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Figure 1: Here, we show the extracted map between two non-isometric shapes, tiger and iguana. Although the shapes are highly non-
isometric, e.g., lengths of the tail and legs, our method successfully associated these regions between shapes, thus yielding a semantically
correct map. This map is seamless by construction, and optimized with no supervision thanks to pre-trained ViT models which can identify
semantically corresponding points across shape renderings.

Abstract
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically cor-
responding regions to one another. Lack of annotated data prohibits direct inference of 3D semantic priors; instead, current
state-of-the-art methods predominantly optimize geometric properties or require varying amounts of manual annotation. To
overcome the lack of annotated training data, we distill semantic matches from pre-trained vision models: our method renders
the pair of untextured 3D shapes from multiple viewpoints; the resulting renders are then fed into an off-the-shelf image-
matching strategy that leverages a pre-trained visual model to produce feature points. This yields semantic correspondences,
which are projected back to the 3D shapes, producing a raw matching that is inaccurate and inconsistent across different view-
points. These correspondences are refined and distilled into an inter-surface map by a dedicated optimization scheme, which
promotes bijectivity and continuity of the output map. We illustrate that our approach can generate semantic surface-to-surface
maps, eliminating manual annotations or any 3D training data requirement. Furthermore, it proves effective in scenarios with
high semantic complexity, where objects are non-isometrically related, as well as in situations where they are nearly isometric.

CCS Concepts
• Computing methodologies → Shape analysis; Mesh geometry models; Feature selection;

1. Introduction

In this work, we propose an automatic method to compute a contin-
uous correspondence between two genus-zero surfaces, represented
as meshes. Our core contribution is an approach for computing a se-
mantic map that matches semantically corresponding points to one
another (e.g., nose to nose, arm to arm, etc.).

Computing correspondences between domains is a funda-
mental and highly-researched problem, spanning a wide array
of domains such as text snippets [HDT19], audio [ZLW∗20],
images [MJF∗21], or general graphs [SZF20]. In the context
of 3D surfaces, establishing such correspondences enables tex-
ture or deformation transfer [SP04, BVGP09], shape analy-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.15005

CGF 43-2 | e15005

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-8933-5082
https://orcid.org/0000-0002-9116-4662
https://orcid.org/0000-0002-3996-6588
https://orcid.org/0000-0002-2597-0914
https://doi.org/10.1111/cgf.15005


2 of 13 L. Morreale & N. Aigerman, & V. G. Kim & N. J. Mitra / Neural Semantic Surface Maps

sis [TP91, BRPM∗16, BRLB14, PWH∗15], and shape space explo-
ration [HWAG09, MCA∗22, YYPM11].

Continuous surfaces (2-manifolds), encoded as triangular
meshes, remain the most natural and common representation of
3D shapes in graphics and discrete differential geometry. Corre-
spondence between two such surfaces is typically required to be
a map that is continuous, one-to-one, onto, and with a continu-
ous inverse, i.e., a homeomorphism. Decades of research (see sur-
veys [Sah20, EST∗19]) have been dedicated to tackle the task of
mapping between surface pairs. These previous works, being geo-
metric, cannot extract (semantic) maps over the space of homeo-
morphisms; instead, they have focused on surrogate optimization
tasks that minimize some geometric notion of “distortion” of the
map, e.g., preserving geodesic distances as best as possible. Such
distortion-minimizing geometrically-guided maps are, of course,
not necessarily semantically meaningful. Thus, a human-in-the-
loop approach is usually taken to manually indicate landmark cor-
respondences, which are then used to optimize a map.

Computing semantic homeomorphism faces two main chal-
lenges. First, the lack of annotated 3D data inhibits learning
high-level semantic priors. In contrast, considering the image
domain, recent works [SPV∗21, HZH∗22, VHVZ22, AGBD21,
ODM∗23] demonstrate that the features of a pre-trained vision
transformer (ViT) are often semantically meaningful and can be
used reliably across multiple vision tasks, even on out-of-training
image data in a zero-shot setting. Second, most 3D representations
either hinder or - completely - prevent the computation of bijec-
tive inter-surface maps from semantic priors. We aim to bridge the
semantic matching capabilities of the image domain with the com-
putation of inter-surface maps from potentially noisy correspon-
dences, encouraging continuity and bijectivity. Our core observa-
tion is that suitable renderings of the surfaces, without access to sur-
face texture, are already sufficient for image transformers (i.e., ViT)
to produce 2D matches that can subsequently be used as fuzzy (i.e.,
partial and non-injective) maps between the surfaces. Then, we for-
mulate an optimization to aggregate multiple such fuzzy matches
obtained from multiview renderings to produce a surface map that
best conforms to these fuzzy matches, thereby distilling their se-
mantic priors, see Figure 1.

Specifically, given the fuzzy matches, we utilize Neural Surface
Maps (NSM) [MAKM21] to optimize a map between two surfaces.
The original NSM framework encodes surfaces using dedicated
neural functions, offering a differentiable backbone and avoiding
complexities arising from topological changes (i.e., mesh connec-
tivity for different triangulations). However, it has two limitations:
it expects the individual surfaces to be cut into disc topologies with
the two respective boundaries already in correspondence and re-
quires a set of exact landmark correspondences. We address the first
problem by proposing a seamless Neural Surface Maps (sNSM)
framework, which relaxes the requirement from exact boundary
correspondences to only cone-point matchings. We address the sec-
ond problem by optimizing a custom objective that encourages the
image of a specific point to best accommodate the fuzzy (seman-
tic) matches while identifying and disregarding outliers (see Fig-
ure 2). The resultant optimization problem is solved using gradient
descent, simply through PyTorch’s SGD optimizer.

Aggregated
Matches

Final
Selection

Fuzzy Matches

Figure 2: Fuzzy semantic correspondences. (Left) We lift 2D
image-based correspondences, obtained using a pre-trained vision-
transformer [ODM∗23] on rendered image source/target pairs
from sampled views, to obtain fuzzy and spurious 3D (semantic)
correspondences. We collect correspondence, shown with coloring
and a random set highlighted with lines, from each of the sam-
pled views and aggregate them across views to get aggregated fuzzy
matches (middle), which contain erroneous matching, e.g., thigh
getting mapped to the arm. (Right) We propose an optimization to
distill these fuzzy matches into an inter-surface map, here depicting
a subset of matches closer than a given threshold (d < 0.1) wrt the
optimized map.

Through quantitative and qualitative experiments, we evaluate
our ability to match upright object pairs with varying levels of
isometry for objects from the same semantic class and across dif-
ferent ones. We also compare ours to competing surface map ex-
traction algorithms. In summary, our main contributions are:

• proposing a fully automatic algorithm for extracting semantic
maps between upright shape pairs;

• sampling and integrating a set of image-based correspondences
to form fuzzy object space correspondence maps;

• extending Neural Surface Maps framework to seamless maps
that can work with fuzzy, and potentially noisy guidance, to dis-
till semantic maps; and

• demonstrating, via extensive evaluation and comparisons, that
the algorithm yields semantically valid maps for both isometri-
cally and non-isometrically related shape pairs.

2. Related Works

2.1. Shape Matching

Shape matching and correspondence estimation have been widely
studied in geometry processing. In the simplest setting where
rigid transforms relate shape pairs, iterative closest points meth-
ods [RL01, ZSN03] are often used for local refinement while rely-
ing on deep learned features to identify good correspondences to
provide an initial global alignment [GZWW19,DBI18,WS19]. Di-
rectly optimizing for distance preservation is computationally chal-
lenging for surfaces [BBK06,HAWG08] discretized as dense trian-
gulations. Optimal transport has been used to optimize over rela-
tively coarse shape representations [SPKS16].

Functional maps compute a fuzzy correspondence by aligning
the spectral basis of two shapes that are related by linear trans-
forms for near-isometric deformations [OBCS∗12,CSBC∗17]. The
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approach offers elegant machinery to compute shape correspon-
dence and has been extended to handle partial matching [LRB∗18],
learn spectral alignment [LRR∗17, DSO20], find multiple low-
distortion maps [RMOW20], and leverage optimal transport meth-
ods [PRM∗21] (c.f. course notes [OCB∗17] for other variations).
While variants have been proposed to ‘project’ functional maps to
point-to-point maps, such approaches [EBC17] do not explicitly
ensure bijectivity of the maps.

Restricting optimizations directly to surfaces poses a challenge
since the most common surface representation, a triangle mesh,
does not easily lend itself to continuous optimization. Schreiner et
al. [SAPH04] optimize surface-to-surface maps via direct mesh-
mesh intersection, which leads to a combinatorial problem due
to the surface discretization into triangles. Subsequent approaches
represent maps by parameterizing meshes to a common domain
such as a plane [APL14, SBCK19] or a sphere [APH05, SPK23],
which can give a bijective final map, but still does not offer a natural
way to optimize using inter-surface distortion. Notably, Schmidt et
al. [SPK23] propose a coarse-to-fine optimization strategy, defined
between spheres, that uses incremental re-meshing to significantly
speed up the optimization and improve the quality of the map, yet
relies on few manual annotations.

Others treated inter-surface mapping as a problem of explor-
ing a space of low-distortion maps, for example, blending across
conformal maps, Blended Intrinsic Maps (BIM) [KLF11] were ex-
plored and interpolated. The recently proposed Enigma [EEBC20]
leverages genetic algorithms to achieve state-of-the-art results. In
another notable effort, the MapTree [RMOW20], authors explore
multiple functional maps between near-isometric shape pairs. They
propose a fully automatic method that reveals multiple and diverse
maps by first enumerating map variations and then optimizing them
to extract dense pointwise maps.

Parallel to this work, Abdelreheem et al. [AEOW23] proposed a
pipeline to extract coarse correspondences between shapes through
pre-trained networks. In particular, the authors use Blip2 [LLSH23]
to extract a shape class description, e.g., human or person; such
class is then used to extract semantic descriptions for shape sub-
parts, e.g., leg or arm. Finally, SAM [KMR∗23] extracts features
based on these keywords and renderings to extract features for each
shape. The resulting features are then used for co-segmentation and
shape correspondences. The latter is achieved through the func-
tional map framework [RPWO18], which natively produces a fuzzy
map, and thus may not sufficiently reduce, or refine, the fuzziness
of the initial set of correspondences.

Instead of functional maps, which assume that a linear spectral
map exists and is less suitable for optimizing bijectivity, we build
on NSM [MAKM21] that maps shapes through common 2D do-
mains. However, the original technique implicitly assumes shapes
to have corresponding boundaries, making it unsuitable for fully
automatic mapping. Thus, we modify the formulation to be seam-
less across any cut boundary, allowing for arbitrary non-matching
cuts on different surfaces. We rely only on DinoV2 [ODM∗23] to
extract fuzzy features from shape renderings to produce point-level
(rather than part-level) correspondence priors.

2.2. Image-based Shape Analysis

Image-based representations are commonly used for 3D shape
analysis tasks, such as classification [SMKL15], segmenta-
tion [SYM∗22, KYF∗20, DLH22], or matching [HKC∗17], where
a shape is first rendered from multiple viewpoints, the result-
ing images are analyzed with 2D neural networks, and then the
output is aggregated on the 3D shape via additional optimiza-
tion [KAMC17]. While these methods often start with pre-trained
2D neural networks, they require additional fine-tuning with 3D
supervision and thus can only work on categories of shapes with
labeled 3D data. Indeed, Genova et al. [GYK∗21], train a 3D seg-
mentation technique by using a 2D method to produce pseudo la-
bels. In a concurrent effort, [ASOW23] describes a training-free
approach for 3D shape semantic segmentation using pre-trained
visual transformers. Our approach exploits a similar intuition to
extract semantic shape correspondences, distilling an inter-surface
map from them, thus without any 3D supervision.

2.3. Visual Features

The use of pre-trained CNNs features marked a vital milestone
for computer vision tasks, such as object detection and segmen-
tation [GDDM14], or image synthesis [GEB16, SGM∗20]. These
network representations encode a wide range of visual information
from low-level (statistical) features, (e.g., edges, auto-correlation
matrices), object parts, and structure [OMS17,CAS∗19,MGY∗19].
However, these methods [LLUZ16] usually are restricted to local
(CNN) neighborhoods or pre-authored nonlocal receptive field and
ignore long-range dependencies [WGGH18].

Vision Transformers [DBK∗20], dubbed ViT, belong to a fam-
ily of recent and powerful neural architecture that can discover
both local and nonlocal relations. A noteworthy example is DINO-
ViT [CTM∗21] that trains a transformer network through self-
distillation and uses its features in several tasks, e.g., image re-
trieval and object segmentation. Several works demonstrated the
utility of Dino-ViT internal representation as a black box [SPV∗21,
WSH∗22] for tasks such as semantic segmentation [HZH∗22], ap-
pearance transfer [FLNP∗24], and category discovery [VHVZ22].
Amir et al. [AGBD21] study these features and use them to solve
vision tasks, such as image correspondences, in zero-shot settings.
Recently, Oquab et al. [ODM∗23] extended Dino-ViT, introduc-
ing Dinov2, showcasing enhanced feature semantic interpretability
compared to the original version, and also exhibiting broader appli-
cability.

3. Method

We now detail our framework (see Figure 3) for an automatic
inter-surface map. We assume to be given two upright 3D sur-
faces, A and B, in arbitrary relative poses. The majority of meshes
from online repositories, such as the 3D Warehouse, TurboSquid,
or Sketchfab, satisfy this requirement, alternatively, methods like
[PLDZ22,PJQ∗20] can be used as pre-processing. We assume both
shapes to have zero genus, although the method can be extended
to higher genus surfaces. We aim to compute an inter-surface map
Ψ : A ↔ B guided by visual semantics. Our framework proceeds in
three stages:
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Figure 3: Overview. Starting from a pair of upright genus-zero surfaces, we automatically distill an inter-surface map from a set of fuzzy
matches. First, we align the input shapes, then extract a set of fuzzy matches through DinoV2 [ODM∗23] semantic visual features. We use
these features to independently cut the two meshes and then optimize a (seamless) map between them.

(i) Given two shapes, A and B, that are assumed to be oriented up-
right, we automatically align them using semantic matches.

(ii) We aggregate fuzzy matches (i.e., general matching of pairs of
points which is neither 1-to-1, onto, nor maps all points on the
source surface) between the surfaces by applying 2D matching
techniques to renderings, over multiple views.

(iii) Optimize a surface map that best agrees with the fuzzy semantic
matches while handling outliers.

3.1. Semantic Shape Alignment

Given two upright shapes, A and B, we first align them to have the
same orientations. We achieve this by casting this problem as (se-
mantic) circular string matching between shape renderings: given
two ‘strings’ – sets of renderings – of the same length, we find the
global rotation R, about the upaxis, to best align one string with the
other. Intuitively, we order one sequence to convey semantic infor-
mation in the same order as the other, see Figure 4 for an overview.

First, we render each mesh from 12 viewpoints around it, RA
i and

RB
i (see Subsection 3.4 for a discussion on rendering). These im-

ages constitute the two strings sA := {RA
i } and sB := {RB

i }. Then,
we extract a set of DinoV2 [ODM∗23] features for each image. Fi-
nally, we compute the alignment score for the 12 possible rotations
as the total number of "Best Buddy matches" [DOR∗15] between
the two strings of features. We pick the (relative) rotation with the
highest score as the rotation and use it to co-align the shapes.

3.2. Distilling Fuzzy 3D Correspondences via Visual
Semantics

Next, we extract fuzzy matches from renderings, taken from dif-
ferent viewpoints, of the aligned surfaces. Each such viewpoint V
results in a pair of rendering that we use to define a fuzzy match

φ
V :=

(
pV

i ,q
V
i

)n

i=1
with p ∈ A,q ∈ B, which consists of pairs of

corresponding points on A and B.

Although matches are imprecise or inaccurate, we assume that
these imprecisions balance out, leading to approximately correct
matches. Embracing this assumption, we leverage it as a guiding
principle during map optimization.

Computing rendering matches. Given a viewpoint V , we render
the two untextured surfaces from that viewpoint to get two ren-
derings, RA

V and RB
V . To extract matches, we take inspiration from

String Matching

Figure 4: Co-aligning input surfaces: Starting from a pair of up-
right meshes (bison and bull in this example), we render 12
views around them (sA and sB). Then, we extract DinoV2 features
from each rendering independently and match these features as a
string-matching problem. Specifically, we optimize over a cyclic
shift of the rendered views (i.e., one degree of freedom) to maxi-
mize agreement of image-based semantic correspondences.

recent methods that leverage deep image features from [ODM∗23]
for matching 2D images and design a method for extracting dense
visual matches. Specifically for each image patch processed by Di-
nov2, we extract a feature vector with λ

A
i and λ

B
i being the features

of rendering of RA
V and RB

V , respectively. Then, we segment fore-
ground/background through PCA and compute the cosine similar-
ity between all pairs of source and target patch foreground features,
as score

Si j =
〈

λ
A
i ,λ

B
j

〉
. (1)

Finally, we define the match of patch i ∈ RA
V as the patch j ∈ RB

V
with the highest cosine similarity, and vice versa, the match of
patch j ∈ RB

V as the patch i ∈ RA
V with the highest cosine similarity.

In summary, the pair (i, j), i ∈ RA
V , j ∈ RB

V is a match, if

Si j = max
k

Sik or Si j = max
l

Sl j. (2)

We transform a match from patch level to pixel level, as the patch
size is known. In contrast to ours, [AGBD21] selects only "Best
Buddy" matches [DOR∗15], augments features with binning, and
does not segment foreground/background through PCA features.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



L. Morreale & N. Aigerman, & V. G. Kim & N. J. Mitra / Neural Semantic Surface Maps 5 of 13

Although [AGBD21] produces a more expressive set of features
and possibly a more reliable set of fuzzy matches, we found it time-
consuming (2hrs in our settings), and our experiments did not pro-
vide sufficient justification for such a design choice.

Given dense 2D matches in an image, we lift (unproject) each
pixel to the 3D mesh by performing ray intersection between that
pixel’s corresponding ray from viewpoint V and the 3D mesh T,
thereby associating every 2D pixel with a point on the surface,
represented as barycentric coordinates at the triangle the ray in-
tersects. The fuzzy correspondences are thus pairs of matching
3D points (represented as barycentric coordinates on triangles):

φ
V :=

(
pV

i ,q
V
i

)n

i=1
.

We repeat this process from multiple viewpoints and obtain a

collection
{

φ
i
}k

i=1
of fuzzy correspondences. Our final task is to

distill them to produce an automatic map.

3.3. Aggregating the Fuzzy Correspondences to an
Inter-surface map

Given the fuzzy correspondences, we wish to optimize a continuous
map Ψ between A and B using a differentiable loss that encourages
agreement with the fuzzy correspondences.

Our final goal is thus to devise an optimization scheme that will
lead to a map Ψ : A ↔ B which balances smoothness with the num-
ber of respected correspondences. To achieve this goal, we compare
each point’s image with its designated corresponding point from φ

i

with the L1 norm. Then, for a set of corresponding pairs (p j,q j),
we minimize the average error as follows:

LMatches =
1
N

N

∑
j=1

∥Ψ(p j)−q j∥1, (3)

where N is the number of correspondences. By averaging these dis-
tances, we encourage sparsity of correspondences. To optimize Eq.
3, we adopt a recent method for optimization of the surface map,
Neural Surface Maps (NSM) [MAKM21] as described next.

Seamless Neural Surface Map. We follow NSM’s paradigm:
we first parameterize each one of the two cut surfaces via
SLIM [RPPSH17] into a square D ∈ R2 to get two bijective seam-
less parameterizations, PA : A ↔ D,PB : B ↔ D. Then, we fit
a neural network to each of the two parameterizations’ inverse,
fA ≈ P−1

A , fB ≈ P−1
B . Finally, using another neural network that

maps the square to itself, h, we can define the inter-surface map
Ψ = fB ◦ h ◦ f−1

A . By optimizing solely the parameters of h while
maintaining its bijectivity, and holding the overfitted networks
fA, fB fixed, NSM enables optimization over the space of maps
between the two surfaces.

As we cannot guarantee corresponding cuts between genus 0
meshes, see cut examples in Figure 5, we relax the boundary-
matching constraint in the original NSM and extend it to sup-
port seamless maps. Intuitively, a borderless, or seamless, param-
eterization is a 2D-3D mapping that is independent of the choice
of cut path, given a set of K boundary points. In other words,
the map emerging from the parametrization has several equiva-
lent maps with different boundaries, see Figure 6(c). Only the K

points, referred to as cones, remain constant and must have the
same mapping across all equivalent maps. Mathematically, a seam-
less parametrization is a mapping equipped with homotopic cuts
(i.e., the cuts can be changed homotopically but the produced map-
ping will stay the same). In particular, for three cones on a sphere,
all cuts are homotopic, and thus the embedding is independent of
the cut choice. Please refer to [APL15] for more details.

Furthermore, the class of seamless parametrization requires a
specific type of cut such that triangles, or points for that matter, can
be mapped to the other side of the cut by a family of transforma-
tions R. In terms of NSM, a seamless map requires matching cor-
responding cones while the boundary is allowed to move. Thus, the
accuracy required to define the cut path, and hence the 2D bound-
ary, through fuzzy matches is reduced, e.g., see Figure 5(c) for cut
paths. Below, we first detail how we extract corresponding cones,
then describe a seamless map.

Cones. To identify cones, we first aggregate the fuzzy correspon-
dences by counting for each triangle FA

i ∈ A, how many fuzzy cor-
respondences associate it with triangle FB

j ∈ B, yielding a large
sparse matrix M such that its (i, j) entry is the total count for cor-
respondences of FA

i to FB
j ,

Mi j = ∑
k

∣∣∣{(p,q) s.t. p ∈ FA
i ,q ∈ FB

j ,(p,q) ∈ φ
k
}∣∣∣ , (4)

where | · | stands for the cardinality of the set. Next, we con-
sider M as the adjacency matrix of an edge-weighted graph, with
Mi j being the weight on edge (i, j). Then, through bipartite graph
matching [HK73] we obtain a matching, i.e., a list of pairs (ik, jk),
s.t. i, j = argmax

i, j
Mi, j. We select the K = 3 correspondences (i, j)

with the highest Mi j values, such that the geodesic distance - av-
eraged between the two shapes - between all K points is at least
τ = 0.3. Finally, we use these landmarks as the cut’s endpoints and
the midpoint.

Seamlessness. Since we cannot rely on the cut quality, we refor-
mulate the neural map h, which we optimize to define the map Ψ,
to support seamlessness. This constrains the map to work on shape
pairs with the same genus. Furthermore, the definition of the seam-

a) b) c)

Figure 5: Cutting through cone points. We collect a set of spuri-
ous and noisy matches (a). Then, we select the most reliable K = 3
correspondences (b). Finally, using these correspondences as cut
endpoints, or cones, we cut the two meshes independently (c). Note
how the cut differs in the two shapes: the man is cut through the
back, while the woman is cut through the front. Refer to Sec. 3.3 for
details.
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a) b) c)

Figure 6: Seamless cuts. To parametrize a genus-zero mesh (a) we
cut and map it to a disc topology, cut visualized as in (b). The two
corresponding sides of the cut match perfectly, i.e., when we con-
nect the two parts, the map remains continuous across the cut (c).

less map changes based on the genus. For a sphere, h changes to h̃:

h̃ =
{

x → T ·h(x)+η |T =

(
a −b
b a

)
∈ R2×2,η ∈ R2×1

}
(5)

for all points mapped outside the domain D, which rotates around
the cone ci (η) of a rotation R (T ).

To achieve seamlessness h must perfectly match cones ci to their
ground truth c̃i. Therefore, we formulate such a constraint by pe-
nalizing the deviation of mapped cones, h(ci), to their ground truth
position:

LCones = ∥h(ci)− c̃i∥ . (6)

In the case of spheres, we have 3 cones, of which one is duplicated,
thus one for each vertex of the square in the square domain D. In
the case of torus, a single point is duplicated 4 times, corresponding
to all 4 square vertices.

A second condition for seamlessness concerns the duplicated
points on the boundary. In the case of spheres, each point on the
boundary p1 has a corresponding point p2 which is a rotation of
90◦ with respect to one of the cones. For the case of a sphere, we
formulate the constraint as the following energy:

LSeamless = ∥h(p1)−R · (h(p2)− ci)+ ci∥ , (7)

where ci is the cones wrt p2 undergoes a rotation R to be a clone
of p1. Note, the rotation can either be π/2 or −π/2. In the case of
a torus, p2 is on the opposite side of the boundary of p1, i.e., the
transformation being a translation along x or y.

Optimization energies. We follow NSM and encourage the map
to be bijective through a loss term that prevents the map h’s Jaco-
bian Jp at every point p ∈ D from having a negative determinant:

LJ =
∫

D
max

(
−sign(|Jp|)e−|Jp|,0

)
. (8)

Thus, encouraging, but not guaranteeing, continuity and bijectivity
of the map.

To cope with the sparsity of fuzzy matches and obtain a well-
defined map in undefined regions, we use an energy term that en-
courages smoothness and prevents large distortion:

LSmooth =
∫

D

∥∥∥JΨ
p − JΨ

pε

∥∥∥ , (9)

where JΨ
p is the Jacobian at a point p of the map Ψ. While pε is

the point p perturbed by ε ∼ N (0,0.1) through barycentric coor-
dinates. Intuitively, we want the Jacobian of the map to change
slowly. Note, in NSM [MAKM21], the authors used Symmetric
Dirichlet [RPPSH17] in a similar context, however, this energy pro-
motes isometric maps rather than smooth ones. Such behavior can
actively damage the map optimization and force it to ignore certain
- correct - matches, while we aim to attend to unregularized areas.

Total energy. Our total loss is expressed as:

L= α1Lmatches +α2LJ +α3LCones+

α4LSeamless +α5LSmooth,
(10)

where α1 = 104, α2 = 106, α3 = 106, α4 = 106, and α5 = 10−1 in
all experiments. These hyper-parameters were selected experimen-
tally. We optimize network weights h using this loss, and to alle-
viate the impact of incorrect matches; we incrementally drop those
that strongly disagree with the current map, i.e., 20% of matches
with the highest Euclidean distance. Experimentally, this explicit
filtering reduces the impact of incorrect matches, thus preventing
the network from getting stuck in incorrect energy minima due to
the presence of inaccurate matches.

In summary, the proposed pipeline optimizes for an inter-surface
map automatically between a pair of upright shapes. First, the in-
put mesh pair is automatically aligned, then through pre-trained
ViT [ODM∗23] we extract a large set of semantic fuzzy matches
between them. Finally, we distill an inter-surface map; this step is
fundamental to filter out any incorrect matches, enhancing the over-
all accuracy and reliability of the resultant map. Next, we quantita-
tively and qualitatively evaluate the quality of the distilled map.

3.4. Rendering Settings

We render shape pairs and use these images with Dino-
ViT2 [ODM∗23]; this model is known to be forgiving in cases of
image variation. As the shape alignment is unknown, we render an
object-centric scene with a fixed perspective camera and 5 point
lights aimed at the shape. Different points of view are obtained by
rotating only the shape by fixed increments, while the rest of the
scene (i.e., camera and lights) stays fixed. We set up the scene to
ensure the entire object is visible by the camera’s field of view.

To boost the matching capabilities of Dino-ViT and aid it in dis-
tinguishing left from right, top from bottom, while enhancing scene
details, we strategically position colored lights around the object
in a half-dome fashion. Specifically, we employ five colored point
lights (red, blue, green, yellow, and white) for this purpose. As de-
picted in Figure 4, corresponding regions in the images exhibit sim-
ilar colors; for instance, the right part of the images tends to appear
reddish due to illumination from a red light source. In cases involv-
ing textured meshes, we replace the colored lights with white ones.

3.5. Implementation details

Following NSM [MAKM21], we never require to compute Ψ to
optimize L. To evaluate LMatches we first compute the barycentric
coordinates of p j and convert it to a point in the square, p2D

j ∈ R2.
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Figure 7: Results. Automatic maps extracted by the optimization on various surface pairs using aggregated fuzzy correspondences. Colored
landmarks and paths show automatically selected cones and cuts by our method. The rabbit, hands, humans, and heads examples represent
near isometric pairs with pose variations; the chairs, giraffe-horse, giraffe-cow examples produce non-isometric mappings with spatially
varying distortions. Note the semantic nature of the extracted maps. No explicit energy term was used to encourage the maps to be isometric.

Then, this point is mapped forward through f B ◦ h and used to
compute the error as ∥ f B(h(p2D

j ))−q j∥1 for each correspondence.
Furthermore, as the number of correspondences is extremely large
N ≈ 65k, at runtime we estimate LMatches on a subset (M << N).
We follow a similar strategy for LSeamless by precomputing a set of
p2D

j from the boundary and pushing them forward fB ◦ h. Differ-
ently, LSmooth and LJ require only the computation of Jacobians
which can be estimated from forward maps. Finally, LCones pe-
nalizes the prediction of known 2D points, thus requiring only h.
During the evaluation, we rely on h using PB ◦h◦P−1

A , see supple-
mentary material for more detail.

In all experiments, we define the neural map (h) as a 4-layer
residual MLP of 128 neurons each, while neural surfaces ( f ) are
always 8 layers residual MLP with 256 neurons. While training,
we sample 1024 points to enforce injectivity and smoothness, and
128 points on the boundary to enforce seamlessness and M = 128
correspondences in each iteration.

4. Evaluation

We evaluated our method on various datasets for inter-surface map-
ping and compared it against multiple baselines that focus on ob-
taining surface-to-surface maps.

Datasets We assess maps’ quality on available benchmarks com-
prising isometric and non-isometric shape pairs. (i) We randomly
select 30 pairs from FAUST [BRLB14], containing isometric de-
formations and pose variations of human shapes. (ii) We choose
30 random same-category shape pairs from SHREC07 [GBP07],
containing non-isometric deformations across multiple categories
of shapes. (iii) We also extract 30 random shape pairs among the
listed test set of SHREC19 from Dyke et al. [DSLR19], containing
a mix of isometric and non-isometric deformations.

To ablate the effect of pose variation, we use FAUST [BRLB14],

SCAPE [ASP∗04], and TOSCA [BBK08]. To ablate the effects
of rendering settings and rotation, we use FAUST [BRLB14];
3DBiCar [LCD∗23], which comprise a variety of textured
shapes; and SHREC15 [LZEE∗15], which contain significant non-
isometric-variations, with manually-annotated sparse correspon-
dences. In the supplementary material, we present additional abla-
tions highlighting the crucial role of initial alignment, the method’s
robustness to mesh holes and nois, and discuss Dinov2 features. To
summarize, significant misalignment negatively impacts matching
quality; feature similarity does not reflect their matching accuracy;
finally, the method effectively maps meshes with holes, e.g., scans.

All meshes used in our experiment are watertight and genus zero,
and range from 11K to 90K faces. The shape pairs include a mix of
some isometric and mostly non-isometric cases.

Metrics We assess map quality (see also [RPWO18]) based on
their accuracy, bijectivity, and inversion as:

• Accuracy (Acc ↓): measures the ability of the algorithms to
respect ground-truth correspondences. We measure it as the
geodesic distance normalized, as defined in [KLF11], for each
landmark.

• Bijectivity (Bij ↓): measures the geodesic distance of all vertices

Table 1: Quantitative evaluation. We compute each map’s ac-
curacy (i.e., average geodesic error) and averaged them over 30
shape pairs for each dataset.

FAUST SHREC07 SHREC19
Inv ↓ Bij ↓ Acc ↓ Inv ↓ Bij ↓ Acc ↓ Inv ↓ Bij ↓ Acc ↓

ICP 0.06 0.17 0.25 0.09 0.65 0.23 0.07 0.75 0.15
BIM 0.09 0.03 0.04 0.49 0.48 0.23 0.05 0.82 0.04

Zoomout 0.33 0.23 0.15 0.25 0.65 0.54 0.29 0.76 0.32
Smooth-shells 0.01 0.00 0.01 0.03 0.72 0.26 0.01 0.83 0.01

Ours 0.00 0.00 0.13 0.00 0.00 0.23 0.00 0.00 0.11

© 2024 Eurographics - The European Association
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Source BIM ICP Smooth-Shells ZoomOut Ours

Figure 8: Comparisons. Left-to-right: Source model, results using BIM [KLF11], ICP, Smooth-shells [ELC20], ZoomOut [MRR∗19], and
Ours. Although geometric methods produce good maps, they often yield discontinuous maps, e.g., see the wings of planes. Ours explicitly
encourages continuity and bijectivity. Colored landmarks and paths show automatically selected cones and cuts by our method. Note that
our maps are continuous across the cut seams. No explicit energy term is used to encourage isometric maps.
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Source BIM ICPENIGMA Smooth-Shells ZoomOut Ours

Figure 9: Qualitative comparison. ENIGMA [EEBC20] fails to produce correct mappings, in cases of extreme deformations. Similarly,
other state-of-the-art methods may lack bijectivity or correct correspondence. Ours can better handle these cases, see Table 1 for quantitative
comparison. Colored landmarks and paths show automatically selected cones and cuts by our method.

mapped forward, and then back to the source mesh wrt their orig-
inal position. A zero value indicates perfect bijectivity.

• Inversion (Inv ↓): measures how often the map flips the surface
as the percentage of inverted triangles; we compute it as the
agreement of the normal of the mapped triangles wrt the faces
on which the triangle vertices are mapped.

Baselines We compare with three other techniques that focus
on extracting maps between given surfaces: (i) BIM [KLF11],
(ii) Zoomout [MRR∗19], and (iii) Smooth-shells [ELC20]. We also
include (iv) ICP, which uses the closest points as correspondence,
as a strawman approach that performs well in case of negligible
pose variation. Results are presented in Table 1, and selection of
the pairs shown in Figure 8.

We cast ICP as nearest neighbor search after rigid alignment.
Specifically, we use our pipeline first to align each shape pair and
then compute nearest neighbor correspondences for each point on
the source to the target mesh. This approach may perform well for
shapes in similar poses with low isometric deformations.

Additionally, we compare qualitatively to Enigma [EEBC20]
that uses genetic algorithms along with a combinatorial search to
find a set of good sparse correspondence, which are then interpo-
lated to a dense low-distortion map. While this method produces
smoother and more semantic maps than other baselines, it still suf-
fers from large and uneven distortions, see Figure 9.

4.1. Qualitative Evaluation

Figure 7 shows Neural Semantic maps extracted using our fully
automatic approach. The produced maps accurately match seman-
tic features despite the fuzzy aggregated correspondences being

erroneous and confused by symmetries (e.g., mapping incorrect
limbs). Ours also work well across dissimilar shapes. These non-
isometric cases require introducing significant local stretching to
preserve semantic correspondence. The extracted maps still exhibit
low isometric distortion, where possible, while adhering to seman-
tically meaningful correspondences. Yet, artifacts may arise (see
Armadillo’s leg in Figure 7) when the smoothing energy is not suf-
ficient to balance the noisiness of matches. State-of-the-art meth-
ods, such as ENIGMA [EEBC20] or Smooth-shells [ELC20], suf-
fer from self-symmetry ambiguities, e.g., see bull-horse in Fig-
ure 9.

Aggregation To assess the importance of the map distillation mod-
ule, we present a qualitative comparison in Figure 10 with the
method proposed by Surface Maps via Adaptive Triangulations
(SMAT) [SPK23], where we replace manual correspondences with
automatically extracted ones. As the original approach requires a
set of bijective correspondences, we randomly subsample a set of
N = 64 matches from the automatically extracted ones to ensure
consistency, i.e., no vertex appears twice. Then, we optimize for a
bijective map that respects these landmarks. We refer to it as Di-
nov2+SMAT. Note SMAT [SPK23] optimize for isometric energy
(Dirichlet), while we optimize only for smoothness, see Eq 9.

As SMAT does not account for inaccurate nor imprecise corre-
spondences, it is unable to filter out wrong correspondences. In our
observations, optimizing a map with the original hyperparameters
leads to visible inversions. This issue arises from SMAT’s attempt
to preserve all landmarks, resulting in maps with extreme stretches,
a phenomenon intensified by the discrete nature of meshes. Adap-
tive remeshing struggles to handle these extreme stretches effec-
tively, leading to visibly distorted maps. To mitigate this effect, we
trade landmark precision for map continuity and quality. As shown
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Figure 10: Qualitative comparison. Surface Maps via Adaptive
Triangulations (SMAT) [SPK23] optimize for bijective and contin-
uous maps, relying on manual annotations. We pair it with Dinov2,
Dinov2+SMAT, by replacing these manual annotations with k = 64
automatically extracted ones, {φ

i} with i = 1 : k, then we optimize
the inter-surface map to construct an automatic inter-surface map.
While Dinov2+SMAT attempts to satisfy all correspondences to-
gether with bijectivty, ours automatically filters out incorrect cor-
respondences, yielding a more continuous and semantically correct
map.

in Figure 10, although both maps appear continuous, [SPK23] is
unable to filter out inaccurate correspondences and yield a reason-
able map. Note that this experiment mainly assesses the importance
of our correspondence distillation step, and Dinov2+SMAT is not
the mode SMAT was originally designed for. Ours, without any ex-
plicit isometric or conformal energy term, still can produce smooth
and semantics-respecting bijective maps.

4.2. Quantitative Evaluation

We report quantitative errors using the metrics discussed earlier. In
particular, for accuracy, we follow the standard practice and mea-
sure the mean geodesic distance to ground truth correspondence on
a unit-area mesh.

Although not guaranteed by construction, we empirically found
that ours consistently offers more bijective and continuous maps,
see Table 1 "Bij" and "Inv", while others can fail to perfectly
achieve these properties in both isometric and non-isometric cases.
Our technique shows comparable quality in the maps in non-

isometric cases (SHREC07) compared to state-of-the-art methods,
Table 1 "Acc", while it performs worse in isometric cases (FAUST
and SHREC19). In general, our method suffers in these cases as it
does not exploit geometric cues and does not have an explicit iso-
metric energy term, thus producing less accurate maps than com-
peting methods.

5. Limitations

Timing. A key limitation of our method is its long running time.
The map optimization takes on average 1.5 hours, converting the
meshes into their neural representation which requires about 1 hour,
and extracting all Dino-ViT matches takes 21 minutes. We plan to
investigate approaches, such as Meta-Learning [FAL17,FR22], bet-
ter sampling [LFR23], and better caching, to speed up this process.

Occlusion. The presence of self-occlusion in shape pairs prevents
DinoViT from correctly mapping regions across shapes, thus con-
sistently making mistakes. We believe incorporating other priors, or
an advanced rendering pipeline (e.g., layered rendering) may help
cope with this issue.

Thin parts. We struggle to handle thin parts, as our pipeline re-
quires parameterizing objects. Specifically, thin parts are difficult
to handle unless cut points are manually placed.

6. Conclusion

We have presented a method that produces a semantic surface-to-
surface map guided by visual semantic priors, by computing it from
a set of candidate non-injective and discontinuous partial maps ex-
tracted by matchings over renderings of untextured 3D surfaces.
Our method has many potential practical applications, ranging from
matching scans of human faces and bodies to clothes, anatomical
scans, and archaeological findings. These depend on the quality of
the matchings achieved over the renderings of objects from these
categories, which we aim to explore.

Future work. We require surfaces to be cut as required by
NSM [MAKM21] which makes our method more prone to er-
ror. We aim to improve the existing pipeline to avoid cutting al-
together by replacing the 2D disks with 3D spheres [GGS03], as
successfully used in [SPK23]. Our optimization cannot guarantee
achieving a global optimum nor that the global optimum defines
the “most-meaningful” semantic map, and we mark extending our
method to directly learn to produce maps from a dataset as an im-
portant future direction. Our method can create such a dataset, aug-
mented with manual input to score the goodness of any extracted
semantic map. We believe this work is only a step in producing
semantic-driven maps. Candidate fuzzy maps extracted from other
means can be considered. For instance, methods to predict fuzzy
geometric correspondences directly over 3D surfaces trained for
specific tasks can alternatively produce fuzzy maps and can be used
in conjunction with semantic and/or visual cues.
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