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Figure 1: We propose a novel floorplan vectorization framework for recognizing the semantics and structures of rasterized floorplans. Here
shows a gallery of rasterized floorplans and the corresponding vectorized results obtained through our framework. For each group, from left
to right: a given rasterized floorplan, a structural graph obtained by our method, a vectorized floorplan with various colors representing
different categories of rooms and a popup 3D model of the floorplan.

Abstract
Recognizing the detailed information embedded in rasterized floorplans is at the research forefront in the community of com-
puter graphics and vision. With the advent of deep neural networks, automatic floorplan recognition has made tremendous
breakthroughs. However, co-recognizing both the structures and semantics of floorplans through one neural network remains a
significant challenge. In this paper, we introduce a novel framework Raster-to-Graph, which automatically achieves structural
and semantic recognition of floorplans. We represent vectorized floorplans as structural graphs embedded with floorplan seman-
tics, thus transforming the floorplan recognition task into a structural graph prediction problem. We design an autoregressive
prediction framework using the neural network architecture of the visual attention Transformer, iteratively predicting the wall
junctions and wall segments of floorplans in the order of graph traversal. Additionally, we propose a large-scale floorplan
dataset containing over 10,000 real-world residential floorplans. Our autoregressive framework can automatically recognize
the structures and semantics of floorplans. Extensive experiments demonstrate the effectiveness of our framework, showing sig-
nificant improvements on all metrics. Qualitative and quantitative evaluations indicate that our framework outperforms existing
state-of-the-art methods. Code and dataset for this paper are available at: https://github.com/HSZVIS/Raster-to-Graph.

CCS Concepts
• Computing methodologies → Shape modeling; Computer vision;

† The corresponding author: wwming@hfut.edu.cn (Wenming Wu)

1. Introduction

Residential floorplans are usually rasterized to images for pub-
lication while discarding geometry structure and semantics in-
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formation, which limits further analysis, synthesis, or modifica-
tion [LWKF17]. Floorplan recognition aims to recognize seman-
tics and reconstruct structures from rasterized floorplans, which is
of great interest to the community of computer graphics and vi-
sion. Converting rasterized floorplans into vector form would bring
significant advancements in broader domains such as architectural
design, scene modeling, virtual reality, and robot navigation.

Recently, automatic floorplan recognition has made tremendous
breakthroughs attributed to the emergence of deep neural net-
works. However, co-recognizing both the structures and seman-
tics of floorplans through one neural network remains a signif-
icant challenge. Previous works have either focused solely on
floorplan semantic recognition, neglecting structural reconstruc-
tion [ZLYF19, LWG∗21], or leaved structural reconstruction as a
secondary stage [LWKF17, LZYZ21], relying heavily on heuristic
post-processing or additional optimization. In addition, the floor-
plan dataset also remains one of the main challenges, with ex-
isting publicly available datasets having either insufficient floor-
plan samples [LSK∗15, LLC∗20, LWKF17] or poor data qual-
ity [KYH∗19], limiting the use and performance of deep neural
networks. [LZYZ21] introduces a dataset comprising 7,000 an-
notated residential floorplans. However, this dataset has not been
made publicly available.

In this paper, we propose Raster-to-Graph, or R2G for short,
a novel automatic framework achieving floorplan recognition
on both structures and semantics. Our goal is straightforward,
to recognize floorplans through one neural network. Existing
deep models for structural reconstruction of floorplan are non-
autoregressive [ZNF20, CQF22]. They suffer from a lack of con-
text awareness as they do not consider the sequential dependencies
between elements, resulting in lower prediction accuracy and re-
dundant predictions. To this end, we turn to autoregressive floor-
plan recognition. The main idea is inspired by the deep generative
model for floorplan synthesis [SWL∗22], which iteratively gener-
ates the structure of a floorplan through an autoregressive model.

Concretely, we represent a vector floorplan as a structural graph,
whose nodes are wall junctions and edges are wall segments. To
recognize floorplan semantics, we consider the room categories as
one of the node attributes. In this way, the task of floorplan recogni-
tion can be viewed as structural graph prediction. Given a rasterized
floorplan, we train an autoregressive model to iteratively predict
wall junctions and wall segments in the order of graph traversal.
The autoregressive model is the use of a visual attention Trans-
former [ZSL∗20] with careful design for the recognition targets.
Furthermore, we propose a large-scale floorplan dataset containing
more than 10,000 annotated floorplans of realistic residential build-
ings. Each floorplan is represented as vector graphics composed of
labeled junctions, walls, and rooms.

Our autoregressive model can automatically recognize the struc-
tures and semantics of floorplans. Extensive experiments demon-
strate the validity of our automatic recognition framework, making
significant improvements on all the metrics. Qualitative and quan-
titative evaluations show that the proposed method outperforms
the existing state-of-the-art. This paper seeks to push the frontier
of neural network architecture for floorplan recognition. We con-
tribute the following:

• An automatic recognition framework to obtain high-quality vec-
torized floorplans from rasterized images through one neural net-
work.

• A novel autoregressive model that iteratively predicts structures
and semantics of floorplans in the order of graph traversal.

• A large-scale floorplan dataset containing more than 10,000 real-
istic residential floorplans with dense annotations both on struc-
tures and semantics. To the best of our knowledge, this is cur-
rently the largest dataset available for floorplan recognition. The
dataset has much potential to inspire more research.

2. Related work

Previous research has often considered floorplan recognition as ei-
ther semantic recognition, or structural recognition. In the work
where both semantic and structural are considered, semantic recog-
nition still forms the system core, while structural reconstruction is
typically addressed as a secondary stage.

2.1. Semantic recognition of floorplan

Semantic recognition is of great crucial for floorplan recogni-
tion, involving the prediction of various element categories in the
floorplan. Many of these methods [DXS17, ZLYF19, ZHZD20,
KKY21, XYA∗21, LWG∗21] adopt semantic segmentation tech-
niques based on the convolutional neural network (CNN), provid-
ing pixel-level recognition results. [DXS17] proposes a method
that combines wall segmentation, object detection, and optical
character recognition to segment walls and vectorize elements in
the floorplan. [ZLYF19] treates floorplan recognition as pixel-level
semantic segmentation. They model a hierarchy of floorplan ele-
ments by analysing spatial relationships, and introduces a spatial
context module with a room-boundary-guided attention mechanism
to guide the room segmentation. [XYA∗21] focuses on detecting
elements like walls, doors, and rooms through semantic segmenta-
tion and introduces a room boundary attention aggregation mech-
anism for segmenting floorplans. Different from [ZLYF19], it en-
ables mutual guidance between the boundary and rooms. To parse
floorplans, [LWG∗21] presents a framework that combines seman-
tic neural networks with a postprocessed room segmentation. These
semantic segmentation-based methods often overlook structural el-
ements such as walls in floorplans. They are unable to provide
users with usable vectorized recognition results. [YKSE23] for-
mulate the floorplan reconstruction problem as polygon estimation
and used a single-stage Transformer to predict room types and se-
quences of corners. However, due to their polygon representation,
they do not obtain aligned wall structures.

2.2. Structural reconstruction of floorplan

Structural reconstruction [ZNF20, NF20, SY21, FZL∗21, CQF22]
is also one of the goals of floorplan recognition, which involves
vectorizing structural elements in the floorplan. [ZNF20] pro-
poses a message-passing neural architecture Conv-MPN to re-
construct outdoor buildings as floorplans from a single RGB im-
age. Similarly, [NF20] proposes a method that first employs a
CNN to detect geometric primitives and infer their relationships,
then utilizes integer programming to obtain a floorplan. Recently,
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HEAT [CQF22] introduces a two-stage network structure for 2D
planar structure extraction. HEAT first uses a corner detection net-
work and non-maximum suppression to acquire corners and then
pair them up to form edges, followed by edge classification, which
achieves state-of-the-art structural reconstruction for architectural
floorplans. [FLPH21] uses the traditional shape detection method
to detect primitives for partitioning the space into polygons, and
obtains walls through optimization. These structural reconstruction
methods only reconstruct floorplan structures, overlooking the se-
mantic information. In contrast, our method can simultaneously
capture the semantics and the structure of floorplans.

2.3. Structure-semantic recognition of floorplan

Some methods [LWKF17, CLWF19, JYY20, KPKY21, WSC∗21,
SRFL21, LZYZ21, DWLZ21, YWY21, PK21] attempt to obtain
vectorized representations of rasterized floorplans after perform-
ing semantic segmentation. These methods heavily rely on addi-
tional post-processing or algorithm optimizations to reconstruct the
structure and enhance recognition accuracy. [LWKF17] obtains se-
mantic segmentations of floorplan rooms and wall junctions using
CNN and then solves the integer programming problem to obtain
vectorized floorplans. In [JYY20], neural networks are employed
in the segmentation of floorplan walls and doors, and then tradi-
tional image processing techniques such as Harris corner detection
are used to convert wall and door segmentations into vector form.
[LZYZ21] proposes a floorplan vectorization method consisting of
recognition and reconstruction. After object detection, pixel-level
structural elements are identified through semantic segmentation,
and reconstruction is achieved through heuristic optimization and
post-processing. [DWLZ21] treats the semantic segmentation of
floorplans as an image-to-image translation problem and use Gen-
erative Adversarial Networks (GANs) to obtain segmentation of
primitives. They vectorize floorplan elements using handcrafted fil-
ters and perform room classification using GNNs. In [YWY21], a
rule-based graph transformation is applied on top of the semantic
segmentation of floorplans to obtain bubble diagrams. This bubble
diagram representation is a vectorized result that is more conducive
to subsequent utilization compared to segmentation results. The
use of heuristic post-processing or additional optimization reduces
the scalability of methods, making them overly complex and less
suitable for generalization. In contrast, our method directly utilizes
neural networks to predict the structure and semantic information,
naturally converting it into vectorized results.

2.4. Transformer-based object detection

The neural network architecture of the visual attention Trans-
former is used in our framework. Transformer [VSP∗17] is ini-
tially introduced in the field of natural language processing. At
the core of the Transformer is the multi-head attention mecha-
nism, which learns long-range dependencies between elements.
DETR [CMS∗20] brings the Transformer into the task of object
detection which uses ResNet to extract feature maps and employs
the Transformer to capture long-range dependencies between pixel-
level image features. Deformable DETR [ZSL∗20] shares a simi-
lar architecture with DETR but introduces adaptive sampling atten-
tion via linear projection layers, known as the deformable attention

mechanism. The deformable attention mechanism in Deformable
DETR significantly reduces computational complexity, allowing
for the use of lower-level and larger-scale feature maps. In our task,
on one hand, detecting wall junctions in floorplans can be viewed as
small object detection. On the other hand, the features of floorplan
images exhibit complex long-range dependencies. Additionally, the
attention between floorplan elements should be sparse, making De-
formable DETR an ideal choice for floorplan recognition. Further-
more, Deformable DETR simplifies our framework. To this end,
we design an autoregressive prediction framework using the neural
network architecture of Deformable DETR.

At last, it is essential to emphasize that Raster-to-Graph is in-
spired by WallPlan [SWL∗22] but differs significantly. In terms of
the goal, WallPlan is used to generate floorplans with given bound-
ary constraints, while Raster-to-Graph is designed for floorplan
recognition. In terms of methodology, WallPlan strictly adheres to
the breadth-first traversal to generate wall graphs, whereas Raster-
to-Graph employs a non-fixed order, a more general graph traversal.
This flexibility and robustness in graph traversal make our iterative
recognition process more adaptable. For the task of floorplan recog-
nition, ensuring that each step in the recognition process accurately
corresponds to every step in a strict graph traversal is highly chal-
lenging. This can potentially lead to unexpected interruptions in the
inference process. Concerning the model structure, WallPlan em-
ploys a semantic segmentation network to predict pixel-level wall
junctions, wall segments, and rooms, necessitating post-processing
for extracting vectorized results. In contrast, Raster-to-Graph uti-
lizes a fully connected network to predict wall junctions and wall
segments, obtaining vectorized results.

3. Overview

The framework of Raster-to-Graph for floorplan recognition is il-
lustrated in Figure 3. In the following, we discuss the floorplan rep-
resentation and recognition challenges of floorplan recognition, and
then present our framework for floorplan recognition.

Kitchen Bedroom

Bedroom Bedroom
vk

vi v j
(vi , v j )
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Representation. We have borrowed the
floorplan representation from [SWL∗22],
where floorplans can be represented using
structural graphs with semantics, as shown
in the right inset. Specifically, the struc-
tural graphs consist of nodes and edges: the
wall junctions are abstractly represented as
nodes of the graph, while the wall segments
connecting wall junctions are represented
as edges. The nodes and edges partition the
indoor space into several non-overlapping polygonal regions, form-
ing rooms of the floorplan. As a result, the structural graph with
semantics is represented as a connected graph G = (V,E), where
V = {v0,v1, ...,vn} is the set of nodes, and E = {(vi,v j) | vi,v j ∈V}
is the set of edges. Each node is defined by multiple attributes, de-
noted as vi = (Ci, ti,Ri). Ci = (xi,yi) represents the positional co-
ordinate of vi. The node type is denoted as ti, which falls into one
of the 13 types proposed in [LWKF17], where node types asso-
ciated with wall junctions are categorized as I-shaped, L-shaped,
T-shaped, and X-shaped, and further subdivided into 13 types
based on different orientations. Additionally, Ri = (rtl
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Figure 2: Overview of Dataset. (a1)-(a3): Statistics on the occurrence of wall junctions (a1), wall segments (a2), and rooms (a3). (b): Statis-
tics on the occurrence of each room category. (c1)-(c3): A typical example in our dataset: rasterized floorplan image (c1), the corresponding
structural graph (c2) and semantic floorplan (c3).

Bedroom
Bathroom Restroom Balcony
Closet Corridor Washing-room
Pipe-space

KitchenLiving-room

Unknown

Figure 3: Overview of Raster-to-Graph. We represent the vector floorplan as a structural graph with semantics, and then the task of floorplan
recognition can be viewed as structural graph prediction. Our method takes the rasterized floorplan as input, iteratively predicts nodes (shown
in yellow) and edges (shown in blue) of the structural graph in the order of graph traversal, and finally obtains a complete structural graph.
A vectorized floorplan can be easily extracted using the structural graph. It’s worth noting that during the iterative process, our framework
does not strictly adhere to the fixed order of graph traversal, as indicated in red. This is due to our training strategy, which allows a non-fixed
order, a more general graph traversal, enhancing the flexibility of our prediction process.

records the room categories in the four directions: top-left, top-
right, bottom-left, and bottom-right of vi. Taking the node vk in
the right inset as an example, the node type of vk is a variant of
the L-shaped shown in green, and the room categories in the four
directions of vk are Kitchen, Bedroom, Bedroom and Bedroom, in
clockwise order. Let P = {P1,P2, ...,PN} denote the set of polyg-
onal loops for each room. Each loop Pi is defined by a sequence of
nodes: Pi = {vi,1,vi,2, ...,vi,Ni | vi, j ∈ V}. The room category of Pi
is the room category common to all nodes constructing this room.

Dataset. The task of floorplan recognition is constrained by
the scale of the dataset and the quality of data annotations. To
address the challenges posed by training data, we have lever-
aged an available, massively scaled realistic floorplan dataset, LI-
FULL HOME’S Dataset [LC16], to construct an extensive floor-
plan recognition dataset. Our dataset comprises 10,804 high-quality
floorplans, each with sufficient structural and semantic annotations.
Creating such a large-scale dataset from scratch naturally requires
a significant amount of manpower. To simplify the process, we first
extract an amount of 60,000 floorplans from LIFULL HOME’S
Dataset and apply Raster-to-Vector [LWKF17] to generate initial
annotation information. To standardize the representation, we pre-
process the original floorplans into a resolution of 512× 512 and

centered, resulting in three-channel images. Finally, we extract the
graph structures from initial annotations, eliminating: (i) samples
with disconnected graphs; (ii) samples that are either too simple or
too complex (with the number of graph nodes limited to between
10 and 50); (iii) samples containing isolated graph nodes. After
this, we can obtain approximately 30,000 annotated data. Follow-
ing this, we engage human annotators to perform manual checks
and coordinate corrections on these data. Through this meticulous
process, we finally can obtain over 10,000 refined annotations. An
overview of our floorplan dataset is shown in Figure 2. Rooms were
categorized into 11 different categories: Living-room, Kitchen, Bed-
room, Bathroom, Restroom, Balcony, Closet, Corridor, Washing-
room, Pipe-space, and Outside. For regions with unidentified cate-
gories, we uniformly label them as Unknown.

Problem & challenges. Given a rasterized floorplan I ∈
[0,255]3×H×W (with 3 color channels, H,W representing the res-
olution of this floorplan image, here we set H = W = 512), our
goal is to provide the vectorized representation of the floorplan:
G = (V,E), where G represents a structured graph with semantics,
V denotes the set of nodes (wall junctions), and E is the set of
edges (wall segments). This problem poses two significant chal-
lenges. First, creating vectorized floorplans that meet the require-
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ments of practical applications necessitates incorporating vector in-
formation such as wall junctions, wall segments, and room poly-
gons. Given the complexity of vector data structures, designing
a highly individualized deep learning network to achieve vector-
ization of floorplans becomes a crucial challenge. Second, the in-
terdependencies among wall junctions, wall segments, and room
polygons involve geometric and topological relationships. Indepen-
dently recognizing the structure and semantics of floorplans can
not effectively utilize these relationships. Therefore, an integrated
approach that leverages these relationships is superior to design-
ing separate extraction modules. However, devising an integrated
model that exploits the correlations between the structures and se-
mantics of floorplans poses another challenge.

Methodology. Inspired by [SWL∗22], we represent vectorized
floorplans as structural graphs with semantics. This reformulates
the traditional floorplan recognition problem into seeking a map-
ping from a rasterized floorplan to a structural graph, denoted as
M : I 7−→G. Obtaining such a global mapping assumes that floor-
plan elements are independent of each other, without considering
any sequential relationships among them. Unlike existing methods
that directly acquire a global mapping from rasterized floorplans
to vectorized representations, we decompose the global mapping
into a series of local mappings. In this way, we model the prob-
lem of recognizing G as an autoregressive subgraph generation
process. Given an input floorplan I, our proposed autoregressive
model Raster-to-Graph sequentially traverses I, recognizing new
wall junctions and wall segments, eventually forming a complete,
closed, and connected structural graph G. The process of recogniz-
ing the structural graph G from the floorplan I is an iterative pro-
cess, with each iteration generating a new subgraph based on the
previously generated subgraph. Let Gt−1 represent the subgraph
recognized in the (t − 1)-th iteration, with its corresponding floor-
plan mask on I for this subgraph be denoted as It−1. Raster-to-
Graph can obtain Gt in the t-th iteration by determining the new set
of nodes and edges that are newly added to Gt−1.

In summary, the mapping from the floorplan I to the structural
graph G is achieved through an autogressive process:

M : I 7−→ G ⇐⇒M : (I,Gt−1) 7−→ Gt (1)

where for each step t ∈ 1,2, ...,T ,

Gt =M(I,Gt−1) = R2G(I,It−1) (2)

Here It−1 = I(Gt−1) represents the floorplan mask correspond-
ing to the subgraph Gt−1 on I. Specifically, each iteration involves
node prediction and graph construction. The floorplan I, along
with the corresponding floorplan mask It−1, serve as inputs to node
prediction, which outputs a set of new nodes, denoted as ∆Vt . Then,
the newly generated ∆Vt is added to the old subgraph Gt−1 to con-
struct a new subgraph Gt . This process is repeated until the com-
plete structural graph GT is obtained. We further extract all rooms
to obtain the final vectorized result.

4. Method

We aim to transform rasterized floorplans into structural graphs
with semantics, thereby achieving the vectorization of floorplans.
To this end, we propose a novel floorplan vectorization framework

Attributes
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Node type FFN

Top-right room categoryFFN

Top-left room categoryFFN

Bottom-right room categoryFFN
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Figure 4: The network architecture of our node prediction model
consists of two main components: CNN backbone and Transformer.
ResNet as the CNN backbone is employed to extract multi-scale
features from the subgraph mask. The Transformer receives image
features and a fixed number of learnable node queries as inputs
and outputs the same number of embeddings, which aggregates in-
formation from both the node queries and the image features to
capture long-range dependencies among nodes. The output embed-
dings can be used for node attribute prediction by passing to the
shared FFNs. There are 8 shared FFNs. Each branched FFN is re-
sponsible for predicting various attributes of nodes (coordinates,
node types, and room types) or the topological relationships be-
tween nodes (inter-layer connections, and intra-layer connections).

Raster-to-Graph for recognizing the semantics and structures of
rasterized floorplans. As shown in Figure 3, Raster-to-Graph takes
as input a rasterized floorplan I and outputs a vectorized result G
as output. The whole recognition process functions as an iteration,
with each iteration consisting of two key steps: (i) Node prediction,
which predicts nodes with multiple attributes, including node coor-
dinates, node types, and room categories, and (ii) Graph construc-
tion, which automatically constructs structural graphs by leverag-
ing the rich attributes associated with predicted nodes.

4.1. Node predication

We approach the problem of predicting nodes in structural graphs
(i.e., wall junctions in floorplans) as a keypoint detection task and
design our node prediction model with reference to the Deformable
DETR [ZSL∗20]. As previously mentioned, we do not perform an
all-at-once detection of all nodes on the floorplan. Instead, we pre-
dict them iteratively, step by step. In each iteration, the input to
node prediction model consists of the original floorplan image I
and the subgraph Gt−1 obtained from the previous iteration. For
the convenience of encoding representation, we further merge I
and Gt−1, constructing a subgraph mask It−1 as the actual input
to the node prediction model. Specifically, we visualize Gt−1 on I.
We draw a 9× 9 yellow square centered on the wall junction for
each node in Gt−1. For edges in Gt−1, we draw blue line segments
with a pixel width of 2, as shown in Figure 4.

Given a subgraph mask, we first employ a convolutional neural
network as the backbone to extract image features. These features
are then fed into the Transformer encoder, which utilizes multi-
ple layers of self-attention mechanisms and feedforward neural net-
works to capture contextual information within the input features,
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enabling a deep understanding of the input. The Transformer de-
coder then takes as input a fixed number of learnable positional em-
beddings, which we call node queries, and the output feature em-
bedding passed by the Transformer encoder. It uses self-attention
mechanisms to focus on the already generated subgraph, thereby
generating node embeddings for the next iteration. This process
is iterative, allowing the model to progressively predict nodes to
adapt to the complexity of the task. This autoregressive prediction
is highly valuable in handling graphical data and enables the model
to capture the sequential relationships within the input data while
efficiently addressing long-range dependencies.

CNN backbone. Given a rasterized floorplan image I, we utilize
a pre-trained ResNet-50 [HZRS16] as the backbone to extract im-
age features. Given that wall junctions are extremely small-scale
objects, and predicting their coordinates demands better spatial
generalization capabilities, we need to leverage low-level image
features. On the other hand, we also require high-level image fea-
tures for the semantic prediction of graph nodes. To the end, we em-
ploy multi-scale feature maps from the CNN backbone to construct
a four-level image feature pyramid and apply a 1×1 convolution to
reduce the channel dimension of the high-level feature maps to C:
f 0
pyramid ∈RC× H

4 ×
W
4 , f 1

pyramid ∈RC× H
8 ×

W
8 , f 2

pyramid ∈RC× H
16 ×

W
16 ,

f 3
pyramid ∈ RC× H

32 ×
W
32 . The typical value of C we use is C = 256.

This approach aims to consider information at different scales when
dealing with floorplans, thereby better catering to both the pre-
cise coordinate prediction and semantic understanding of the nodes
within the floorplan.

Transformer encoder. In the image feature pyramid, the fea-
ture position directly influences the prediction of node coor-
dinates. To represent the feature position, we establish spa-
tial position encoding f i

position = [γ(x),γ(y)] ∈ RC, i = 0,1,2,3
for the image feature f i

pyramid , where x and y denote the
coordinates of the features, and γ(t) is defined as γ(t) =

[sin(w0t),cos(w0t), . . . ,sin(w63t),cos(w63t)], with wi = ( 1
10000 )

2i
128

for i = 0,1, . . . ,63 as described in [VSP∗17]. Furthermore, to rep-
resent the feature scale, we establish feature scale encoding f i

scale ∈
RC, i = 0,1,2,3 for the image feature f i

pyramid . f i
scale is a randomly

initialized and learnable vector. Then, for each feature scale, we
combine the image feature with their corresponding spatial posi-
tion encoding and feature scale encoding to obtain a fused feature
f i

f use = f i
pyramid + f i

position+ f i
scale, i = 0,1,2,3. At last, we fuse the

above features of all four scales of the image feature pyramid to ob-
tain the final fuse feature f f use =∑

3
i=0 f i

f use. The spatial dimensions
of the fused image feature pyramid f f use is collapsed into one di-
mension, resulting in a C×(H

4 × W
4 + H

8 × W
8 + H

16 ×
W
16 +

H
32 ×

W
32 )

feature map, serving as the input to the Transformer encoder. It
aims to capture both position and scale information of image fea-
tures, enhancing the prediction of node coordinates. The encoder
outputs N embeddings of size C, denoted as Oencoder, which contain
node coordinates, associated wall segments, and semantic informa-
tion. They will be further processed by the Transformer decoder.

Transformer decoder. The input set of the Transformer decoder
is Oencoder ∪{q j}N

j=1, where Oencoder is the output embedding of
the Transformer encoder and q j ∈ RC is a learnable query vector.
{q j}N

j=1 participate in training and learn the priors of nodes. In

the inference, {q j}N
j=1 is used as the decoder’s input and provides

priors for prediction. The output embeddings of the Transformer
decoder can be used for node attribute prediction by passing to
the prediction heads consisting of shared feed forward networks
(FFNs). Each branched FFN is responsible for predicting various
attributes of graph nodes. The output of the Transformer decoder is
a set of new nodes ∆Vt consisting of multiple attributes as below:

• Positional coordinate: Ci = (xi,yi) where xi ∈ (0,1) and yi ∈
(0,1). We use an FFN to predict the normalized central coor-
dinates of the node, and this is a regression task.

• Node type: ti. Since we predict a fixed-size set of N nodes, where
N is usually larger than the actual number of nodes, an additional
special class label ∅ is used to represent that no node is detected.
In addition, we have added an "End" type as a termination con-
dition for the prediction. Therefore, for node type, there are in
total 15 (13+1+1) different types. We use an FFN for the node
type classification.

• Room category: Ri = (rtl
i ,r

tr
i ,r

bl
i ,rbr

i ). For each of the four di-
rections, we have in total 11 different categories. Similar to node
type classification, we use an FFN for room category classifica-
tion in each of the four directions.

Only relying on the above node attributes is insufficient for
achieving the iterative prediction of structural graphs. This is be-
cause the topological relationships between nodes cannot be deter-
mined. Specifically, the relationships between the subgraph from
the previous level and the nodes predicted at the current level can-
not be established. These topological relationships include (i) inter-
level connections: connections between the nodes predicted at the
current level and the subgraph from the previous level, and (ii)
intra-level connections: connections between the nodes predicted
at the current level. Therefore, we separately predict the inter-level
and intra-level connections, As shown in Figure 6:

• Inter-level connection: Interi ∈ {0,1}4 respectively records the
presence of connections in the four directions of vi: up, down,
left, and right, where 1 indicates the presence of a connection,
and 0 indicates the absence. For each node, there are possible
connections in four directions, resulting in a total of 16 inter-
level connection types. We employ an FFN for inter-level con-
nection classification.

• Intra-level connection: Intrai ∈ {0,1}4, defined in the same way
as inter-level connections. Similar to inter-level connections,
there are 16 connection types. We use another FFN for intra-
level connection classification.

The output of the node prediction is a new node set ∆Vt with
predicted attributes. This approach allows us to iteratively predict
nodes in a way that takes into account both the floorplan image and
previously predicted subgraph, enhancing the prediction accuracy.

Training Strategy. Our goal is to enable the neural network to
predict first-order neighbor nodes ∆Vt of the subgraph Gt−1 given
the floorplan image I and the subgraph Gt−1. To obtain Gt−1
and ∆Vt , one direct approach is to use the sampling method in
WallPlan [SWL∗22] where each step of the structural graph traver-
sal is used as training samples. However, this prediction process
requires precisely matching every step of the graph traversal, oth-
erwise, the iteration process terminates. Due to the uncertainty of
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Breadth-first traversal

Our graph traversal

First-order neighbor nodes The sampled nodes

(a)

(b)

(c)

Figure 5: An illustration of different training strategies of struc-
tural graph traversal. (a) Breadth-first traversal where all first-
order neighbor nodes serve as the sampled nodes. (b) Our training
strategy of more general graph traversal where random samples of
first-order neighbor serve as the sampled nodes. (c) A constructing
process of training sample.

neural networks, ensuring that each recognition step accurately cor-
responds to every step in the graph traversal is highly challenging.
This can potentially lead to unexpected interruptions during the in-
ference process, such as the disconnection of the subgraph from the
newly predicted nodes.

To avoid this problem and enhance the flexibility of our model,
we propose to use a more general sampling method to obtain train-
ing data, randomly visiting nodes in the first-order neighbor with
a certain probability during graph traversal, i.e., probabilistic sam-
pling. The idea is to allow a certain degree of error during the itera-
tions and not to strictly adhere to the fixed order of graph traversal
(either depth-first or breadth-first), instead of a non-fixed order, a
more general graph traversal. The training data is constructed as
follows: Let the number of graph nodes be n, and the node number
of Gt−1 be nt−1. We uniformly sample nt−1 from [0,n]:

• If nt−1 = 0: The constructed subgraph is an empty graph.
• If 0 < nt−1 < n: Without loss of generality, we first choose the

top-left node as the starting node of graph traversal. Then, we
randomly sample nt−1 − 1 nodes in the order of breadth-first
traversal with a sampling probability of p = 0.5. To obtain nt−1
nodes, starting from the top-left node, we randomly visit nodes
in the first-order neighbor of sampled nodes with p = 0.5 and
mark the visited nodes as sampled. The process can sample all
nt−1 nodes in a finite iterative time. Figure 5(c) shows a train-
ing sample constructing process. We set the sampling probability
p = 0.5, and compare different p in Table 1.

Inter-level connection Intra-level connection

(a) (b) (c)

Figure 6: An illustration of our graph construction. (a) The sub-
graph and the predicted nodes (in the dotted box) for graph con-
struction. (b) Constructed graph. The inter-level connections be-
tween the subgraph and the predicted nodes are shown in green,
and the intra-level connections between the predicted nodes are
shown in red. (c) Line search for different kinds of connections.
The bandwidth indicates the threshold we set in line search.

• If nt−1 = n: The constructed subgraph is the final graph G.

The new node set ∆Vt to be predicted for the next level are all
the first-order neighbor nodes of the subgraph Gt−1. If Gt−1 = ∅,
∆Vt only contains the starting node. If Gt−1 = G, ∆Vt only contains
an "End" symbol as a termination of prediction.

To improve the accuracy and robustness of coordinate predic-
tion, we apply a perturbation to the input subgraph Gt−1 during the
training process, by adding Gaussian noise N (µ,σ) to the node co-
ordinates. By adding noise to input data, the model becomes more
adept at handling imperfect or noisy data. This enhances the stabil-
ity of the model when confronted with noise or variations, reducing
the risk of overfitting. On the other hand, noise can simulate data
uncertainty, introduce data diversity, and aid the model in general-
izing better to new data with a certain degree of noise.

4.2. Graph construction

Node prediction can only predict a set of new nodes, we have to
connect the newly predicted nodes to the previous subgraph, thus
constructing the new subgraph. The input for graph construction
consists of the subgraph Gt−1 of the previous level and the newly
predicted nodes ∆Vt of the current level. Graph construction uti-
lizes the attributes of the newly predicted nodes ∆Vt to establish
connections between ∆Vt and Gt−1, thereby generating the new
subgraph Gt , as shown in Figure 6.

For each vm ∈ ∆Vt , we first acquire the inter-level connections
of vm. We sequentially traverse in the four directions: up, down,
left, and right. If there exists a connection in a certain direction, we
perform a line search to find the node vn ∈ Gt that is closest to vm
and set (vm,vn) to be an inter-level connection for vm. For intra-
level connections of vm, we perform a bi-directional line search
on both two predicted nodes. If the connection of two new nodes
matches, then we set the intra-level connection, as shown in Fig-
ure 6(c). For example, vm has a right intra-level connection and vl
has a left intra-level connection), then we select (vm,vl) to be an
intra-level connection for vi. In our implementation, due to the ex-
istence of errors in node coordinate prediction, a strict line search
may fail to find connecting nodes. Therefore, we allow for a cer-
tain threshold range (we set the threshold to be 5 pixels) in specific
directions for searching.
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Given the rasterized floorplan image I, Raster-to-Graph predicts
new subgraphs in an autoregressive manner. Specifically, in each
iteration, Raster-to-Graph performs node prediction and graph con-
struction. It begins by predicting the nodes of the current level
based on the subgraph of the previous level and then adds the newly
predicted nodes to the subgraph of the previous level through graph
construction. The autoregressive process stops when there is only
one newly predicted node with a node type of "End", resulting in
the complete structural graph G.

Room extraction. With the structural graph G, we can easily ex-
tract all rooms, including the room polygons and room semantics.
By extracting all the shortest cycles in the structural graph G, we
obtain all room polygons. To determine room semantics, we ex-
tract the attribute of the room category of all nodes that construct
the room polygons. We choose the most frequently occurring room
category among all nodes sharing room categories in the direction
of the room polygon as the final room semantics, considering that
the room category prediction may have errors, and not all nodes
will share the same room category.

5. Experiment and evaluation

5.1. Implementation

The design of our model follows the architecture of Deformable
DETR [ZSL∗20], tailored for our object detection task. We have
made the following adjustments to the hyperparameters. We have
increased the number of key sampling points of deformable atten-
tion from 4 to 20. The deformable encoder has 1 layer, while the
decoder has 6 layers. We set the number of node queries to N = 500
while keeping other settings unchanged.

For FFNs in prediction heads, the coordinate regression adopts a
4-layer FFN, the intra-level classification uses a 2-layer FFN, and
other tasks have 1 layer. We have trained the model for 300 epochs
on an NVIDIA GeForce RTX 4090, with a batch size of 16. We
used the Adam optimizer [KB14] with an initial learning rate of 2e-
4, except for the CNN backbone and linear projection layers, which
have a learning rate of 2e-5. Weight decay is set to 1e-5, and the
learning rate is decayed by a factor of 0.1 at the 80-th epoch. Raster-
to-Graph is trained on our proposed dataset, with 500 floorplans for
validation, 500 floorplans for testing and the rest for training.

The loss settings are the same as Deformable DETR. Coordi-
nate regression uses L1 loss, and other tasks use Focal loss with
α = 0.25, γ = 2. We train these branches jointly, and the final loss is
a weighted summation of branch losses. For the weights of branch
losses, we set 20 for coordinate regression, 2 for node type classi-
fication, inter-level classification, and intra-level classification, and
0.5 for all four room category losses.

5.2. Evaluation metric

To evaluate the performance of our floorplan recognition method,
we have established multiple evaluation metrics, primarily focusing
on the recognition of wall junctions, wall segments, regions (room
polygons), and rooms (regions with room categories).

• Wall Junction: We calculate the Chebyshev distance [Cog16]

between the predicted wall junction and the ground truth wall
junction. If the distance is less than a given threshold, the wall
junction prediction is considered true. The given threshold we
set in experiments is 5 pixels.

• Wall Segment: We calculate the Chebyshev distances between
the predicted wall junctions and the wall junctions of ground
truth on both sides of the predicted wall segment. The larger dis-
tance is taken as the distance for the predicted wall segment. If
the distance is less than a given threshold, the wall segment pre-
diction is considered true. The given threshold we set is 5 pixels.

• Region: We use the Intersection over Union (IoU) to measure the
error between the predicted regions and the ground truth regions.
If the IoU is larger than a given threshold, the region prediction
is considered true. The given threshold we set is 0.7.

• Room: A room prediction is considered true only when the cor-
responding region and room category predictions are both con-
sidered true.

• Structure: When all wall junctions and wall segments of a floor-
plan are considered true, which means the floorplan structure is
perfectly recognized, then the structure prediction is considered
true. We calculate the percentage of samples whose structure is
true in the testing dataset.

• Overall: The overall prediction is considered true when the
structure and semantic predictions are both considered true,
which measures the overall floorplan recognition. We calculate
the percentage of samples whose overall is true in the testing
dataset.

5.3. Ablation study

We propose an autoregressive approach for floorplan recognition.
To demonstrate the effectiveness of the manner of autoregres-
sive, we have conducted an ablation experiment with the non-
autoregression method. We also have explored the impact of dif-
ferent training strategies.

Autoregression/non-autoregression. To obtain the non-
autoregression version of our method, we predict all wall junctions
and wall segments in one step. We have removed two branches:
inter-level connections and intra-level connections, from the node
attribute prediction. We denote the non-autoregression method
as R2G-NA. Figure 7(b) and (d) show the comparison between
our autoregressive and the non-autoregressive method. From (b),
it is evident that recognition results in Rows 2, 3, and 5 have
lost some details of floorplans. Moreover, the non-autoregressive
model also struggles to handle complicated floorplans, such as
the lower right in Row 1 and the upper left in Row 4. The non-
autoregressive method also makes some errors in the main parts of
floorplans, as shown in Row 1 where the largest room is predicted
as Living-room instead of the correct room category Bedroom. In
contrast, our autoregressive method performs exceptionally well
on these complex floorplans. It is worth noting that our method
still predicts the correct room category for the pipe space in Row
4, while the corresponding "ground truth" in the dataset gives the
wrong label. The non-autoregressive model tends to generate more
incomplete structures, showing a noticeably weaker recognition
effect, primarily characterized by structural errors like missing
or fabricated wall segments and incorrect semantic recognition.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Hu et al. / Raster-to-Graph 9 of 14

Bedroom Bathroom Restroom BalconyKitchenLiving-room Closet Corridor Washing-room Pipe-space Unknown

(a) Input (b) R2G-NA (c) R2G-DS (d) R2G (Ours) (e) Dataset

Figure 7: Ablation study. From (b)-(d), only closed polygons are colored as rooms. In (e), we present the corresponding "ground truth" in
our dataset. Note there might be a minor level of annotation errors in the semantic labeling of our dataset. For example, in Row 4, The
Pipe-space has been incorrectly labeled as the Restroom.

Table 1: Ablation study. t(s): average inference time. R2G-Non-Autoregression: the ablation experiment of our non-autoregression model.
R2G-Deterministic-Sampling: the ablation experiment of our deterministic-sampling. R2G (Ours): our probabilistic-sampling with proba-
bility p=0.5. The bolded is the best result. We have also reported the p-values of R2G-NA for the F-test on F-1 scores of R2G-NA and ours.
P-value is a measure of whether the observed difference is statistically significant. The difference is significant if the p-value is less than 0.05.
The reported p-values illustrate that our autoregressive method significantly outperforms the non-autoregressive method overall.

Method
Wall Junction Wall Segment Region Room

Structure Overall t(s)
Prec Recall F-1 Prec Recall F-1 Prec Recall F-1 Prec Recall F-1

R2G-NA 98.9 94.8 96.8 (0.082) 96.9 91.0 93.9 (0.002) 96.1 86.1 90.8 (0.000) 86.0 77.0 81.2 (0.000) 53.8 25.6 0.13

R2G-DS 98.3 95.9 97.1 96.2 92.8 94.5 96.2 90.3 93.2 84.5 79.3 81.8 60.0 23.6 0.30

R2G (p=0.25) 98.6 97.5 98.0 96.8 95.4 96.1 96.7 94.3 95.4 85.9 83.7 84.8 66.0 28.2 0.30

R2G (p=0.75) 98.7 97.3 98.0 97.1 95.2 96.1 96.6 93.7 95.2 85.6 83.0 84.3 66.4 29.2 0.30

R2G (Ours) 98.7 97.4 98.0 96.9 95.4 96.1 96.6 94.6 95.6 85.6 83.8 84.7 67.0 30.0 0.30

In contrast, Our autoregressive model achieves better recognition
results close to the ground truth, even on complex floorplans with
varying styles such as complicated colors, textures, icons, texts,
and intricate structures.

We have also computed several metrics for the quantitative
comparison between our autoregressive method and the non-

autoregressive method, as presented in Table 1. The table clearly
demonstrates that our autoregressive method significantly outper-
forms the non-autoregressive method on almost all metrics. We at-
tribute this to two factors. On the one hand, the non-autoregression
method assumes that the probability distribution of each wall junc-
tion is independent, while the autoregressive method models the
sequential relationships on the floorplan as conditional probability
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(a) Input floorplan (b) HEAT (c) R2V (d) R2G (Ours) (e) Dataset

Figure 8: Qualitative evaluation on structural reconstruction. From (b)-(e), all columns are shown in vectorized floorplans. In (e), we present
the corresponding "ground truth" in our dataset.

Table 2: Quantitative evaluation on structural reconstruction. t(s): average inference time. R2G-S: our structure-only model. The color cyan
and magenda mark the top-two results. For Room and Overall, we only mark the best result. Void cells: HEAT and R2G-S do not contain
semantic recognition.

Method
Wall Junction Wall Segment Region Room

Structure Overall t(s)
Prec Recall F-1 Prec Recall F-1 Prec Recall F-1 Prec Recall F-1

R2V 94.4 96.7 95.5 95.6 92.6 94.1 86.3 72.6 78.9 76.4 64.2 69.8 14.8 7.0 4.11

HEAT 98.6 98.1 98.4 96.6 95.9 96.2 96.1 94.8 95.4 - - - 64.4 - 0.19

R2G-S 98.9 97.5 98.2 97.3 95.5 96.4 97.0 94.3 95.6 - - - 66.6 - 0.26

R2G (Ours) 98.7 97.4 98.0 96.9 95.4 96.1 96.6 94.6 95.6 85.6 83.8 84.7 67.0 30.0 0.30

distributions, which are more in line with reality. On the other hand,
compared with the non-autoregressive method, our autoregressive
method allows diverse data adoption during training, which greatly
enriches the training data and improves the prediction accuracy
and generalization of the model. Note that the non-autoregressive
method has higher precision overall, our explanation is that R2G-
NA attempts to capture the whole floorplan information and may

prefer more conservative predictions, leading to a higher precision
but much lower recall.

Probabilistic/deterministic sampling. To demonstrate the ef-
fectiveness of our probabilistic sampling, we have conducted an
ablation experiment with deterministic sampling, denoted as R2G-
DS. Deterministic sampling requires that all nodes in the first-order
neighbor be visited during graph traversal to produce training data
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Bedroom Bathroom Restroom BalconyKitchenLiving-room Closet Corridor Washing-room Pipe-space Unknown

(a) Input floorplan (b) DFPR (c) R2V (d) R2G (Ours) (e) Dataset

Figure 9: Qualitative evaluation on semantic recognition. From (b)-(e), only closed polygons are colored as rooms. In (e), we present the
corresponding "ground truth" in our dataset. Note there might be a minor level of annotation errors in the semantic labeling of our dataset.

Table 3: Quantitative evaluation on semantic recognition. Accu:
for the wall, it is the ratio of the number of pixels correctly pre-
dicted as the wall to the total number of wall pixels. For the room,
it is the ratio of the number of pixels predicted as the room to the
total number of room pixels. The bolded is the best result.

Method
Wall Room

t(s)
Accu Accu

R2V 77.2 73.1 4.11

DFPR 74.4 84.0 1.88

R2G (Ours) 81.6 85.5 0.30

such as subgraphs. Therefore, the generation process of the deter-
ministic sampling method strictly follows the fixed order of the
graph traversal. Figure 7(c) and (d) present the qualitative compar-
ison between two sampling strategies. From (c), it can be observed
that the deterministic sampling method still produces errors in the

recognition of complex floorplans. In Row 1, the room structure is
not correctly predicted. There are also some errors in other results,
such as the semantic error in Row 2, as well as additional hanging
wall segments outside the floorplan in Rows 3 and 5. The results in-
dicate that our probabilistic sampling method outperforms the de-
terministic sampling model. The reconstruction quality of the deter-
ministic sampling method is inferior to our probabilistic sampling
method, leading to errors such as missing, overlapping, and fabri-
cated wall segments, as well as incorrect semantics. In contrast, the
reconstruction results of our probabilistic sampling method show
higher quality. This aligns with our expectations. The deterministic
sampling method struggles to ensure that every step of the predic-
tion process precisely matches the graph traversal, which can po-
tentially lead to unexpected interruptions in the inference process.

The corresponding quantitative comparison is shown in Table 1.
In almost all metrics, our probabilistic sampling method outper-
forms the deterministic sampling method. The results further prove
that our probabilistic sampling method exhibits better performance
than the deterministic sampling method. We attribute this to the de-
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terministic sampling not considering potential omissions during the
inference process, leading to weaker performance.

In Table 1, we also compare different sampling probabilities. We
choose probabilities p = 0.25 and 0.75 to compare with p = 0.5,
and their metrics are similar. Our explanation is that different prob-
abilities could also generate similar training data. We choose p =
0.5 as our method because it performs better in metrics of structure
and overall.

5.4. Comparison with Baselines

5.4.1. Qualitative evalution

To perform the qualitative evaluation, we have compared our pro-
posed method with the following methods. Figure 8 and Figure 9
illustrate the results of qualitative evaluation on structural recon-
struction and semantic recognition, respectively.

R2V [LWKF17]: A hybrid method of semantic recognition and
structural reconstruction to vectorize floorplans relies on manu-
ally designed optimization and post-processing algorithms to re-
construct the floorplan elements recognized by neural networks.
As shown in Figure 8(c) of structural reconstruction, R2V pro-
duces numerous structural errors. In Rows 1 and 5, the absence of
the balcony leads to hanging wall segments. In Row 2, the overall
reconstruction of the room fails. Similarly, Figure 9(c) of seman-
tic recognition also shows some semantic errors of R2V, such as
several rooms being mistakenly identified as the outdoor space in
Row 1 and the corridor being incorrectly recognized as a balcony in
Row 2. R2V displays various errors in both structural and seman-
tic recognition, resulting in imperfect recognition. We attribute this
to that the structural reconstruction of R2V relies on optimization
with manually designed constraints, making it less robust to input
noise compared to neural networks. Additionally, the semantic seg-
mentation of R2V also produces some errors in recognizing wall
junctions, leading to poorer wall semantic segmentation. Further-
more, as a non-autoregressive method, R2V assumes independence
among wall junctions, making it more challenging to achieve high-
quality floorplan recognition.

DFPR [ZLYF19]: A semantic segmentation method for floor-
plan recognition based on the spatial relationships of floorplan ele-
ments, which does not produce vectorized results. DFPR can pro-
vide pixel-level recognition results but still introduces some errors
in room categories and certain structural elements, such as thicker
wall segments or wall segments covered by door icons. As shown
in Figure 9(b) of semantic recognition, DFPR introduces some se-
mantic errors. In Row 1, the room labeled as Closet is incorrectly
predicted as a corridor. Similarly, in Row 3, the central kitchen is
recognized as a corridor. The wall segments of the floorplan are di-
verse and small targets, while some additional icons can interfere
with the recognition of the walls, which leads to the confusion of
image features after multiple downsampling of the semantic seg-
mentation network of DFPR, resulting in poorer recognition.

HEAT [CQF22]: A structural reconstruction method based on a
dual Transformer structure for inferring corners and edges on the
rasterized floorplans, which does not provide semantic informa-
tion for rooms. HEAT excels in recognizing floorplan details and

overall geometric structures but still makes errors on some bizarre
floorplans. As shown in Figure 8(b) of the structural reconstruc-
tion, HEAT demonstrates high-quality reconstruction performance.
However, it makes mistakes on some floorplans, such as the pillar
in the lower left of Row 1 and the corridor in Row 2.

In contrast, the structural reconstruction of our method outper-
forms DFPR and HEAT. As shown in Figure 8(d), even when
faced with complicated colors, textures, icons, and bizarre floor-
plans, our method consistently produces high-quality recognition
results that are close to the ground truth. Our method exhibits ex-
ceptional recognition capabilities, maintaining geometric integrity
while effectively handling stylistically diverse regions and promi-
nent junctions within floorplans. The semantic recognition of our
method is significantly better than DFPR and R2V, as demon-
strated in Figure 9(d), our method still exhibits high-quality se-
mantic recognition. It is worth noting that our method predicts the
correct room category for the corridor in Row 2, while the corre-
sponding "ground truth" in the dataset gives the wrong label.

5.4.2. Quantitative evalution

We have conducted a quantitative evaluation of R2V and HEAT.
Furthermore, to fairly compare our model with HEAT in terms of
structural reconstruction, we simplify R2G, reducing it to a pure
structure recognition model, denoted as R2G-S, and retraining it in
the same manner. In comparison with R2G, the changes in R2G-S
are as follows: the number of key sampling points in deformable
attention is reduced from 20 to 4, and the four FFNs used for se-
mantic prediction are removed. The rest of the R2G model remains
unchanged. Table 2 shows the results of the quantitative evaluation.
From the table, it can be seen that our method significantly outper-
forms R2V. R2V performs significantly poorer than our method on
all metrics except for junctions and walls, which can be attributed to
that their method generates scattered connection points and walls,
making it more challenging to form complete and correct regions.
Furthermore, R2V employs manually designed optimizations and
post-processing methods, making it much slower compared to our
method.

Compared to HEAT, our pure structural model performs sim-
ilarly on the metrics of wall junction, wall segment, and region,
but excels in the metrics of structure and overall, which show bet-
ter performance in the global structural reconstruction than HEAT.
HEAT has similar results to ours in low-level element recognition,
but HEAT’s recognition error is more diffuse, resulting in poorer
high-level structure recognition. Interestingly, the performance of
our pure structural model is nearly on par with our complete model.
Adding semantic tasks does not burden our model, indicating that
even for more complex floorplan recognition tasks, our approach
can achieve comprehensive information extraction in floorplans.
This demonstrates the scalability of our method. In contrast, HEAT
is specifically designed for structural recognition tasks and employs
carefully designed edge and corner detection networks as well as
edge classification networks. The complexity of the HEAT net-
work makes it challenging to directly extend to floorplan recog-
nition tasks.

To perform quantitative analysis and comparisons of the seman-
tic recognition results, we rasterize the vectorized results of R2V
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(a) (b) (c)

Figure 10: Typical failure cases. (a) Input floorplan. (b) The
ground truth. (c) Our prediction. The upper errs in some semantics,
which may suffer from slight errors in our semantic annotation. The
lower shows a rare structure, which our method performs poorly.

and our algorithm to obtain semantic floorplans. In our experi-
ments, we set the thickness of the wall to 5 pixels. DFPR can di-
rectly produce semantic recognition results. As shown in Table 3,
even in pixel-level metrics, our method still outperforms DFPR and
R2V in terms of the wall and room.

Limitations. Our method only recognizes axis-aligned walls. An
improvement is to add wall angle prediction, which will be one of
our further works. Limited to our current dataset, our method may
fail to predict some structures on the rare floorplan images. The
accuracy of semantics still needs to be improved, which may be
due to slight errors in our semantic annotation. Figure 10 shows
some typical failure cases.

6. Conclusion

We propose Raster-to-Graph, a novel automatic framework for
floorplan recognition that effectively captures both structures and
semantics. By representing vectorized floorplans as structural
graphs with floorplan semantics, we have transformed the floorplan
recognition task into a structural graph prediction problem. Our
autoregressive model, based on the visual attention Transformer,
iteratively predicts structures and semantics in the order of graph
traversal. Additionally, we have introduced a large-scale floorplan
dataset containing over 10,000 annotated real-world residential
floorplans. Our extensive experiments and evaluations have demon-
strated the effectiveness of the proposed recognition framework,
showing significant improvements in the recognition of both struc-
tures and semantics compared to existing state-of-the-art methods.
Raster-to-Graph not only offers a powerful solution for floorplan
recognition, but also provides a valuable dataset and a robust au-
toregressive model for future research in floorplan analysis, archi-
tectural design, and other related applications.

Our work can play a potential role in the content creation of elec-
tronic games and virtual reality. We showcase some popup 3D mod-
els generated from our floorplan recognition results in Figure 11.
Our dataset is not yet perfect, and its scale is not large enough.
Some data annotations require further optimization and correction.
On the other hand, our dataset only includes horizontal or vertical
walls, which limits our method to recognizing only horizontal or
vertical wall segments. Expanding to recognize slanted wall seg-

ments could be a potential future endeavor. Additionally, extending
our approach to open rooms, and disconnected structures, and ex-
tracting information such as text and icons will also become inter-
esting potential future work.
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