
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs

Áron Samuel Kovács , Pedro Hermosilla, and Renata G. Raidou

TU Wien, Austria

VGG-19

Pre-training Optimization

Mesh
VGG-19

VGG-19

LossWeights

Figure 1: Our mesh texture synthesis algorithm employs two neural networks with the same architecture: the first one is a conventional 2D
Convolutional Neural Network (CNN) designed for images, while the second operates directly on the tangent space of a mesh. The shared
architecture allows us to use the weights of the 2D CNN—pre-trained on thousands of natural images—on the CNN operating on the mesh.
Consequently, with the parameters of the networks frozen, we optimize the content of a mesh texture to match the content of a specified image.

Abstract
Mesh texture synthesis is a key component in the automatic generation of 3D content. Existing learning-based methods have
drawbacks—either by disregarding the shape manifold during texture generation or by requiring a large number of different
views to mitigate occlusion-related inconsistencies. In this paper, we present a novel surface-aware approach for mesh texture
synthesis that overcomes these drawbacks by leveraging the pre-trained weights of 2D Convolutional Neural Networks (CNNs)
with the same architecture, but with convolutions designed for 3D meshes. Our proposed network keeps track of the oriented
patches surrounding each texel, enabling seamless texture synthesis and retaining local similarity to classical 2D convolutions
with square kernels. Our approach allows us to synthesize textures that account for the geometric content of mesh surfaces,
eliminating discontinuities and achieving comparable quality to 2D image synthesis algorithms. We compare our approach
with state-of-the-art methods where, through qualitative and quantitative evaluations, we demonstrate that our approach is
more effective for a variety of meshes and styles, while also producing visually appealing and consistent textures on meshes.

CCS Concepts
• Computing methodologies → Neural networks; Texturing;

1. Introduction

In computer graphics, textures refer to two-dimensional images
applied to the surfaces of 3D meshes, by mapping the pixels of
the former onto the vertices or polygons of the latter. During map-
ping, we determine which pixel in the texture maps to a mesh sur-
face point in consideration—ultimately simulating a diverse range
of surface properties, such as color, reflectivity, transparency, and
more. This process is fundamentally oriented towards creating so-
phisticated and realistic visual effects, leveraging highly intricate
texture images while preserving rendering efficiency. Conversely,
in computer vision, textures refer to visual patterns or structures
intrinsic to an image. These patterns or structures are identified

through the spatial arrangement of pixel intensities, color distribu-
tions, and other visual features. Texture analysis, entailing the ex-
traction and characterization of these patterns, focuses on revealing
the underlying structure of an image and understanding its content.

Generating high-quality textures for 3D meshes is a manual and
tedious process, due to the inherent disparity between the 2D nature
of textures and the 3D shape to which they are eventually projected.
Consequently, the automatic generation of textures for 3D meshes,
known as mesh texture synthesis has emerged as a crucial technique
for the rapid and controllable creation of 3D content. Situated at
the intersection of computer graphics and computer vision, mesh
texture synthesis aims to generate textures for 3D meshes that ex-

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.15016

CGF 43-2 | e15016

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0849-9032
https://orcid.org/0000-0003-2468-0664
https://doi.org/10.1111/cgf.15016


2 of 13 Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs

hibit visual coherence, meaningfulness, and realism. To accomplish
this, mesh texture synthesis takes into account both the underlying
geometry and topology of a 3D mesh, as well as the underlying
structure or pattern present within the texture image. Mesh texture
synthesis may enable, thus, the creation of visually compelling and
contextually appropriate texture representations for 3D meshes.

Several works have addressed the problem of controllable tex-
ture synthesis from a 2D perspective. These methods operate by
taking a 2D image exemplar as input and generating random vari-
ations thereof. Traditional methods either define mechanical pro-
cesses for generating such variations [EL99, EF01, WLKT09] or
employ a parametric texture model [Jul62, PS00, SF95]. In re-
cent years, Convolutional Neural Networks (CNNs) have also been
trained on natural images to generate variations of a given exem-
plar [GEB15b, JAFF16]. Although these methods produce visually
appealing results, they are not explicitly designed for mesh textures
since they are unaware of the eventual geometric context.

Alternative approaches have tackled the same problem from a 3D
perspective. One such approach is solid texture synthesis, which
aims to generate a texture in 3D space based on a 2D exem-
plar. In this context, colors are associated with specific positions
within a bounded or unbounded 3D volume [HMR20, GRGH19a,
KFCO∗07]. However, these methods are designed to generate high-
frequency and abstract textures, such as marble, and do not con-
sider the lower-dimensional manifold of 3D meshes during the gen-
eration process. Another line of research employs 2D CNNs in
conjunction with a differentiable renderer to optimize the result-
ing mesh texture from a given 2D exemplar across multiple view-
points [HJN22a, MPSO18a]. These methods heavily rely on sam-
pling a large number of views, which can be computationally de-
manding and may lead to occlusion-related inconsistencies.

In this paper, we propose a novel surface-aware mesh texture
synthesis method that mitigates the drawbacks observed in prior re-
search efforts. Our methodology leverages the pre-trained weights
of a 2D CNN to another CNN with an identical architecture—
but with convolutions operating directly on the tangent space of
a mesh. This design enables the utilization of pre-existing weights
from the 2D network, trained on an extensive corpus of natural im-
ages. Moreover, it facilitates the comparison of Gram matrices be-
tween the two networks, as we define a loss function between a 2D
texture and a mesh texture directly. In a comparative evaluation, we
demonstrate that our approach generates visually appealing mesh
textures from a large variety of exemplars while respecting the ge-
ometric context of the mesh. Our implementation is publicly avail-
able in our repository [KHR24].

2. Related Work

Our work builds upon advances in geometric deep learning, specifi-
cally focused on texture synthesis (Sec. 2.1). These advances utilize
a generalization of the convolution operator to process meshes with
a neural network (Sec. 2.2).

2.1. Image Synthesis

2D Approaches. Textures are generated using two main strategies.
The first strategy entails resampling either pixels [EL99, WL00]

or entire patches [EF01, KSE∗03] of the original texture. A com-
plete review of non-parametric resampling techniques is provided
by Wei et al. [WLKT09]. Such techniques are capable of producing
natural textures very efficiently—yet, they do not provide an actual
texture model. The second strategy is to explicitly define a paramet-
ric texture model [Jul62, PS00, SF95]. Although these approaches
are effective for a wide range of textures, they are not sufficient in
representing natural textures [GEB15b].

Image and texture generation approaches can be categorized into
two main groups within the context of our research. The first cat-
egory involves the generation of new textures with high-level fea-
tures, derived from an exemplar. The second category further tries
to preserve the content of an additional input image. Often, both
categories share similar methodologies, requiring only minor mod-
ifications before being used interchangeably. In both cases, the goal
is to reuse features from the exemplar, which can be constrained by
features in the content image, if desired.

The foundational work in neural style transfer has been laid
by Gatys et al. [GEB15a], where the technique was developed to
transfer artistic styles. This concept has been since repurposed for
synthesizing a texture by using a noise image as the content in-
put [GEB15b]—thus, not preserving any content. Notable advance-
ments have been made in both style transfer and texture synthesis.
These include the integration of Generative Adversarial Networks
(GANs) [JBV17], the design of specialized networks tailored for
features of varying scales [ZGW∗22], and the training of neural
networks that explicitly minimize the objective function [CS16].

3D Approaches. The problem of synthesizing textures for 3D ob-
jects can be approached from different angles. Point clouds tech-
niques [CWN19, CWNN20] assign color values to points in space.
However, point clouds face inherent challenges in unambiguously
expressing surfaces, due to the absence of explicit connections be-
tween individual points. In many cases, though, this is desired to
prevent bleeding of features across surfaces that just happen to be
nearby. A recent survey by Guo et al. [GWH∗20] provides a review
of recent progress in deep learning for point clouds.

When the style image aims to represent a material that can be
represented with a volume, such as wood or marble, solid texture
approaches come into play [HMR20, GRGH19a, ZGW∗22, CW10,
KFCO∗07]. Solid texture methods directly assign values, such as
color or density, to every point in 3D space that can be sampled
onto a mesh. Hence, during the synthesis part of the pipeline, these
methods are not aware of the mesh’s surface. Not all materials or
styles can be represented with a solid texture that exhibits a high
degree of symmetry, as features are correlated based on Euclidean
distance and do not consider the separation on the surface.

To address these shortcomings, render-based approaches adopt
a process of rendering the given mesh and subsequently match-
ing the style of the projected parts [KUH17, MPSO18a, HJN22a].
Such methods require rendering the object from multiple view-
points, thereby, introducing challenges when dealing with objects
of high complexity, with multiple holes, or overlapping wire-like
features, where achieving visibility of all surfaces becomes diffi-
cult. Nonetheless, when the camera is suitably positioned, the pro-
jection process can effectively capture the separation of surfaces by

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://github.com/AronKovacs/mesh-texture-synthesis
https://github.com/AronKovacs/mesh-texture-synthesis


Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs 3 of 13

Image Convolution Result

Result Result

Filter
p

x

�

Image Pooling Groups Result

Window

expx(��

Textured Mesh Textured Mesh

Figure 2: The convolution and pooling operation, as redefined within the context of our work. Left: The convolution is applied to the input
data (image vs. textured mesh) to filter the available information and produce a feature map. However, for the textured mesh, we modify the
neighborhood sampling to account for the mesh topology. Right: During the pooling, we define a sliding 3D window that selects texels to
aggregate based on their geodesic path (indicated with the colors).

empty space. Consequently, these methods can break correlations
solely based on Euclidean distance, at least during rendering.

Recently, text-based approaches have also gained popularity as
methods for mesh texture generation, since they allow to specify the
content of the texture with simple prompts [MBOL∗21, KXBP22,
RMA∗23]. These methods also rely on 2D projections from mul-
tiple views to generate a set of renderings that are then fed to a
pre-trained CLIP model [RKH∗21]. Therefore, they suffer from the
same shortcomings as render-based methods.

2.2. Convolutional Neural Networks for 3D Meshes

The design of neural network architectures for meshes is an ac-
tive area of research. While vertex-based approaches that represent
the mesh as a graph exist [YHSG17, VBV18, FLFM18, HHF∗19],
they cannot easily capture data not solely associated with indi-
vidual vertices or faces. Other approaches have defined the con-
volution operations directly on the Riemannian manifold. Among
these, two approaches have been considered: Using a diffusive ap-
proach related to heat diffusion on surfaces [SACO22, WNEH22,
MBM∗17, MBBV15], or equivariant convolutions on surfaces de-
signed to address the rotation ambiguity problem of the tangent
plane [PO18, YLP∗20, MKK21]. Lastly, texture-based approaches
have emerged as a viable solution, as textures enable the defi-
nition of data on a finer level than just the pure geometry of a
mesh [HZY∗19, LLZ∗19, GWY∗21]. All these approaches have
been designed for a supervised setup where the downstream task
is performed directly on the mesh surface. Therefore, these meth-
ods are not a viable solution when the parameters of another neural
network, trained on 2D image data, need to be re-used.

3. Our Approach

Our method, inspired by previous works in the field of 2D texture
synthesis [GEB15b], introduces a novel spatial invariant parametric
texture model. This model is built upon a hierarchical CNN that
has been pre-trained on the task of object recognition in natural
images. In contrast to previous works, we extend this concept to

3D meshes by generalizing the building blocks of the 2D network
architecture to operate on the tangent space of a 3D mesh (Fig. 1).
This generalization involves redefining two of the main building
blocks of the network: the convolution operation and the pooling
operation. Fig. 2 illustrates schematically these operations.

Whilst the convolution operation applies filters on the image to
detect patterns (Sec. 3.1), the pooling operation reduces the image
size to increase the receptive field of the subsequent filters and re-
duce the computational burden (Sec. 3.2). By redefining these oper-
ations to operate on the surface of a mesh, we can directly leverage
the weights of a pre-trained 2D network, while maintaining the rest
of the architecture intact. To this end, our method optimizes 3D
mesh convolution and pooling by precomputing geodesic neigh-
borhoods and pooling groups with linear time complexity relative
to texel counts and triangle numbers (Sec. 3.3). Consequently, we
generate textures directly on the surface of a 3D mesh (Sec. 3.4).
In the following subsections, we describe in detail each of these
operations and the optimization process of our proposed algorithm.

3.1. Convolution

2D Definition. Given an input feature map Fi ∈ RW×H , the stan-
dard 2D discrete convolution computes an output feature map
Fo ∈ RW×H . The new feature value for each pixel p ∈ N2 is the
weighted sum of input features from pixels in its neighborhood N.
The weights of this sum are defined by a kernel function g(δ) that
takes the relative position δ ∈ Z2 of the neighboring pixel w.r.t. p:

Fo(p) = ∑
δ∈N

Fi(p+δ)g(δ) (1)

The neighborhood N is defined as a set of vectors covering a square
area of k×k, which is usually implemented as a matrix of the same
k× k shape. In this definition, we omit the third dimension of the
feature maps describing multiple channels for simplicity.

3D Mesh Definition. To re-use the weights of a 2D convolution in
our mesh convolutions, we use the same definition of convolution
as in Eq. 1. However, we modify the neighborhood sampling to
account for the mesh topology. We assume that our 3D meshes are

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



4 of 13 Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs

2D Riemannian manifolds M without boundary embedded in 3D
space. Therefore, we can make use of exponential maps to describe
the sampling in Eq. 1 for each point x in our manifold:

Fo(x) = ∑
δ∈N

Fi(expx(δ))g(δ) (2)

where δ ∈ TxM, being TxM the tangent plane at point x. The expo-
nential map expx(δ) will follow the geodesic path γδ(1) and retrieve
a neighboring point y in that direction. Therefore, the square area
defined by the neighborhood N in Eq. 1 is now covering a square
area in the manifold locally around x. Note that this definition of
convolution is directly inspired by Masci et al. [MBBV15], but we
use square neighborhoods instead of circular ones.

Feature Maps. While in Eq. 1 the feature maps F were images,
now in Eq. 2 F denotes scalar-valued functions on the manifold
F : M → R. Different representations can be used for F . In this
paper, we choose to represent F as mesh textures. Given the set
of points x on M and a 2D texture map F , we define a bijective
map t : M → [0,1]2 that maps points on M to points in F . Our
convolution then becomes:

Fo(p) = ∑
δ∈N

Fi(p′)g(δ) (3)

p′ = t(expt−1(p)(δ))

Since Fi is now a discretized 2D feature map, we need to adjust
the length of the geodesic path γδ(1) based on the distance between
texels in our feature map. Our vector δ, therefore, becomes δ

′ = δs,
where s is the size of a texel in world space.

To sample our texture map F at continuous positions, we need
to define an interpolation function. Nearest neighbor and bilinear
interpolations are fast to execute and implemented by hardware.
In our experiments, we used bilinear interpolation in the first layer
and nearest neighbor interpolations in the remaining layers of the
network, having empirically confirmed that it yields better results.
We use the xatlas [You22] library to generate the UV mappings,
though this choice was primarily motivated by the ease of use and
any method that tries to preserve areas should work comparably.

Tangent Frame. Our new definition of convolutions requires a lo-
cal reference frame defined at each point x. For simplicity, given
the normal N at point x, we compute the tangent vectors T and B
with the Gram-Schmidt process using N and a random vector w.
However, this process is not defined when N and w are parallel. In
such cases, we use a different vector w′, which is perpendicular to
w. Note that w and w′ are the same for all reference frames. Our
algorithm is not bound to this method for computing the tangent
frames and other methods that generate smoother tangent frames
could be used, e.g., the approach by Fisher et al. [FSDH07].

3.2. Pooling

2D Definition. The pooling operations used for images usually de-
fine a window of size k × k that is overlaid over the image and
a pooling operation that aggregates the values inside the window.
For simplicity, in this paper, we will consider non-overlapping win-
dows, i.e., each pixel is not used by more than one k× k window.

3D Mesh Definition. To define a similar pooling operation for

Figure 3: We employ a mechanism to avoid overshooting from a
texel at position p (in grey) to a distant disconnected texel (in red).
Therefore, we correctly determine the adjacent texel (in green).

meshes, we need to define a sliding window that selects texels to
aggregate. We use a simple—yet effective—algorithm by defining
a 3D voxelization of the space and aggregating texels within a voxel
that are connected through a geodesic path within this voxel. The
voxel grid of each pooling layer is defined as kn · s, where n is the
index of the pooling layer within the network starting from 1, s is
the size of the texel in world space, and k the size of the window.
Note that this algorithm could generate several pooling groups in-
side the same voxel. Also note that this algorithm will generate
pooling groups of different sizes.

Texel Graph. To accelerate the pooling operation, we build an
undirected graph E of the texels of our texture at each level in the
network. An edge ei j on this graph connects texels i and j if they
are adjacent, i.e., if there is a boundary connecting the two texels.
This allows for fast queries of connected components during the
determination of pooling groups. Our pooling operation generates
pooling groups of varying sizes and, thus, texels of varying sizes
in deeper layers of the network. This might cause our exponential
maps to overshoot and select a distant texel that is not connected to
the central texel at p, for which the convolution is being computed.
We depict this in Fig. 3. To avoid such cases, we use our graph E to
determine if the neighboring point is adjacent to our central texel. If
not, we follow γδ′(1) backward, until we find a point along γδ′(1)
belonging to a texel adjacent to our central texel at p.

3.3. Precomputation

Unlike regular 2D convolution and pooling, where the position of
each neighbor is trivial to compute, in 3D mesh convolution and
pooling it is not sufficient to sample surrounding points in UV
space. However, the local geodesic neighborhood of each texel can
be computed in advance, assuming that a given mesh is not being
deformed during the training process. For the convolution, our im-
plementation precomputes the local neighborhood of each texel,
storing the position and bilinear factor for each sample in GPU
buffers. The time complexity of this process is at worst linear w.r.t.
the number of triangles and the number of texels, as the computa-
tion of the geodesic paths consists primarily of crossing from one
face to another. During training, our method only depends on the
number of texels in each layer and should scale linearly.

Similarly, we precompute the grouping into pooling groups
which we then again store on the GPU. This has a linear time com-
plexity w.r.t. the number of texels as this mostly involves grouping
them into voxels and then computing the connected components
using the aforementioned texel graph. As a UV unwrapping may
not fully utilize the whole UV space, we work only with the texels
that are used and store only their features. This approach enables us
to ignore unused texture parts—thus, reducing the needed memory.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs 5 of 13

Figure 4: Our method applied on three meshes (the bunny and the dragon from the Stanford 3D scanning repository, and the Mother and
Child by Brian Weston (CC BY-SA)) and five textures with a diverse set of stimuli.

3.4. Texture Synthesis

Our algorithm makes use of two CNNs with the same architec-
ture. We used the VGG-19 architecture [SZ14], which is one of
the most commonly used for image synthesis and style transfer for
2D images [GEB15a,GEB15b,LW16]. The choice between the ar-
chitecture variants of VGG was based on the documented advan-
tages of VGG-19 over VGG-16 with regard to its increased dis-
criminative power, improved representational capacity of complex
images, and better feature extraction due to the deeper architecture.
Whilst one of our networks is designed to work on 2D images, the
other one uses convolution and pooling operations for 3D meshes,
as schematically depicted in Fig. 1.

We start with a VGG-19 network, pre-trained for the task of im-
age classification on ImageNet1000 [RDS∗15]. Subsequently, we
use the pre-trained weights to initialize the second network that
operates on 3D meshes. Once the weights of both networks are de-
fined, they are frozen before the texture generation. We initialize
the mesh texture with random noise values drawn from a uniform
distribution on the range [0,0.2]. The choice has been motivated by
the findings of previous work [GEB15b]. Then, we execute the 2D
network with the 2D image example as input, and the mesh network
with the random texture as input. For each layer of the network, the
Gram matrices are computed [GEB15b]. The final loss is defined
as the mean square error between the Gram matrices of all layers
in the network, where all of them are assigned the same weight. In
this way, we measure the discrepancy between the Gram matrices,
reflecting the difference in style representation between the gener-
ated outcome and the target. The gradients of this loss are back-
propagated through the mesh network until the input mesh texture
and its values are optimized. After several optimization steps, the
final mesh texture is generated. A schematic depiction of our ap-
proach is provided in Fig. 1.

4. Results and Evaluation

In this section, we present an analysis of the results generated with
our method (Sec. 4.1). We also provide a comparison to other in-
dicative state-of-the-art approaches (Sec. 4.2). All synthesis results
are generated using our tool written in a combination of Python,
Rust, TensorFlow, and CUDA, and running on a desktop machine
equipped with an AMD Ryzen 9 3900X with 128 GB RAM and an
NVIDIA GeForce RTX 3080 Ti. We use the Adam optimizer with
a rather large learning rate of 0.1, which is halved after 200 itera-
tions and again after 400 iterations. The optimization process stops
after 500 iterations. Depending on the complexity of the mesh and
the fraction of the utilized UV space, the precomputation part takes
2–5 minutes and the optimization process takes approximately 50
minutes for textures of size 1024× 1024. More detailed measure-
ments are included in Tables 1 and 2.

4.1. Visual Quality of our Approach

To demonstrate the versatility of our approach, we prepared a se-
lection of testing sequences with a variety of meshes and textures
as input data. These include meshes with different topologies and
at different levels of detail (i.e., coarseness), and texture exemplars
with different stimuli and resolutions.

Results with Different Meshes and Textures. Fig. 4 depicts the
outcomes of our approach applied to the bunny and the dragon
from the Stanford 3D scanning repository, as well as the Mother
and Child mesh, for five textures with a diverse set of stimuli—
ranging from high-frequency textures [PS00] to isotropic materi-
als [GRGH19a], and also artistic styles [GEB15b]. More results
with additional meshes and textures are included in Fig. 10. The
results indicate that our approach can infer a reasonable mesh tex-
ture from the 2D exemplar while preserving the features learned
along the mesh, for a large variety of textures. Our method suc-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

http://graphics.stanford.edu/data/3Dscanrep
https://www.thingiverse.com/thing:456430
https://www.thingiverse.com/thing:456430
https://www.thingiverse.com/edcorusa/designs
https://creativecommons.org/licenses/by-sa/3.0/
http://graphics.stanford.edu/data/3Dscanrep
https://www.thingiverse.com/thing:456430
https://www.thingiverse.com/thing:456430


6 of 13 Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs

cessfully reproduces the underlying structure of the different exem-
plars, while capturing their colors and variations, and also follow-
ing the mesh geometry. For instance, when employing textures with
Kandinsky’s on White II or Hokusai’s The Great Wave off Kana-
gawa, we observe that colors and patterns (fine-grained and coarse)
are preserved, while the geometrical context of the surface is also
respected—even for meshes of different topologies or higher genus,
such as the dragon or the Mother and Child mesh in the last two
rows of Fig. 4. For the plant texture, we notice a few bright spots in
all meshes (e.g., at the back foot of the bunny in the fourth column
of Fig. 4). This might be due to rapid changes in the tangent field in
the surrounding area. This may be causing the mesh network with
VGG-19 weights to lose local context to such an extent that the
extracted local features cannot be properly matched with the pro-
vided style. For the plant and the radishes textures (fourth and fifth
column of Fig. 4), we also notice that the shapes are slightly more
elongated as opposed to the rounder structures in the exemplar. This
might be due to the different sizes and shapes of the pooling groups.

Results at Different Levels of Detail for the Meshes and Differ-
ent Texture Resolutions. We also experimented with different res-
olutions for the textures and different levels of details, i.e., coarse-
ness, for the meshes. In Fig. 5 (a), we depict one example with the
armadillo from the Stanford 3D scanning repository at two different
levels of detail (2,124 and 212,574 polys) and the Kandinsky texture
at two different resolutions (128× 128 and 256× 256). As antici-
pated, a higher texture resolution and a higher number of polygons
both influence the outcome. Although the texture resolution quali-
tatively seems to be the most influential factor, it is noteworthy that
using a finer mesh also contributes to fewer artifacts, e.g., on the
chest of the armadillo in Fig. 5 (a).

Impact of Weight Initialization. Moreover, we evaluate the effect
of the pre-training process in 2D. Fig. 5 (b) offers a comparison of
the results of our optimization process when using the weights of
the 2D pre-trained network against those of a neural network with
randomly initialized weights. We see that, without the prior knowl-
edge acquired during pre-training, the algorithm is not able to gen-
erate a plausible mesh texture (left). On the other hand, when the
pre-trained weights are used, the generated mesh texture matches
the patterns of the original image (right).

Impact of the Overshooting Correction. We finally evaluate the
effect of our correction that shortens geodesic paths to avoid over-
shooting as shown in Fig. 3. Fig. 5 (c) shows that without this cor-
rection, artifacts can be seen in certain parts of the texture such as
the bunny tail. The pre-trained network does not expect the over-
shooting to occur and, therefore, skipping over to more distant un-
connected parts of the texture may cause it to extract incorrect fea-
tures.

4.2. Comparison to the State of the Art

We compare our approach to selected approaches from the state of
the art—namely, the approaches of Gatys et al. [GEB15b], Gutier-
rez et al. [GRGH19a], Mordvintsev et al. [MPSO18a], and Höllein
et al. [HJN22a] (Fig. 6). The work of Gatys et al. is a traditional
2D image texture synthesis neural approach. Gutierrez et al. pro-
pose a solid texture approach, where a volume is defined and sliced

(a)

Random init Image pre-trained

(b)

No
correction

Overshoot
correction

(c)

Figure 5: Ablation study: (a) Our method applied to the armadillo
from the Stanford 3D scanning repository (at two different levels of
detail: 2,124 and 212,574 polys) and the Kandinsky texture (at two
different resolutions: 128× 128 and 256× 256). (b) Our method
applied to the Mother and Child by Brian Weston (CC BY-SA) once
with randomly initialized weights (left) and once with pre-trained
VGG-19 weights. (c) Our method applied to the bunny from the
Stanford 3D scanning repository without (left) and with (right) the
overshooting correction.

so that the style of the slices matches a given style image. After-
ward, the volume is sampled at the object-space texel positions.
Conversely, the approaches of Mordvintsev et al. and Höllein et
al. are both render-based. The former renders a textured mesh and
then matches the Gram matrices with a style image, while the latter
introduces additional viewing angle and depth corrections. These
works showcase different perspectives and applications, ranging
from traditional 2D image style transfer to volumetric texture syn-
thesis and style transfer in rendering 3D scenes. However, they all
focus on generating or transforming images in a way that captures

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
https://www.thingiverse.com/thing:456430
https://www.thingiverse.com/edcorusa/designs
https://creativecommons.org/licenses/by-sa/3.0/
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep


Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs 7 of 13

Original
2D

Gatys et al. 2015 Gutierrez et al. 2019 Mordvintsev et al. 2018 Höllein et al. 2022 Ours
3D

Figure 6: Results of our approach compared to those by Gatys et al. [GEB15b], Gutierrez et al. [GRGH19a], Mordvintsev et al. [MPSO18a],
and Höllein et al. [HJN22a] for four meshes (armadillo, dragon, and bunny from the the Stanford 3D scanning repository, and the Mother
and Child by Brian Weston (CC BY-SA)) and four textures.

and transfers specific visual styles or textures. The approach of
Gatys et al. is only used as a baseline for the 2D case, while the
other three are used for the 3D scenario comparison.

Our selection has also been motivated by the availability of
open-source implementations [GEB15c, MPSO18b, GRGH19b,
HJN22b]. To maintain uniformity across methodologies, we de-
liberately chose to employ a VGG-19 network consistently in our
study. As Gutierrez et al. and Höllein et al. already utilize VGG-
19 in their approaches, we adapted our methodology to incorporate
this network. It is worth noting that we had to transform the original
implementation of Mordvintsev et al., which initially employed an
Inception v1 network [SVI∗16]. The quality of results is contingent
on the chosen network, and we aimed to employ a consistent net-
work across all approaches. Therefore, we had to integrate a VGG-
19 network instead, ensuring a cohesive and comparable evaluation
framework across all approaches. Still, the usage of VGG-19 is not
fundamental for our approach and that is also the case for the neu-
ral networks chosen by the approaches we compare against. All
approaches use these 2D networks just as feature extractors and
the contribution of all these works is the method to bridge the gap

between 3D and 2D (rendering or slicing) and/or corrections to ac-
count for this projection. We additionally note that the approach of
Höllein et al. is primarily meant to stylize scenes. To adapt it to
synthesize textures for individual meshes, we had to place cameras
uniformly around each mesh and used the output of each hidden
layer to compute the Gram matrices. Finally, we used the same UV
unwrapping for all approaches.

Visual Comparison. For the comparison to the state of the art,
we generated comparable cases for all approaches. The compari-
son outcomes are shown in Fig. 6 for four meshes (the armadillo,
the dragon, and the bunny from the the Stanford 3D scanning repos-
itory, as well as the Mother and Child mesh) and four textures (The
Great Wave, a marble texture, a texture depicting the Mandelbrot
set, and a texture with succulent plants from GitHub). As antici-
pated, the approach of Gatys et al. is capable of producing natural
2D textures both for The Great Wave and the isotropic marble ma-
terial texture. We observe, however, a few artifacts—for instance,
at the bottom right corner of The Great Wave texture and also at the
left edge of the marble texture. These might be due to the proximity
to the edges of the generated image, where zero-padding does not

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

http://graphics.stanford.edu/data/3Dscanrep
https://www.thingiverse.com/thing:456430
https://www.thingiverse.com/thing:456430
https://www.thingiverse.com/edcorusa/designs
https://creativecommons.org/licenses/by-sa/3.0/
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
https://www.thingiverse.com/thing:456430
https://en.wikipedia.org/wiki/File:Mandel_zoom_11_satellite_double_spiral.jpg
https://en.wikipedia.org/wiki/File:Mandel_zoom_11_satellite_double_spiral.jpg
https://github.com/meet-minimalist/Texture-Synthesis-Using-Convolutional-Neural-Networks


8 of 13 Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs

match the distribution of values in the rest of the image, and the
network extracts unsuitable features. Finally, for the Mandelbrot
texture and the plants texture, the method is also able to capture the
structure and patterns of the original texture, but at a different scale
due to the different texture resolutions used in the original texture
and the generated one.

Subsequently, we move on to the comparison with the
approaches of Gutierrez et al. [GRGH19a], Mordvintsev et
al. [MPSO18a], and Höllein et al. [HJN22a]. The approach of
Gutierrez et al. works particularly well for isotropic materials, such
as the marble texture. This is anticipated, because isotropic materi-
als exhibit a high degree of symmetry, and as such any two slices
of the stylized volume should resemble each other. With regard to
The Great Wave, we see that the surface of the mesh is not well-
respected (e.g., at the thigh of the armadillo in Fig. 6). Here, we
have harsh artifacts, which can be observed as darker stripes on the
white part of the texture. The same kind of artifacts can also be
seen when employing the plants texture (e.g., at the belly of the
armadillo in Fig. 6). Moreover, the colors and the sharpness are
compromised to a degree, while for the Mandelbrot texture bright
artifacts appear (e.g., at the child’s leg in Fig. 6).

Conversely, the approach of Mordvintsev et al. does not work
as expected. A potential reason for that is the use of VGG-19, as
opposed to the original Inception v1 network. Although Inception
networks are anticipated to yield superior results, comparing them
to our employed VGG-19 would be unfair. Therefore, we leave
this investigation as a point for future work—potentially, within
a wider ablation study. The presence of blurry artifacts in render-
based baselines could be attributed to the selection of camera view-
points, as uniform placement might result in certain patches being
inadequately viewed from optimal, i.e., orthogonal, perspectives.
For The Great Wave, the outcomes of the approach of Mordvint-
sev et al. are vaguely resembling the exemplar, where only the col-
ors are preserved. Additionally, some artifacts resembling speckle
noise are visible, which are also evident in the images generated
with the approach of Gatys et al. [GEB15b]. This can be mitigated
by blurring or by including a term in the loss function that penal-
izes noise. The same artifacts are also present in the marble case,
although the overall visual quality of the result is better with this
texture. For the Mandelbrot and the plants texture, we notice severe
artifacts that compromise both the represented structures and the
saturation of the texture.

Finally, the performance of the approach of Höllein et al. seems
to depend on the employed mesh. Notably, for The Great Wave,
the performance with the armadillo mesh is suboptimal, while the
dragon has only a few speckle-like artifacts. The marble texture
works well for both employed mesh specimens, while the perfor-
mance with the Mandelbrot and plants textures is insufficient. For
the Mandelbrot case, the colors are desaturated and large artifacts
are evident, while large streak artifacts appear in the plants tex-
ture also. An additional reason for the artifacts in the results ob-
tained with Höllein et al.’s implementation could be due to mipmap-
ping. This is a technique where a texture is progressively down-
sampled to increase rendering speed and reduce aliasing artifacts.
In neural approaches, mipmapping can be used as a pooling op-
eration [LLZ∗19] or as a method for working with coarser fea-

tures [HJN22a]. However, this approach may introduce errors. In
some cases, the UV mapping may generate islands adjacent to
each other in the UV space—yet, far apart in a geodesic sense.
These islands merge during mipmapping, causing the gradient to
flow through incorrectly merged pixels, and potentially resulting
in erroneous correlations between regions or introducing undesir-
able noise. This drawback is counteracted in our implementation
by pooling based on the geodesic space (instead of the UV space).
We, therefore, suggest that techniques utilizing mipmapping should
also use adequate island margins during training, or should consider
alternative methods for pooling or representing coarse features.

User Study. To evaluate our method, we conducted an informal,
online user study with 30 participants, where we used several of
the cases shown in Fig. 4 and 10. We presented each participant
with the produced outcomes of our approach and the approaches of
Gutierrez et al., Mordvintsev et al., and Höllein et al. together with
the respective texture exemplars. Without disclosing any informa-
tion about any of the approaches, we interviewed the participants
to gain some qualitative feedback about the outputs. Namely, we
asked them to rank the four approaches concerning their similarity
to the provided texture exemplar. For each of the generated results,
we also asked the study participants to rate on a 1–5 Likert scale
their visual appeal and coherence.

The analyzed outcomes of the user study are shown in Fig. 7.
The study participants ranked our approach as the closest to the
texture exemplar (µ±σ = 64.3± 26.9% of the participants), fol-
lowed by the approach of Gutierrez et al. (µ±σ = 17.6± 16.5%)
and Höllein et al. (µ±σ = 17.6±29.5%), and last by the approach
of Mordvintsev et al. (µ±σ = 0.5± 1.3%). The results are statis-
tically significant (F = 8.44196; p = .001028), as shown with an
ANOVA test followed by pairwise t-tests. The approach of Mordv-
intsev et al. was judged as the least similar to the texture exemplar
(µ ± σ = 57.6 ± 33.3% of the participants), followed by the ap-
proach of Höllein et al. (µ±σ = 35.7±35.1%), and Gutierrez et al.
(µ±σ = 4.8± 6.6%), and last by ours (µ±σ = 1.9± 2.6%). The
results are statistically significant (F = 6.2159; p = .004376), as
shown with an ANOVA test followed by pairwise t-tests. In terms
of visual appeal and coherence, the overall preferred approach is
ours as indicated also visually in the plots of Fig. 7. The distribu-
tion of the ratings of our approach differs statistically significantly
from the other three approaches in coherence (F = 15.08026;
p = .000037) and visual appeal (F = 13.77907, p = .000065), as
shown with ANOVA tests followed by pairwise t-tests. To sum up,
according to our study participants, our approach outperforms qual-
itatively the other three methods in all investigated aspects.

Speed and Memory Comparison. We measured the training times
and peak VRAM usage during the training phase of all approaches.
Recall that our approach only considers the texels that are being
used by a given UV unwrapping, hence for our approach we give
the measurements for each mesh together with the percentage of
used texels. The measurements in Table 1 indicate that our train-
ing times are comparable to the other approaches, sometimes even
surpassing them depending on the fraction of used UV space. Even
though we currently require more memory than Gutierrez et al. and
Höllein et al., this can be alleviated with a better implementation,
however, we would still need to store the neighborhoods for con-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs 9 of 13

0
10
20
30
40
50
60
70

Mordvintsev
et al. 2018

Gutierrez et
al. 2019

Höllein et al.
2022

Ours

Similarity Ranking (%)

4th (most dissimilar) 3rd 2nd 1st (most similar)

0

10

20

30

40

50

Mordvintsev
et al. 2018

Gutierrez et
al. 2019

Höllein et al.
2022

Ours

Coherence (%)

Very low Low Medium High Very high

0

10

20

30

40

50

Mordvintsev
et al. 2018

Gutierrez et
al. 2019

Höllein et al.
2022

Ours

Visual Appeal (%)

Very low Low Medium High Very high

Figure 7: Perceived similarity to the 2D exemplar, coherence, and visual appeal of our approach vs. Gutierrez et al. [GRGH19a], Mordvintsev
et al. [MPSO18a], and Höllein et al. [HJN22a] in a user study with 30 participants.

volution and pooling. On the positive side, though, even low-end
GPUs have enough memory to be able to utilize our method. Both
training times and memory scale with the used UV space, but there
are small deviations from a linear scaling, which could be caused
by different sizes of pooling groups. Finally, in Table 2 we show
the precomputation times for the neighborhoods during convolu-
tion and pooling, which are an order of magnitude smaller than the
training times.

Extension to Other Tasks. Although we have heavily showcased
our approach within the context of texture synthesis for single ob-
jects, there is a possibility of extension to a broader variety of tasks.
This includes, for instance, style transfer and texture synthesis for
whole scenes, but also segmentation or classification—similar to
the previous work of Li et al. [LLZ∗19]. We have not investigated
the latter, but we showcase a few initial results of style transfer-
ring (Fig. 8) and stylization of whole scenes (Fig. 9). For the style
transfer task, we have used an additional content texture that repre-

Table 1: Training times (t) and peak VRAM usage for the 3D texture
generation. For the render-based approaches of Mordvintsev et al.
and Höllein et al., we used the bunny from the Stanford 3D scan-
ning repository for the training. For the volume-based approach
of Gutierrez et al., the measurements below refer to training with
the entire volume. For our approach, we show results for differ-
ent meshes. All measurements were done for a 1024×1024 marble
texture (unless specified otherwise), and the outcomes are depicted
in Figure 6. Note that the used UV space is not relevant for the
measurements and is, thus, not indicated in the table.

t (m:s) VRAM (MB) Used UV
Gutierrez et al. 59:43 564 –
Mordvintsev et al. 43:32 6122 –
Höllein et al. 40:48 711 –
Ours – Bunny 47:17 2422 63.33%
Ours – Bunny (512×512) 12:39 737 64.53%
Ours – Bunny (256×256) 3:51 291 66.84%

Ours – Armadillo 43:53 2314 64.21%
Ours – Buddha 49:46 2309 62.49%
Ours – Dragon 38:49 2397 68.27%
Ours – Mother 49:58 1933 52.61%
Ours – Snail 36:07 1848 48.23%
Ours – Teapot 53:24 2687 69.14%

sents ambient occlusion and also an RGB texture [TL22]. For the
former, we stylize with The Great Wave texture and the newspaper
(used also by Mordvintsev et al. [MPSO18a]). We use the same ap-
proach as Gatys et al. [GEB15a], i.e., we match the Gram matrices
of the generated texture with those of the style image and match
the values of feature layers of both the generated texture and the
original content texture. We use the output of the following lay-
ers to compute the Gram matrices: block1_conv1, block2_conv1,
block3_conv1, block4_conv1, block5_conv1 which are weighted
the same. We use the output of block4_conv2 to compute the con-
tent difference, which we multiply by 1000.

In these preliminary examples, we observe that our approach per-
forms reasonably also for style transfer, despite not being explicitly
designed for it. The style textures are applied in a manner that re-
spects the geometry of the underlying mesh and the input texture.
Observe the inner cavity of the bunny ear, and the creases under its
neck or between its legs in Fig. 8 (a: top row); and compare them
with the respective renderings provided in Fig. 10. The same effect
can be noticed on the chest and the clothing of the Happy Buddha
(Fig. 8, a: bottom row vs. Fig. 10). For the RGB texture, notice
the contours around the eyes and nose of the bunny (Fig. 8 (b)).
The same meshes and textures have been employed, with the sole
addition of the content texture for the style transfer task.

For the whole scene texture synthesis task, we provide a compar-
ison of our results with the approach of Höllein et al. in Fig. 9. The
mesh was reconstructed from real-world data, therefore, it contains
several holes and is noisy. This poses a challenge for our approach,

Table 2: Precomputation times (t) of our approach using various
meshes. A 1024×1024 texture (unless specified otherwise) is used
for the 6 texel layers needed for VGG-19 with 5 pooling layers.

t (m:s) Used UV Triangles
Bunny 1:44 63.33% 5002
Bunny (512×512) 0:42 64.53% 5002
Bunny (256×256) 0:21 66.84% 5002

Armadillo 2:30 64.21% 212574
Buddha 3:23 62.49% 108770
Dragon 2:45 68.27% 217853
Mother 1:33 52.61% 56512
Snail 2:13 48.23% 574
Teapot 3:32 69.14% 6320

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep


10 of 13 Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs

as it favors surfaces that do not have a boundary. Furthermore, our
method creates a rapidly changing tangent field in the noisy areas,
which causes a loss of local context. Hence, the synthesis process
is not able to create texture patches resembling the style exemplar.
Oppositely, the approach of Höllein et al. does not have this prob-
lem. Yet, it struggles in a few areas close to the windows, which are
at the bottom left part of the scene in Fig. 9. Those parts have not
been sufficiently captured by the camera and, after rendering, the
thin geometry is surrounded by a black background.

5. Limitations

Being inspired by the approach of Gatys et al., unavoidably our ap-
proach faces similar limitations. As discussed also in Sec. 4, we
have high computational costs, especially in the optimization step.
Furthermore, although our approach has reasonable control over
the geometry and topology of the underlying mesh and produces
visually appealing results as demonstrated in Sec. 4.1, we do not
always have fine-grained control over the specific features or ele-
ments we want to transfer or retain in the synthesized texture. High-
frequency changes in the tangent field may cause certain artifacts,
e.g., colored spots that do not match the style texture. This is, for
instance, visible in the examples with the plants texture (Fig. 4).

Our examples showcased that we are overall effective when ap-
plying a diverse set of textures or patterns—not only artistic styles
but also natural textures and complex geometric patterns (Fig. 10).
Yet, with a more robust architecture, we might be able to pre-
serve better the texture structures or patterns. As expected, the algo-
rithm’s performance and the quality of the synthesized texture can

Ambient
Occlusion

(a)

RGB
texture

(b)

Figure 8: (a) Two examples of style transfer with our approach
with a texture that represents ambient occlusion. Top row: The in-
put is the Stanford bunny. It is stylized with The Great Wave off
Kanagawa (left) and a newspaper texture (right). Bottom row: The
input is the Happy Buddha, stylized with the same two textures as
the previous case. (b) Style transfer with two different styles (left:
The Great Wave off Kanagawa, right: Mandelbrot) on the Stanford
bunny with an RGB content texture [TL22].

be sensitive to several hyperparameters, requiring manual tuning
and experimentation to achieve satisfactory results (Fig. 4 and 5).
Moreover, uneven sampling and pooling may introduce informa-
tion loss due to bias towards dominant features or regions in the
data, as well as distortions or misalignments in the spatial relation-
ships between features, impacting subsequent tasks that rely on ac-
curate spatial information.

Lastly, our convolution definition in Eq. 2 assumes that the dis-
placements along the geodesic paths are localized to a small neigh-
borhood around the points. However, for network architectures
with a large number of layers and, more importantly, several pool-
ing operations, the covered patch might span large portions of the
manifold breaking the assumption of locality.

6. Conclusion and Future Work

We have presented an example-based approach for texture synthe-
sis for textured mesh objects. Our method uses a modification of the
well-tested approach for style transfer of Gatys et al. [GEB15a],
where the underlying data representation—instead of being a flat
2D plane—is the curved 3D surface of a given mesh. In this way,
our approach takes into consideration the topology and geometry
of the mesh in a manner superior to the previously proposed ap-
proaches. We showed that our approach works well for a variety
of meshes with different styles. Our approach minimizes artifacts
of existing learning-based methods, by being seamless and taking
into account the local topology. Our method also minimizes feature
bleeding across the Euclidean space.

In our future work, we will investigate 2D convolutional net-
works resistant to domain change from flat images to curved sur-
faces. It would also be interesting to modify the underlying mesh
geometry to capture both visual style and 3D shape, similar to Hertz
et al. [HHGCO20]. Another future direction could investigate other
architectures, beyond VGG and with other loss functions. Addi-
tionally, our work could provide further insights into repurposing
image-trained neural networks for general tasks with different lo-
cal structures. Finally, in a future evaluation, it would be interesting
to extend our approach to other tasks, e.g., segmentation or classi-
fication, and to compare our method to more recent NeRF-based
stylization approaches [CYL∗22,HHY∗22,ZKB∗22,LZC∗23] and
text-based stylization approaches [MBOL∗21,KXBP22,RMA∗23,
MZS∗23].

Höllein et al. 2022 Ours

Figure 9: Stylization for scene 0291_00 from the ScanNet
dataset [DCS∗17] achieved with the approach of Höllein et
al. [HJN22a] and ours.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep


Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs 11 of 13

Figure 10: Our method applied on seven meshes and seven textures with a diverse set of stimuli. The meshes include the bunny, the dragon,
the armadillo, and the Happy Buddha from the Stanford 3D scanning repository, a snail mesh created in Blender, the Mother and Child by
Brian Weston (CC BY-SA), and the Utah teapot. The textures include (from top to bottom) two artistic styles—namely, Kandinsky’s on White
II and The Great Wave off Kanagawa, an isotropic marble texture similar to those used by Gutierrez et al. [GRGH19a], the newspaper texture
used by Mordvintsev et al. [MPSO18a], a high-frequency abstract texture containing succulent plants obtained from GitHub, the radishes
texture also used by Gatys et al. [GEB15b] and previously by Portilla and Simoncelli [PS00], and the cropped Mandelbrot texture created
by Wolfgang Beyer (CC BY-SA).

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

http://graphics.stanford.edu/data/3Dscanrep
https://www.thingiverse.com/thing:456430
https://www.thingiverse.com/edcorusa/designs
https://creativecommons.org/licenses/by-sa/3.0/
http://www.holmes3d.net/graphics/teapot/?graphics/teapot
https://www.wikiart.org/en/wassily-kandinsky/on-white-ii-1923
https://www.wikiart.org/en/wassily-kandinsky/on-white-ii-1923
https://www.wikiart.org/en/katsushika-hokusai/the-great-wave-of-kanagawa-1831
https://github.com/meet-minimalist/Texture-Synthesis-Using-Convolutional-Neural-Networks
https://en.wikipedia.org/wiki/File:Mandel_zoom_11_satellite_double_spiral.jpg
https://commons.wikimedia.org/wiki/User:Wolfgangbeyer
https://creativecommons.org/licenses/by-sa/3.0/


12 of 13 Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs

References

[CS16] CHEN T. Q., SCHMIDT M.: Fast patch-based style transfer of
arbitrary style, 2016. doi:10.48550/arXiv.1612.04337. 2

[CW10] CHEN J., WANG B.: High quality solid texture synthe-
sis using position and index histogram matching. The Visual Com-
puter 26 (2010), 253–262. URL: http://dx.doi.org/10.1007/
s00371-009-0408-3. 2

[CWN19] CAO X., WANG W., NAGAO K.: Neural style transfer for point
clouds, 2019. doi:10.48550/arXiv.1903.05807. 2

[CWNN20] CAO X., WANG W., NAGAO K., NAKAMURA R.: PSNet:
A Style Transfer Network for Point Cloud Stylization on Geometry and
Color. In 2020 IEEE Winter Conference on Applications of Computer Vi-
sion (WACV) (2020), pp. 3326–3334. doi:10.1109/WACV45572.
2020.9093513. 2

[CYL∗22] CHEN Y., YUAN Q., LI Z., LIU Y., WANG W., XIE C., WEN
X., YU Q.: UPST-NeRF: Universal Photorealistic Style Transfer of Neu-
ral Radiance Fields for 3D Scene, 2022. doi:10.48550/arXiv.
2208.07059. 10

[DCS∗17] DAI A., CHANG A. X., SAVVA M., HALBER M.,
FUNKHOUSER T., NIESSNER M.: ScanNet: Richly-annotated 3D Re-
constructions of Indoor Scenes. In Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE (2017). doi:10.48550/arXiv.1702.
04405. 10

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for texture
synthesis and transfer. In Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques (2001), pp. 341–
346. URL: https://dl.acm.org/doi/10.1145/383259.
383296. 2

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by non-
parametric sampling. In Proceedings of the 7th IEEE International Con-
ference on Computer Vision (1999), vol. 2, IEEE, pp. 1033–1038. URL:
https://doi.org/10.1109/ICCV.1999.790383. 2

[FLFM18] FEY M., LENSSEN J. E., FRANK W., MULLER H.:
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline
Kernels. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2018). doi:10.1109/CVPR.2018.00097. 3

[FSDH07] FISHER M., SCHRÖDER P., DESBRUN M., HOPPE H.: De-
sign of tangent vector fields. ACM Transactions on Graphics 26, 3
(2007), 56–es. doi:10.1145/1276377.1276447. 4

[GEB15a] GATYS L. A., ECKER A. S., BETHGE M.: A neural algorithm
of artistic style, 2015. doi:10.48550/arXiv.1508.06576. 2, 5,
9, 10

[GEB15b] GATYS L. A., ECKER A. S., BETHGE M.: Texture synthesis
using convolutional neural networks, 2015. doi:10.48550/arXiv.
1505.07376. 2, 3, 5, 6, 7, 8, 11

[GEB15c] GATYS L. A., ECKER A. S., BETHGE M.: Texture Synthesis
Using Convolutional Neural Networks—Open Source Implementa-
tion on GitHub. https://github.com/meet-minimalist/
Texture-Synthesis-Using-Convolutional-Neural-Networks,
2015. 7

[GRGH19a] GUTIERREZ J., RABIN J., GALERNE B., HURTUT T.: On
Demand Solid Texture Synthesis Using Deep 3D Networks. Computer
Graphics Forum 39, 1 (2019), 511–530. doi:10.1111/cgf.13889.
2, 5, 6, 7, 8, 9, 11

[GRGH19b] GUTIERREZ J., RABIN J., GALERNE B., HURTUT T.:
On Demand Solid Texture Synthesis Using Deep 3D Networks—
Open Source Implementation on GitHub. https://github.com/
JorgeGtz/SolidTextureNets, 2019. 7

[GWH∗20] GUO Y., WANG H., HU Q., LIU H., LIU L., BENNAMOUN
M.: Deep Learning for 3D Point Clouds: A Survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence 43, 12 (2020), 4338–4364.
doi:10.48550/arXiv.1912.12033. 2

[GWY∗21] GAO L., WU T., YUAN Y.-J., LIN M.-X., LAI Y.-K.,
ZHANG H.: TM-NET: Deep Generative Networks for Textured Meshes,
2021. doi:10.48550/arXiv.2010.06217. 3

[HHF∗19] HANOCKA R., HERTZ A., FISH N., GIRYES R., FLEISH-
MAN S., COHEN-OR D.: MeshCNN: a network with an edge. ACM
Transactions on Graphics (TOG) 38, 4 (2019), 1–12. doi:10.1145/
3306346.3322959. 3

[HHGCO20] HERTZ A., HANOCKA R., GIRYES R., COHEN-OR D.:
Deep geometric texture synthesis. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 108–1. doi:10.1145/3386569.3392471.
10

[HHY∗22] HUANG Y.-H., HE Y., YUAN Y.-J., LAI Y.-K., GAO L.:
StylizedNeRF: Consistent 3D Scene Stylization as Stylized NeRF via
2D-3D Mutual Learning, 2022. doi:10.48550/arXiv.2205.
12183. 10

[HJN22a] HÖLLEIN L., JOHNSON J., NIESSNER M.: Stylemesh: Style
Transfer for Indoor 3D Scene Reconstructions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022), pp. 6198–6208. doi:10.48550/arXiv.2112.
01530. 2, 6, 7, 8, 9, 10

[HJN22b] HÖLLEIN L., JOHNSON J., NIESSNER M.: Stylemesh:
Style Transfer for Indoor 3D Scene Reconstructions—Open Source Im-
plementation on GitHub. https://github.com/lukasHoel/
stylemesh, 2022. 7

[HMR20] HENZLER P., MITRA N. J., RITSCHEL T.: Learning a Neu-
ral 3D Texture Space from 2D Exemplars. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2020). URL:
https://doi.org/10.1109/CVPR42600.2020.00838. 2

[HZY∗19] HUANG J., ZHANG H., YI L., FUNKHOUSER T., NIESSNER
M., GUIBAS L.: Texturenet: Consistent local parametrizations for learn-
ing from high-resolution signals on meshes, 2019. doi:10.48550/
arXiv.1812.00020. 3

[JAFF16] JOHNSON J., ALAHI A., FEI-FEI L.: Perceptual losses for
real-time style transfer and super-resolution. In In Proceedings of the
14th European Conference on Computer Vision (ECCV), Part II (2016),
Springer, pp. 694–711. URL: https://doi.org/10.48550/
arXiv.1603.08155. 2

[JBV17] JETCHEV N., BERGMANN U., VOLLGRAF R.: Texture syn-
thesis with spatial generative adversarial networks, 2017. doi:10.
48550/arXiv.1611.08207. 2

[Jul62] JULESZ B.: Visual pattern discrimination. IRE Transactions on
Information Theory 8, 2 (1962), 84–92. URL: https://doi.org/
10.1109/TIT.1962.1057698. 2

[KFCO∗07] KOPF J., FU C.-W., COHEN-OR D., DEUSSEN O.,
LISCHINSKI D., WONG T.-T.: Solid Texture Synthesis from 2D Ex-
emplars. In ACM SIGGRAPH 2007. ACM, 2007, pp. 2–es. URL:
https://doi.org/10.1145/1276377.1276380. 2

[KHR24] KOVACS A. S., HERMOSILLA P., RAIDOU R. G.: Surface-
aware Mesh Texture Synthesis with Pre-trained 2D CNNs—Open
Source Implementation on GitHub. https://github.com/
AronKovacs/mesh-texture-synthesis, 2024. 2

[KSE∗03] KWATRA V., SCHÖDL A., ESSA I., TURK G., BOBICK A.:
Graphcut textures: Image and video synthesis using graph cuts. ACM
Transactions on Graphics (TOG) 22, 3 (2003), 277–286. URL: https:
//doi.org/10.1145/882262.882264. 2

[KUH17] KATO H., USHIKU Y., HARADA T.: Neural 3D Mesh Ren-
derer, 2017. doi:10.48550/arXiv.1711.07566. 2

[KXBP22] KHALID N. M., XIE T., BELILOVSKY E., POPA T.: CLIP-
mesh: Generating textured meshes from text using pretrained image-text
models. In SIGGRAPH Asia 2022 Conference Papers (nov 2022), ACM.
doi:10.1145/3550469.3555392. 3, 10

[LLZ∗19] LI S., LUO Z., ZHEN M., YAO Y., SHEN T., FANG T., QUAN
L.: Cross-atlas convolution for parameterization invariant learning on
textured mesh surface. In 2019 IEEE/CVF Conference on Computer

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.48550/arXiv.1612.04337
http://dx.doi.org/10.1007/s00371-009-0408-3
http://dx.doi.org/10.1007/s00371-009-0408-3
https://doi.org/10.48550/arXiv.1903.05807
https://doi.org/10.1109/WACV45572.2020.9093513
https://doi.org/10.1109/WACV45572.2020.9093513
https://doi.org/10.48550/arXiv.2208.07059
https://doi.org/10.48550/arXiv.2208.07059
https://doi.org/10.48550/arXiv.1702.04405
https://doi.org/10.48550/arXiv.1702.04405
https://dl.acm.org/doi/10.1145/383259.383296
https://dl.acm.org/doi/10.1145/383259.383296
https://doi.org/10.1109/ICCV.1999.790383
https://doi.org/10.1109/CVPR.2018.00097
https://doi.org/10.1145/1276377.1276447
https://doi.org/10.48550/arXiv.1508.06576
https://doi.org/10.48550/arXiv.1505.07376
https://doi.org/10.48550/arXiv.1505.07376
https://github.com/meet-minimalist/Texture-Synthesis-Using-Convolutional-Neural-Networks
https://github.com/meet-minimalist/Texture-Synthesis-Using-Convolutional-Neural-Networks
https://doi.org/10.1111/cgf.13889
https://github.com/JorgeGtz/SolidTextureNets
https://github.com/JorgeGtz/SolidTextureNets
https://doi.org/10.48550/arXiv.1912.12033
https://doi.org/10.48550/arXiv.2010.06217
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3386569.3392471
https://doi.org/10.48550/arXiv.2205.12183
https://doi.org/10.48550/arXiv.2205.12183
https://doi.org/10.48550/arXiv.2112.01530
https://doi.org/10.48550/arXiv.2112.01530
https://github.com/lukasHoel/stylemesh
https://github.com/lukasHoel/stylemesh
https://doi.org/10.1109/CVPR42600.2020.00838
https://doi.org/10.48550/arXiv.1812.00020
https://doi.org/10.48550/arXiv.1812.00020
https://doi.org/10.48550/arXiv.1603.08155
https://doi.org/10.48550/arXiv.1603.08155
https://doi.org/10.48550/arXiv.1611.08207
https://doi.org/10.48550/arXiv.1611.08207
https://doi.org/10.1109/TIT.1962.1057698
https://doi.org/10.1109/TIT.1962.1057698
https://doi.org/10.1145/1276377.1276380
https://github.com/AronKovacs/mesh-texture-synthesis
https://github.com/AronKovacs/mesh-texture-synthesis
https://doi.org/10.1145/882262.882264
https://doi.org/10.1145/882262.882264
https://doi.org/10.48550/arXiv.1711.07566
https://doi.org/10.1145/3550469.3555392


Kovács et al. / Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs 13 of 13

Vision and Pattern Recognition (CVPR) (2019), pp. 6136–6145. doi:
10.1109/CVPR.2019.00630. 3, 8, 9

[LW16] LI C., WAND M.: Combining Markov Random Fields and Con-
volutional Neural Networks for Image Synthesis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016), pp. 2479–2486. doi:10.48550/arXiv.1601.04589. 5

[LZC∗23] LIU K., ZHAN F., CHEN Y., ZHANG J., YU Y., SADDIK
A. E., LU S., XING E.: StyleRF: Zero-shot 3D Style Transfer of Neural
Radiance Fields, 2023. doi:10.48550/arXiv.2208.07059. 10

[MBBV15] MASCI J., BOSCAINI D., BRONSTEIN M. M., VAN-
DERGHEYNST P.: Geodesic Convolutional Neural Networks on Rieman-
nian Manifolds, 2015. doi:10.48550/arXiv.1501.06297. 3, 4

[MBM∗17] MONTI F., BOSCAINI D., MASCI J., RODOLA E., SVO-
BODA J., BRONSTEIN M. M.: Geometric Deep Learning on Graphs
and Manifolds Using Mixture Model CNNs. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017). doi:
10.1109/CVPR.2017.576. 3

[MBOL∗21] MICHEL O., BAR-ON R., LIU R., BENAIM S., HANOCKA
R.: Text2Mesh: Text-Driven Neural Stylization for Meshes, 2021. doi:
10.48550/arXiv.2112.03221. 3, 10

[MKK21] MITCHEL T. W., KIM V. G., KAZHDAN M.: Field Convo-
lutions for Surface CNNs, 2021. doi:10.48550/arXiv.2104.
03916. 3

[MPSO18a] MORDVINTSEV A., PEZZOTTI N., SCHUBERT L., OLAH
C.: Differentiable Image Parameterizations. Distill (2018). doi:10.
23915/distill.00012. 2, 6, 7, 8, 9, 11

[MPSO18b] MORDVINTSEV A., PEZZOTTI N., SCHUBERT L.,
OLAH C.: Differentiable Image Parameterizations—Open Source
Implementation on Distill. https://distill.pub/2018/
differentiable-parameterizations/, 2018. 7

[MZS∗23] MA Y., ZHANG X., SUN X., JI J., WANG H., JIANG G.,
ZHUANG W., JI R.: X-mesh: Towards fast and accurate text-driven 3d
stylization via dynamic textual guidance, 2023. arXiv:2303.15764,
doi:10.48550/arXiv.2303.15764. 10

[PO18] POULENARD A., OVSJANIKOV M.: Multi-directional geodesic
neural networks via equivariant convolution. ACM Transactions on
Graphics (TOG) (2018). URL: https://doi.org/10.48550/
arXiv.1810.02303. 3

[PS00] PORTILLA J., SIMONCELLI E. P.: A parametric texture model
based on joint statistics of complex wavelet coefficients. International
Journal of Computer Vision 40 (2000), 49–70. URL: http://dx.
doi.org/10.1023/A:1026553619983. 2, 5, 11

[RDS∗15] RUSSAKOVSKY O., DENG J., SU H., KRAUSE J., SATHEESH
S., MA S., HUANG Z., KARPATHY A., KHOSLA A., BERNSTEIN M.,
ET AL.: ImageNet Large Scale Visual Recognition Challenge. In-
ternational Journal of Computer Vision 115 (2015), 211–252. doi:
10.1007/s11263-015-0816-y. 5

[RKH∗21] RADFORD A., KIM J. W., HALLACY C., RAMESH A., GOH
G., AGARWAL S., SASTRY G., ASKELL A., MISHKIN P., CLARK J.,
KRUEGER G., SUTSKEVER I.: Learning transferable visual models from
natural language supervision. In Proceedings of the 38th International
Conference on Machine Learning (2021). 3

[RMA∗23] RICHARDSON E., METZER G., ALALUF Y., GIRYES R.,
COHEN-OR D.: TEXTure: Text-Guided Texturing of 3D Shapes, 2023.
doi:10.48550/arXiv.2302.01721. 3, 10

[SACO22] SHARP N., ATTAIKI S., CRANE K., OVSJANIKOV M.: Diffu-
sionnet: Discretization agnostic learning on surfaces. ACM Transactions
on Graphics (TOG) (2022). doi:10.1145/3507905. 3

[SF95] SIMONCELLI E. P., FREEMAN W. T.: The steerable pyramid: A
flexible architecture for multi-scale derivative computation. In In Pro-
ceedings of the International Conference on Image Processing (1995),
vol. 3, IEEE, pp. 444–447. URL: https://doi.org/10.1109/
ICIP.1995.537667. 2

[SVI∗16] SZEGEDY C., VANHOUCKE V., IOFFE S., SHLENS J., WO-
JNA Z.: Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2016), pp. 2818–2826. doi:10.48550/
arXiv.1512.00567. 7

[SZ14] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. arXiv (2014). doi:10.
48550/arXiv.1409.1556. 5

[TL22] TURK G., LEVOY M.: Stanford Bunny Texture.
http://alice.loria.fr/index.php/software/7-data/
37-unwrapped-meshes.html, 2022. 9, 10

[VBV18] VERMA N., BOYER E., VERBEEK J.: FeaStNet: Feature-
Steered Graph Convolutions for 3D Shape Analysis. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(2018). doi:10.1109/CVPR.2018.00275. 3

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis using tree-
structured vector quantization. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques (2000),
pp. 479–488. URL: https://doi.org/10.1145/344779.
345009. 2

[WLKT09] WEI L.-Y., LEFEBVRE S., KWATRA V., TURK G.: State of
the art in example-based texture synthesis. In Eurographics 2009 State of
the Art Reports (EG-STAR) (2009), 93–117. URL: http://dx.doi.
org/10.2312/egst.20091063. 2

[WNEH22] WIERSMA R., NASIKUN A., EISEMANN E., HILDE-
BRANDT K.: DeltaConv: anisotropic operators for geometric deep learn-
ing on point clouds. ACM Transactions on Graphics (TOG) 41, 4 (2022),
1–10. doi:10.1145/3528223.3530166. 3

[YHSG17] YI L., HAO SU X. G., GUIBAS L.: SyncSpecCNN: Synchro-
nized Spectral CNN for 3D Shape Segmentation. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2017).
doi:10.1109/CVPR.2017.697. 3

[YLP∗20] YANG Y., LIU S., PAN H., LIU Y., TONG X.: PFCNN: Con-
volutional Neural Networks on 3D Surfaces Using Parallel Frames, 2020.
doi:10.48550/arXiv.1808.04952. 3

[You22] YOUNG J.: xatlas—Open Source Implementation on GitHub.
https://github.com/jpcy/xatlas, 2022. 4

[ZGW∗22] ZHAO X., GUO J., WANG L., LI F., ZHENG J., YANG B.:
STS-GAN: Can We Synthesize Solid Texture with High Fidelity from
Arbitrary Exemplars?, 2022. doi:10.24963/ijcai.2023/196.
2

[ZKB∗22] ZHANG K., KOLKIN N., BI S., LUAN F., XU Z., SHECHT-
MAN E., SNAVELY N.: Arf: Artistic radiance fields, 2022. doi:
10.48550/arXiv.2206.06360. 10

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1109/CVPR.2019.00630
https://doi.org/10.1109/CVPR.2019.00630
https://doi.org/10.48550/arXiv.1601.04589
https://doi.org/10.48550/arXiv.2208.07059
https://doi.org/10.48550/arXiv.1501.06297
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.48550/arXiv.2112.03221
https://doi.org/10.48550/arXiv.2112.03221
https://doi.org/10.48550/arXiv.2104.03916
https://doi.org/10.48550/arXiv.2104.03916
https://doi.org/10.23915/distill.00012
https://doi.org/10.23915/distill.00012
https://distill.pub/2018/differentiable-parameterizations/
https://distill.pub/2018/differentiable-parameterizations/
http://arxiv.org/abs/2303.15764
https://doi.org/10.48550/arXiv.2303.15764
https://doi.org/10.48550/arXiv.1810.02303
https://doi.org/10.48550/arXiv.1810.02303
http://dx.doi.org/10.1023/A:1026553619983
http://dx.doi.org/10.1023/A:1026553619983
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/arXiv.2302.01721
https://doi.org/10.1145/3507905
https://doi.org/10.1109/ICIP.1995.537667
https://doi.org/10.1109/ICIP.1995.537667
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
http://alice.loria.fr/index.php/software/7-data/37-unwrapped-meshes.html
http://alice.loria.fr/index.php/software/7-data/37-unwrapped-meshes.html
https://doi.org/10.1109/CVPR.2018.00275
https://doi.org/10.1145/344779.345009
https://doi.org/10.1145/344779.345009
http://dx.doi.org/10.2312/egst.20091063
http://dx.doi.org/10.2312/egst.20091063
https://doi.org/10.1145/3528223.3530166
https://doi.org/10.1109/CVPR.2017.697
https://doi.org/10.48550/arXiv.1808.04952
https://github.com/jpcy/xatlas
https://doi.org/10.24963/ijcai.2023/196
https://doi.org/10.48550/arXiv.2206.06360
https://doi.org/10.48550/arXiv.2206.06360

