodal points.
However, there is no reason why topological and geometrical op-
erations cannot be put together to form even more effective and
well-balanced optimization schemes.

Broadly speaking, operations used for repairing and eliminating
the noise and defects of a mesh are also included in the optimiza-
tion of a mesh. In this paper we do not intend to go into detail about
all processing techniques involved in mesh smoothing, repairing,
etc.; for more details, the reader can consult [BKP∗10, ACK13b]
and the Eurographics tutorial [CAK12]. As a flavor of the rele-
vance of mesh quality for practical applications, we mention ren-
dering and manufacturing. For instance, the poor quality of some
elements may generate a worsening of the 3D model rendering.
Figure 13 shows the effect of some triangles with bad aspect ratio
on the model rendering (the visualization is done with the standard
per-vertex rendering available in the Meshlab suite [CCC∗08]). On
this type of models, even the application of a texture would re-
quire remeshing to avoid image distortion. In the case of 3D print-
ing, STL mesh models with poor quality elements could make the
printing software either fail or produce machine instructions that
lead to printing failures [Att18]. In the left of Figure 14 we show a
complex model originally with several heterogeneous defects; the
distorted elements highlighted in the red box are then remeshed in
the picture on the right, thus making the model printable.

6.1. Optimization by Geometric Operations

Improvement methods that keep the mesh connectivity fixed while
changing only the locations of the mesh vertices are commonly
referred to as geometric optimization, smoothing, or untangling
methods [Owe98,SJ08]. The quality of a mesh can be improved by
shifting the interior points within the domain boundary, and usu-
ally, boundary points have to be kept intact for compatibility with
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Figure 14: Left: a complex 3D model with some distorted elements
(e.g., needles) highlighted in the red box. Right: after remeshing,
the model can be printed. The original pictures are available in
[Att18].

other meshes or for imposing the required boundary conditions for
the finite element analysis.

Before the development of valid shape indicators, an early at-
tempt to improve a triangular mesh was to shift each interior node
in turn to the centroid of the polygon formed by all the nodes
connected to it through an edge of the mesh. This iteration pro-
cess is known as Laplacian smoothing [Her76], and such heuris-
tic smoothing techniques have been successfully employed for tri
and quad-meshes [EÜZ09, XN06]. Laplacian smoothing is com-
putationally inexpensive and well-suited for meshes combining ar-
bitrary element types. However, due to its quality-unaware node
averaging scheme, Laplacian smoothing can lead to mesh quality
deterioration and the generation of inverted elements.

Besides smoothing operations, vertex repositioning is able to ad-
dress other needs such as equidistribution of volumes, shape im-
provement, or adaptive refinement [FDKMS06]. Based on a shape
quality indicator, we can define a cost function over the mesh,
which can be maximized as a local/global optimization problem
to improve the overall mesh quality [FP00, SS09, Knu12]. In these
works, the objective function is defined by measuring one or more
mesh properties, such as in [KPS13], and it can be optimized by
repositioning the vertices, leading to an improvement of the mea-
sured properties. The work in [FDKMS06] analyzes the approaches
for the construction of a global objective function: an all-vertex
method where the positions of all free vertices are moved simulta-
neously in a single iteration; and a single-vertex method where the
position of only one vertex is modified at a time. The study, limited
to tetrahedral meshes, sets the harmonic average of the mean ratio
as the measure of the quality of the mesh and concludes that, of
the two methods considered, the single-vertex method is better for
making fast improvements, while the all-vertex one is preferable
when an accurate solution of the optimization problem is neces-
sary.

A comparison of six morphing methods that preserve the topol-
ogy throughout the optimization process has been proposed in
[SOS∗11] and tested over four tet and four hex example problems.
The quality of the elements is assessed using the scaled Jacobian in-
dicator. Notably, the authors notice that hexahedral meshes tend to
maintain higher element quality for longer than tetrahedral meshes
during morphing. This fact is more important in hexahedral meshes
because local remeshing of hexahedra is generally considered in-
tractable, while being straightforward for tetrahedral meshes. Since
a global optimization approach might lead to a high computational
effort, a combined approach of Laplacian smoothing and local op-

timization was proposed in [Fre97], where optimization is only ac-
complished in problematic regions of the mesh. In addition, theo-
retical developments on the local optimization problem based on
shape indicators for triangular and tetrahedral elements were pre-
sented by Aiffa and Flaherty [AF03].

Laplace smoothing and global optimization have been the dom-
inating techniques in mesh optimization based on node shifting in
the early days of mesh generation. A breakthrough was made when
Vartziotis et al. [VAGW08] proposed the Geometric Element Trans-
formation Method (GETMe), which is a purely geometric process
to move the nodes of an element to improve its quality. The driving
force behind GETMe smoothing is regularizing element transfor-
mations which, if applied iteratively, lead to more regular elements
(i.e., with a higher mean ratio), see Figure 15. Such transforma-
tions for polygons with an arbitrary number of nodes have been
proposed and analyzed in [VW10], and an extension to hexahedra
and general polyhedral elements is detailed in [VW12].

6.2. Optimization by Topological Operations

Local topological operations such as edge/face swaps, and elim-
ination of nodes, edges/faces, and elements, are effective means
to improve the quality of a mesh. These operations can be car-
ried out based on an appropriate shape indicator, and/or accord-
ing to some topological considerations, to create a structure as
much balanced as possible in the connections among nodes, edges,
faces, and elements. Numerous contributions address mesh-related
questions as mesh optimization problems and deal with edge col-
lapse and edge swap operations. For instance, the seminal work
[HDD∗93] minimizes an energy function that explicitly models
the competing desires of conciseness of representation and fidelity
to the data. Starting from this method, numerous works have ad-
dressed the simplification of a model as an optimization problem,
e.g., [RR96, EM99, LT00]. The related literature is wide, and we
only report here some examples to give a hint on how shape indica-
tors can be combined for mesh optimization (or also re-meshing).
We address the interested reader to [AUGA08,ACK13b] for a more
detailed treatment of the subject.

General optimization algorithms, for instance, automatically
eliminate valence-three nodes (nodes with three incident edges)
from a triangle mesh (Figure 16(a)). This is commonly considered a
safe operation, as it reduces the number of elements and edges and
the quality of the newly created triangle is typically higher than
those of the old ones. Similarly, short edges smaller than a certain
threshold can be eliminated by shrinking the two related triangles
to line segments, and small triangles are eliminated by shrinking
them to a point (Figure 17(b,c)). Analogous automatic operations
can be defined for quad-, tet-, and hex-meshes [MBAE09], but only
if there is little or no ambiguity on how to adjust the connectivity
after an element is removed or modified.

The situation changes if we want to remove a valence-four node
from a triangle mesh, as in Figure 17(a). In this case, we obtain
a quadrilateral element that can be triangulated in two different
ways (along the two diagonals), and we need a criterion to estab-
lish which one to choose. Quality indicators are employed in topo-
logical optimizations every time in which multiple configurations
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Figure 15: Initial and smoothed aorta meshes with elements colored according to their mean ratio [VW12]. From left to right: initial mesh
with prismatic boundary layer; Laplace smoothing; global optimization; GETMe optimization.

(a) (b) (c)

Figure 16: Triangle mesh optimization: (a) elimination of a
valence-three node, (b) short edge shrinking, (c) small triangle
shrinking.

are acceptable, to indicate the best one. Other examples are the di-
agonal swap between couples of adjacent triangles or quads, and
the elimination of a valence-three node in a quad-mesh, see Fig-
ure 17(b,c).

(a) (b) (c)

Figure 17: Triangle mesh optimization: (a) elimination of a
valence-four node, (b) diagonal swap. Quad mesh optimization: (c)
elimination of a valence-three node.

The preferred configurations for local transformations are those
whose mean geometric qualities are maximized. Although the re-
sulting mesh would certainly be different, the optimization by lo-
cal transformations can be done with respect to any valid quality
indicator. In three dimensions, there exist several methods for the
optimization of tetrahedral meshes also using topological opera-
tions, e.g., [KS08, CZZ∗17, MW21], while much less is available
for generic polyhedra. When possible, generic polyhedra are re-
duced to a set of tetrahedra [VH14] and quality is assessed on the
mean volume of the equivalent tetrahedrization or ad-hoc strategies
are adopted, for instance, using grid-meshes [SZM12].

Pure hexahedral meshes are very often generated by mapping
and sweeping methods, which are structured by the nature of their
generation, and hence, there is no need to rebuild their topology.
When hybrid elements are present, the application of mesh smooth-
ing or untangling algorithms becomes more challenging, and a
common assumption is that all the polyhedral elements admit a
tetrahedrization [PCS∗22].

Optimizing the element connections in polytopal meshes, in gen-
eral, is difficult enough to leave any room for topological optimiza-

tion by a change in element types. Indeed, in such situations, other
possible solutions would have already been evaluated right at the
spot when the problem first arises. In other words, topological op-
timization of polyhedral meshes might be possible; however, it is
unlikely to be cost-effective as local element swaps can only be ap-
plied to very limited locations if any, even after rigorous and time-
consuming analysis [Lo14].

6.3. Recent Trends

Numerical solutions on complex geometries need to capture intri-
cate physical features which in turn compel engineers to seek a bal-
ance between accuracy and computational cost, despite the lively
growth in computing power. Unstructured meshes promise to yield
this balance, offering accurate results and being preferred over their
structured counterpart in certain applications [ZOG22]. On the one
hand, to progress in this direction, methods are being investigated
to improve the estimation of the optimization objective function;
for instance, by leveraging the eigenanalysis of a Jacobian-based
operator computed over proper subsets of vertices [ZOG22]. On
the other hand, the increasing interest in developing polytopal el-
ement methods for the numerical discretizations of partial differ-
ential equations requires novel and effective algorithms to handle
polygonal and polyhedral grids and to assess their quality.

The interest in using general polytopal meshes has grown over
the years because these models are well suited for handling com-
plex domains, featuring geometrical complexities for which the
generation of good quality simplicial or hexahedral meshes can
be particularly expensive or even unfeasible. Among the open
problems, there is the issue of handling polytopal mesh refine-
ment [LS16, BS22, BBD21], i.e., partitioning mesh elements into
smaller elements to produce a finer grid, and agglomeration strate-
gies [CXZ98, LWCY13, ABBV21], i.e., merging mesh elements to
obtain coarser grids. In both cases, refinement and agglomeration,
it is crucial to preserve the quality of the underlying mesh, because
this might affect the overall performance of the method in terms
of stability and accuracy. Adaptivity is a key point that guarantees
reliability and efficiency. For simplicity, algorithms often privilege
dealing with convex polygons or polyhedra. For instance, the re-
finement algorithms in [BBD21], start from a coarse mesh made of
convex polygons created from a number of discrete fractures and
use aspect ratio to select elements to be cut with planes, oriented
according to specific criteria.

Application-oriented problems such as simulation on fracture
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networks call for approaches to mesh optimization able to deal with
the geometrical complexity and the size of the computational do-
main. Indeed, fracture networks described by the Discrete Frac-
ture Network (DFN) model correspond to sets of intersecting pla-
nar polygons arbitrarily oriented in a three-dimensional space, rep-
resenting fractures in underground rock formations, and are typi-
cally generated starting from hydraulic and geological soil models.
These models might count a large number of fractures, with dimen-
sions ranging from centimeters to kilometers, and form an intricate
network of intersections. To address this problem it is necessary
to use methods able to scale to different sizes, incorporate refine-
ment strategies when necessary, and agglomerate elements far from
fractures. The methods developed in [BPS13, BGPS21] cut the el-
ements of a tessellation with the intersection segments of two frac-
ture plans, and use an optimization approach to further split the
elements that are too thin and elongated. Vertex collapses are in
place too, e.g., if two vertices are close under a threshold, as well
as small shifts of vertices if the mesh quality locally improves. In
the terms of the previous sections, we would classify this strategy as
a geometry-topology-driven optimization. Further agglomerations
are possible, in particular, far from the fracture constraints. Re-
cently, an agglomeration approach driven by the quality indicator
(30) has been proposed in [SVB∗22]. Extensions to whole three-
dimensional domains are currently under study, with preliminary
results in [BGS22].

A key aspect that is receiving increasing attention is how to
keep elements aligned to some extent with the geometry of the
solution. In this direction, previous studies on simplicial meshes
proved that a properly generated anisotropic mesh can lead to a
much more accurate solution than an isotropic one with comparable
size, see [HW20] and the references therein. In this view, the shape
of the elements of the tessellation is not necessarily uniform, and
mesh elements with a large aspect ratio are also admitted [HW20].
Based on the intuition that it is convenient to adapt the tessella-
tion to the physical problem, recent studies address the problem of
how to deform a mesh to follow sharp physical interfaces, see for
instance [MRL∗23]. In this work, the topology of the tessellation
does not change during the deformation process, rather it admits
that elements decrease their quality measure until zero. These stud-
ies and the anisotropic mesh quality measures available in [HW20]
focus on convex polygonal meshes.

Finally, we mention the ongoing investigation of the use of
Convolutional Neural Networks (CNNs) for handling polygonal
[AM22] and polyhedra [ADM22] grid refinement. The idea behind
the approach in [AM22] is to recognize an almost regular single
polygon as the representative of a set of polygons and then apply a
polygon refinement strategy to the recognized element. Currently,
triangular, quadrangular, pentagonal, and hexagonal polygons are
used as basic shapes for recognition. Similarly, when dealing with
polyhedra, a k-means algorithm is used to learn a clustered rep-
resentation of the elements of an initial tessellation, on the basis
of some basic convex polyhedral classes (cube, prism, tetrahedron,
and other). The type of the recognized element determines the par-
tition rule [ADM22], thus improving and replacing the elements of
the original mesh. Being these approaches supervised, the quality
of the polytopes recognized by the neural network is demanded to

the variety and representativeness of the polytopes used to train the
model.

7. Available Resources

This section summarizes several resources that are currently avail-
able for investigating the quality of a mesh, according to the dif-
ferent quality indicators. We also include some datasets publicly
available online, that can be used to test the accuracy of a quality
indicator in predicting the performance of a simulation. These lists
are, obviously, in constant evolution.

Libraries A vast amount of the quality indicators presented in
Section 4.1 and Section 4.2 is detailed in the Verdict Geometric
Quality Library [KET∗06]. The Verdict library became so popu-
lar that its indicators are currently implemented also in more gen-
eral mesh processing toolkits like Cinolib [Liv19] or HexaLab
[BTP∗19]. An implementation of the target-matrix paradigm is
available in Mesquite [BDK∗03]. Popular geometry processing li-
braries like CGAL [FP09], GMSH [GR09], or Geogram [LF15],
also implement routines for some indicators, but they are often
only defined for specific types of elements. The Mesh Repair web-
site [ACK13a] contains a list of freely available software tools that
perform the repairing of polygonal meshes with various sorts of
defects and flaws. This list was published in the context of mesh
repairing [ACK13b], which is somehow preliminary to mesh qual-
ity optimization, but we report it here for completeness.

The availability of commercial and open software libraries for
FEMs and the related mesh generation methods is very wide, be-
ing it an established field with over 70 years of development on the
subject. By way of example, we mention the Discrete Methods &
Related Tools website [Jou01], which contains links to a wide range
of commercial or open software (133 links), classified according to
their functionality (FEM modelers, FEM solvers, creation of sur-
face and volumetric meshes and grids, type of application, etc.).

More specific software that handles polygons and polyhedra
are OpenMesh [BBS∗02], OpenVolumeMesh [KBK13], and Poly-
Mesher [TPPM12]. The PEMesh framework [CPS22] allows the
computation of the quality indicators analyzed in [ABB∗21] for
generic polygons. The work by Schneider et al. proposed in the pa-
pers [SHD∗18,SDG∗19a,SHG∗22] is condensed into the PolyFEM
library [SDG∗19b], a polyvalent C++ and Python FEM library. The
Voro++ library is a C++ open-source software for the computation
of the Voronoi diagram [Ryc08]. It contains the routines for con-
structing a single Voronoi cell, which is represented as a collection
of vertices that are connected by edges, and to iterate the creation
of cells.

Datasets The ABC dataset [KMJ∗19] is a collection of about one
million computer-aided design models proposed for research in ge-
ometric deep learning and applications, provided in different for-
mats. Models were originally created with Onshape, and come in
STEP and Parasolid format. Models in the Parasolid format can
then be tessellated and saved in the STL format, obtaining triangle
meshes with high resolution that carefully approximate the origi-
nal geometry, but with low mesh quality, as the triangles may have
bad aspect ratios and the sampling can be highly non-uniform. The
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GMSH library is then used to create a high-quality triangle mesh in
OBJ format, with a uniform vertex distribution and most triangles
have angles close to 60 degrees.

A popular reference for the generation of tetrahedral meshes
from a triangle soup is TetWild [HZG∗18]. Despite being a tetra-
hedral meshing technique, TetWild is also a tetrahedral dataset,
since the authors provide the output of their algorithm applied to
Thingi10k [ZJ16], a dataset of triangular meshes containing ten
thousand models. A recent dataset, SimJEB [WBM21], provides
381 tetrahedral meshes from CAD models. The HexaLab project
[BTP∗19] is a unified portal to visualize hexahedral meshes di-
rectly in a web browser as well as to download them. The recent
survey [PCS∗22] presents a wide list of 3D datasets that mainly
contains pure hexahedral or hex-dominant meshes. Most of them
are already included in Hexalab, notable exceptions are the HexMe
tetrahedral dataset [BRK∗22] and the MAMBO project [Led22],
which stores geometric models for the study and comparison of
hexahedral block meshing algorithms.

Regarding polytopal meshes, the Voro++ library also contains
some examples of models tessellated with Voronoi cells. Similarly,
the CVT dataset [Bur05] is a FORTRAN90 open-source software
that generates a Centroidal Voronoi Tessellation from a set of ver-
tices based on the works [DFG99b, BGPB02]. A dataset of polyg-
onal meshes used for testing Indicator (30) is available on GitHub
at [SBMS21], together with its 3D counterpart [SBMS22c].

8. Conclusions

We have systematically presented the indicators for assessing the
quality of the elements of a mesh, classifying them according to
the type of the element and the criteria adopted. While there is a
large literature for simplicial [Knu03, SEK∗07] and quadrilateral
elements [BLP∗13b], increasing attention is on hexahedral meshes
[PCS∗22], and there is still a wide room for research on polytopal
ones. Then, we discussed how these indicators can be used to de-
rive global mesh indicators and optimize the mesh in a variety of
applicative contexts. Indeed, the need for high-quality meshes is
much felt for running PDE simulations, but it is also crucial in com-
puter graphics applications such as shape optimization and object
manufacturing.

What we wish to leave to the reader is a more complete under-
standing of the complexity of this subject. Recalling what is com-
monly referred to as Ashby’s Law, “only variety can absorb vari-
ety” [Ash57], we consider a viable system the one that can handle
the variability of its environment. If a system is to be able to deal
successfully with the diversity of challenges that its environment
produces, then it needs to have a repertoire of responses that is (at
least) as nuanced as the problems thrown up by the environment.
We believe that mesh quality is not something we can completely
control, in the sense that there will probably never be a single magic
formula good for every context. What we can do is try to govern the
quality, which means to know in advance all the different aspects of
a mesh that may influence the final result, and choose which one(s)
we should pay more attention to, from time to time.
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