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FIGURE 1 – Layered Bragg structures exhibit a wide range of iridescent colors. Bottom row : we show two different types of Bragg mirrors
(left : n2 = 1.5, d1 = 125nm, d2 = 375nm, right : n2 = 1.5, d1 = 101nm, d2 = 143nm — n1 = 1 and N = 20 in both cases), with increasing
roughness toward the center of the image (α ∈ {0.025,0.1,0.4}). Top row : we combine the two Bragg layers with α = 0.1 (left one on right
one) on the teapot at the center, and each layer individually on a pair of Lambertian materials (see lids) : one achromatic, the other colored.

Abstract
Many animals, plants or gems exhibit iridescent material appearance in nature. These are due to specific geometric structures
at scales comparable to visible wavelengths, yielding so-called structural colors. The most vivid examples are due to photonic
crystals, where a same structure is repeated in one, two or three dimensions, augmenting the magnitude and complexity of
interference effects. In this paper, we study the appearance of 1D photonic crystals (repetitive pairs of thin films), also called
Bragg mirrors. Previous work has considered the effect of multiple thin films using the classical transfer matrix approach, which
increases in complexity when the number of repetitions increases. Our first contribution is to introduce a more efficient closed-
form reflectance formula [Yeh88] for Bragg mirror reflectance to the Graphics community, as well as an approximation that
lends itself to efficient spectral integration for RGB rendering. We then explore the appearance of stacks made of rough Bragg
layers. Here our contribution is to show that they may lead to a ballistic transmission, significantly speeding up position-free
rendering and leading to an efficient single-reflection BRDF model.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Iridescence, or goniochromism, is a fascinating phenomenon
that can be observed in nature in a variety of materials, such as pea-
cock feathers, butterfly wings of beetle shells (see Stavenga [Sta14]
for an overview). This property refers to a material’s ability to

change color when viewed from different angles. Iridescence is the
result of structural colors, where the interaction of light waves with
fine structures generates colors by interference.
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There are several types of structures that can produce irides-
cence. Thin films, diffraction gratings, and photonic crystals are
among them. The latter are periodic dielectric structures, where re-
petitions may occur in one, two or three dimensions. In this paper,
we focus on 1D photonic crystals, also known as Bragg mirrors,
which use periodic repetitions of thin layers with two different op-
tical indices. They are found in a variety of biological structures,
notably in beetles as shown in Figure 2(a-c). However, rendering
materials based on Bragg mirrors is challenging, as they produce
complex spectra, both in reflection and transmission. Our goal is to
introduce rendering techniques that grant interactive exploration of
materials based on Bragg mirrors.

A first difficulty lies in the reflectance spectra of Bragg mirrors :
with an increasing number of periodic repetitions, high-frequency
spectral oscillations start to appear, except for subsets of wave-
lengths called photonic band gaps where reflectances reach values
close to one (see Figure 3), which is the main cause for the obser-
ved vivid reflectance colors. Our first contribution (Section 3) is to
simplify reflectance evaluation. Our approach relies on the closed-
form spectral reflectance formula of Pochi Yeh [Yeh88], which to
the best of our knowledge has never been introduced to the Compu-
ter Graphics community. Compared to the standard transfer matrix
approach, it has the advantage of being independent of the number
of periodic repetitions. Besides performance, it provides insights
on the structure of a Bragg mirror reflectance spectrum, notably
the location of its band gaps. We use these insights to derive an
approximate Bragg reflectance spectrum that lends itself to a fast,
closed-form spectral integration for RGB rendering. This is particu-
larly useful to quickly explore the effect of different combinations
of Bragg mirror parameters on iridescent material appearance.

A second difficulty is due to the spatial configuration of Bragg
mirrors. Taking inspiration from biological structures, we consider
materials made of one or more layers of Bragg mirrors distribu-
ted in various orientations, on top of a diffuse opaque base (see
Figure 2(d,e)). Bragg layers are modelled using microfacet theory,
where each microfacet is a tiny Bragg mirror. Since only dielectric
media are involved, a significant proportion of the incoming light
reaching a Bragg layer is transmitted to layers below. Our second
contribution (Section 4) is to show that if the refractive index is the
same on both sides, the spectral transmission of a Bragg layer is
ballistic and can thus be efficiently pre-integrated over Bragg mir-
ror orientations, significantly simplifying the rendering of the layer
stack. We then use this property to derive a single-reflection model
that further speeds up the rendering process, granting interactive
feedback in spectral renderings.

We finally explore the expressivity of layered Bragg structures
(Section 5) through several parameter variations (e.g., see Fi-
gure 1). Our experiments show that the appearance of materials ba-
sed on Bragg mirrors differ qualitatively from other 1D iridescent
structures, such as those based on thin-films or pearlescent flakes.
We validate our model by comparing rendered and measured scat-
terograms, demonstrating qualitatively similar results.

2. Previous work

Some of the most striking examples of iridescence occur in na-
ture. An archetypal example is the Morpho butterfly, whose scales

have been extensively studied in both the Optics (e.g., [OZC∗13])
and Computer Graphics (e.g., [Sun06, MMRO13, kWwZ15])
communities. Iridescent structures may also be artificially ma-
nufactured, their complexity ranging from diffraction gratings
(e.g., [Sta99, SFDC00]), to surfaces with nano-particles deposited
on one or multiple thin-films (e.g, [YLL∗18, VPA∗22]) or self-
assembled cholesteric structures (e.g., [GAVH16]).

In this paper, we focus on one-dimensional structures, whereby
interference is due to the stacking of multiple thin films. Since the
pioneering work of Smits and Meyer [SM92] in Computer Gra-
phics, a number of methods dedicated to the rendering of iridescent
appearance due to thin-films have been introduced.

Single thin-film. In the context of Monte-Carlo path-tracing, Gon-
dek [GMN94] was one of the first to simulate interferences due to a
single thin film. Sun et al. [SW08] derived a closed-form formulae
for the reflectance of a thin-film coated over a transparent or opaque
layer. Belcour and Barla [BB17] introduced a fast RGB model that
predicts accurately the colors of a thin-film for a microfacet BRDF.
Their work was improved by Keniphof et al. [KGK19, KK22] for
the real-time rendering of rough iridescent surfaces, and by Guo et
al. [GCGP18] for special effect pigments.

Multiple thin-films. Icart et Arques [IA00] introduced a BRDF
model based on the formalism of Abeles matrices (similar to trans-
fer matrices) for multiple thin-films. They demonstrate results for
up to 4 repetitions of two layers on top of a conductor. Since our
model does not rely on transfer matrices, it remains computatio-
nally efficient regardless of the number of repetitions of the physi-
cal structure. Hirayama et al. [HKYM01] introduced a model with
a recursive formulation that approximates the appearance of mul-
tiple thin-films but is only valid for smooth materials. The approach
of Imura et al. [IOS∗09] unifies the treatment of gratings and multi
thin-films for real-time rendering at the expense of precomputa-
tion. Sun et al. [Sun06] takes into account multiple thin-film coa-
tings with less precomputation thanks to a closed-form solution.
However, they must assume that a layer of air is present between
each thin film. We consider similar structures called Bragg mirrors,
which consist of several repetitions of pairs of thin-films.

Pearlescent materials Iridescent effects are also found in spe-
cial effect paints that incorporate pearlescent flakes. Most previous
work in Computer Graphics (e.g., [EKM01, SMAS08, EÖÖ16,
BP20]) relies on transfer matrices to compute the reflectance
of such flakes. The general framework introduced by Guillen et
al. [GMG∗20] handles iridescent flakes embedded in a dielectric
resin. It grants control over the distribution of flake orientations,
as well as their density, among other parameters. Like pearlescent
materials, layered Bragg structures may produce a wide range of
iridescent color fringes. However, they differ in their nature : Bragg
mirrors only consist of dielectric media and are organized in layers,
whereas pearlescent flakes always involve conductors and are dis-
tributed in a volume. As a result, their appearance is qualitatively
different, as further discussed in Section 5.
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3. Bragg mirrors

We consider iridescent materials where structural colors are due
to interference in 1D photonic crystals, also called Bragg mirrors.
We begin in Section 3.1 by recalling the steps that yield to Yeh’s
closed-form spectral reflectance formula. We then present in Sec-
tion 3.2 an approximation of this spectrum that enables fast spectral
integration for interactive RGB rendering.

3.1. Spectral reflectance

A Bragg mirror is a medium made of N identical cells, each cell a
pair of media characterized by their indices n1 and n2 and their thi-
cknesses d1 and d2, and separated by smooth interfaces, as shown
in Figure 2(d). The refractive indices may be complex in general,
but we will focus on the case of real indices in this work, as these
are ubiquitous in biological and mineral iridescent materials. We
write Λ = d1 +d2 the thickness of a cell. When Λ is comparable to
visible light wavelengths (a few hundreds of nanometers), this leads
to interference effects that produce vivid iridescent colors. We only
describe the reflectance Rλ of a Bragg mirror since with real indices
its transmittance is given by Tλ = 1−Rλ. Perpendicular (’s’) and
parallel (’p’) polarizations are considered independently.

In order to understand the interference effects that occur in a
Bragg mirror, one must relate electro-magnetic fields on either
sides of the structure. The electromagnetic field in each medium
may be written as the sum of two fields : one propagating down-
ward, and the other upward, with respective amplitudes a and b,
as illustrated in Figure 2(d). The transfer matrix formalism is then
classically used to relate the fields in neighboring media ; we refer
the reader to the work of Yeh [Yeh88] for a didactic introduction to
this formalism. An important property of Bragg mirrors is that their
structure is periodic ; hence we only need to characterize the trans-
fer matrix from one cell to another – called a translation matrix.
With a Bragg mirror made of N cells, this leads to :(

a0
b0

)
=

[
A B
C D

]N(aN
bN

)
, (1)

where A, B, C and D characterize the translation matrix, while a0
and b0 are the incident and reflected field amplitudes respectively,
aN is the transmitted field amplitude, and bN = 0 in our case (no up-
ward propagating field from below when considering reflectance).

The coefficient of reflection of a Bragg mirror is defined as rN =
b0/a0, where a0 and b0 are computed using Equation 1. Yeh gives a
direct analytical formulation of the reflectance Rλ = |rN |2 that does
not require the multiplication of N translation matrices :

Rλ =
|C|2

|C|2 +
(

sin KΛ

sin NKΛ

)2 , (2)

where C comes from the translation matrix, and K is the so-called
Bloch wavenumber, which characterizes the propagation of a wave
in a periodic medium. It is given by the dispersion relation :

cos(KΛ) =
A+D

2
, (3)

where A and D are coefficients of the translation matrix given by

A = eik1zd1
(

cosk2zd2 +
1
2 iΩsink2zd2

)
, (4)

D = e−ik1zd1
(

cosk2zd2 − 1
2 iΩsink2zd2

)
, (5)

with kiz =
2πni

λ
cosθi the wavevector in the medium i ∈ {1,2} pro-

jected on the z direction (normal to the structure), θi the ray angle
in medium i, and Ω a term that differs depending on polarization :

Ωs =
k2z
k1z

+ k1z
k2z

=
n2 cosθ2
n1 cosθ1

+
n1 cosθ1
n2 cosθ2

; (6)

Ωp =
n2

1k2z

n2
2k1z

+
n2

2k1z

n2
1k2z

=
n1 cosθ2
n2 cosθ1

+
n2 cosθ1
n1 cosθ2

. (7)

Using Equations 4 and 5 in Equation 3, we obtain :

cos(KΛ) = cosk1zd1 cosk2zd2 − 1
2 Ωsink1zd1 sink2zd2. (8)

Equation 8 may yield |cos(KΛ)| > 1 in some configurations,
leading to a complex-valued wavenumber. Such configurations are
called photonic band gaps (BG), and are an important property of
Bragg mirrors. Indeed, in these cases, waves propagating in the ma-
terial are partially or totally forbidden to transmit through it due to
destructive interferences, yielding a high reflectance as shown in
Figure 3. Since band gaps depend on wavelength and angle of inci-
dence, Bragg mirrors exhibit vivid iridescent colors.

In practice we must distinguish two cases : when K is real-
valued, we may safely use Equation 2 ; whereas when K is
complex-valued, we must instead use the following formula :

Rλ =
|C|2

|C|2 +
(

sinh Im[K]Λ
sinh NIm[K]Λ

)2 , (9)

where Im[K]Λ = − ln(|cosKΛ+ sinKΛ|). When N tends toward
infinity, Equation 9 tends toward 1. The spectral reflectance Rλ of
a Bragg mirror is thus highest in band gaps.

In both Equations 2 and 9, when N = 1 we have |r1|2 =
|C|2

|C|2+1 ,

yielding a direct formulation for |C|2 =
|r1|2

1−|r1|2 . Here r1 is the
polarization-dependent reflection coefficient of a slab of index n2 in
a medium of index n1, which is computed using Airy’s summation :

r1 =
r12 + r21e−2iφ

1+ r12r21e−2iφ =
r12(1− e−2iφ)

1− r2
12e−2iφ

, (10)

with ri j the Fresnel reflection coefficient at an interface between
indices ni and n j with ri j =−r ji, and φ = 2π

λ
n2d2 cosθ2 = k2zd2.

Figure 4 shows an exploration of the appearance of Bragg mir-
rors. Reflectance spectra, and thus colors, greatly vary with the
angle of incidence. Compared to thin-films, Bragg mirrors exhibit
much more vivid colors, especially around normal incidence.

3.2. RGB reflectance

Using Equations 2 and 9 inside and outside of band gaps respec-
tively yields an efficient method for computing the spectral reflec-
tance of a Bragg mirror, since increasing the number N of cells does
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FIGURE 2 – 1D photonic crystals are commonly found in nature. Dorsal and ventral views (a) of a female Japanese jewel beetle, Chrysochroa
fulgidissima. Microscopy (b) and TEM (c) images of its cuticle at different locations : the rough cuticle surface is shown in (b), while Bragg-
like structures are observed in (c). All images from Schenck et al. [SWS13] – © IOP Publishing, reproduced with permission, all rights
reserved. A Bragg mirror (d) is made of N cells, each composed of two thin films of different refractive indices (n1,n2) and thicknesses
(d1,d2). The entry and exit refractive indices are equal, making the last interface index-matched (dashed line). A layered Bragg structure (e)
consists of a rough Bragg layer (a contiguous distribution of Bragg mirrors of varying orientations) in a host medium of index n1.
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FIGURE 3 – Top row : Reflectance spectrum Rω (in blue) of a
Bragg mirror, with n1 = 1, n2 = 1.5, d1 = d2 = 315nm and N = 10.
The reflectance envelope Re

ω (in gray) equals 1 inside photonic
band gaps (BG). Bottom row : the dispersion relation cosKΛ (in
black) characterizes the location of a BG (it is either above 1 or
below −1). Spectral modes ωm (red crosses) always lie inside a
BG and are used to find Airy points ωa (in cyan) and BG edges
ωb (green dots). These spectral landmarks, along with zero points
ωz (in black) are used to define a piecewise-constant spectrum R̃e

ω

(dashed red curve in top row), which may be optionally subdivided.

not increase computation complexity. Besides performance, the de-
rivation of the previous section yields insights on the structure of
the reflectance spectrum. We rely on these insights to provide a fast
method for approximating the RGB reflectance of a Bragg mirror.
The main idea is to use the dispersion relation to identify spec-
tral landmarks (Section 3.2.1), from which a piecewise-constant ap-
proximation to Bragg mirror reflectance is derived (Section 3.2.2),
granting a fast and accurate spectral-to-RGB conversion.

Note that relying on a Fourier transform as in the method of Bel-
cour and Barla [BB17] is not relevant since the Fourier transform
of a Bragg mirror spectrum is as complex as the spectrum itself,
which is mainly due to the presence of band gaps that produce high-
frequency oscillations in Fourier space.

3.2.1. Spectral landmarks

We start by assuming that the number N of cells is sufficiently
large to achieve a reflectance of 95% in the BG. so that we may
approximate the reflectance spectrum by its enveloppe Re

ω (gray
spectrum in Figure 3) – see [Yeh88] :

Re
ω =

|C|2

|C|2 +(sinKΛ)2 . (11)

In the following, we use ω = 2π

λ
instead of λ because it can be ob-

served in Equation 8 that it has a linear relation to Λ through the k1z
and k2z terms. Intuitively, scaling Λ has the effect of compressing
or stretching the reflected spectrum of a Bragg mirror along ω. This
can be observed in Figure 4 where more band gaps and oscillations
appear in the visible range when increasing Λ.

As illustrated at the bottom of Figure 3, band gap edges are
located where the dispersion relation obeys |cosKΛ| = 1 (green
dots) ; inside pairs of such landmarks, Re

ω = 1. Since the dispersion
relation oscillates between positive and negative maxima, it goes
through zero inbetween each band gap. We call these spectral lo-
cations Airy points (cyan dots) since when cosKΛ = 0, we have
Re

ω = |r1|2, with r1 the Airy reflection coefficient of Equation 10.

To the best of our knowledge, neither band gap edges nor Airy
points can be located analytically. We thus rely on an accurate nu-
merical approach to find these landmarks, described below. A final
set of landmarks consists in the zero points of Re

ω (black dot), which
occur when r1 = 0, since then |C|2 = 0, and are given by :

ωz =
zπ

n2 cosθ2d2
with z ∈ N+, (12)

observing that the numerator of Equation 10 vanishes when φ = zπ.
Aside from zero points, spectral landmarks depend on polarization.

Dispersion landmarks. The key idea for finding dispersion land-
marks is to first identify special locations ωm that we call modes
(red crosses in Figure 3). They lie inside each band gap and pro-
vide a structure for landmark search. As detailed in Appendix A,
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FIGURE 4 – An exploration of the set of angular color gradients produced by Bragg mirrors of indices n1 = 1 and n2 = 1.5, period Λ varying
per row, and relative thicknesses d1 and d2 varying per column (with Λ = d1 +d2), using N = 20 repetitions. The first column shows the case
of a thin-film slab of index n = 1.5 in air, its thickness Λ varying per row. The plots show reflectance as a function of the incidence angle
for three wavelengths corresponding to the CMF peaks (λ = {559,556,442}nm for red, green and blue respectively). As expected, more
oscillations appear with increasing Λ. Below each plot we show color gradients obtained from the ground truth (ref.), and in the case of
Bragg mirrors, using our basic (app.) or subdivided (sub.) approximation. Both methods yield close approximations, the latter being slightly
more accurate in terms of luminance. Compared to thin films, Bragg mirrors exhibit much more vivid and diverse color gradients.

spectral modes are given by :

ωm =
mπ

n1 cosθ1d1 +n2 cosθ2d2
with m ∈ N+, (13)

with even (resp. odd) m corresponding to a positive (resp. negative)
dispersion relation. We use a dichotomy between pairs of modes
to find the 0-crossings of cosKΛ, yielding Airy points ωa. Band
gap edges ωb are also found via dichotomy, this time between
contiguous {ωm,ωa} or {ωa,ωm} pairs. Finally, we insert the zero
points ωz when they lie inbetween a {ωb,ωa} or {ωa,ωb} pair.
This process results in an ordered list {ω j} of spectral landmarks.
In practice, we only consider those that overlap the visible range.

3.2.2. Piecewise-constant spectra

We now use spectral landmarks to approximate the spectral re-
flectance by a piecewise-constant formulation R̃ω = ∑ j w jB j(ω)
(dashed red curve in Figure 3), where w j are coefficients and B j are
box functions with boundaries aligned with spectral landmarks :

B j(ω) = H(ω−ω j)−H(ω−ω j+1), (14)

with H the Heaviside function. For the basis coefficients, we have
w j = 1 inside band gaps by construction since Re

ω = 1. We also rely
on the envelope outside of band gaps, which has the advantage of
avoiding instabilities since the envelope is oscillation-free. In prac-
tice, we use w j = w̃(θ)Re

ω

(
ω j+ω j+1

2

)
. The angular correction term

w̃ (see Appendix B) is used to compensate for the higher intensity
of the envelope compared to the ground truth spectrum.

Converting a reflectance spectrum to a RGB spectrum first
requires to integrate the former over color matching functions
(CMFs) to yield a XYZ color. Writing c̄(ω) = [x̄(ω), ȳ(ω), z̄(ω)]T

the vector of CMFs, we obtain the approximate XYZ reflectance :

R̃ =
∫

R̃ω c̄(ω)dω

= ∑
j

w j
(
C̄(ω j+1)− C̄(ω j)

)
, (15)

with C̄ = [X̄ ,Ȳ , Z̄]T the vector of cumulative integrals of CMFs :

C̄(ωmax) =
∫ ωmax

0
c̄(ω)dω = 1−

∫
H(ω−ωmax)c̄(ω)dω. (16)

The X̄ , Ȳ and Z̄ cumulative integrals are computed only once in
pre-process. At runtime, we evaluate Equation 15 by performing
one lookup in tabulated cumulative integrals per spectral landmark.
Since landmarks depend on polarization, separate XYZ approxima-
tions must be computed for each polarization, and then averaged
together. The resulting XYZ color is finally converted to a RGB
color using classic colorimetric formula.

Approximation quality. The proposed piecewise-constant ap-
proximation yields accurate results in terms of chromaticity, as
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shown in the color gradients (app.) of Figure 4. However, it might
be slightly off in terms of luminance, depending on the location
and number of band gaps in the visible spectrum. When most of
the band gaps are outside the spectrum, the piecewise-constant ap-
proximation of the envelope between band gaps may be too crude.

To remedy this, we optionally subdivide boxes outside of band
gaps. Due to the linear relationship between Λ and ω, the space
outside of band gaps showing in the visible spectrum will likely
be larger for the first modes. Since each box can be related to a
mode number m, we subdivide them into max(1,s−m) sub-boxes,
where s ∈ N+ is a user-controlled quality parameter (we use s = 3
in all our examples). As shown in the color gradients (sub.) of Fi-
gure 4, this subdivided version mostly corrects luminance inaccu-
racies. Some slight differences with the reference remain at low Λ

values. One could think that a closer approximation would be ob-
tained with a piecewise-linear instead of a piecewise-constant ap-
proximation ; However, as demonstrated in supplemental material,
such an approach does not yield better results and is less efficient.
We evaluate the performance of our approximations in Section 5.

4. Layered Bragg Structures

A material made of a single Bragg mirror looks like a colored
smooth surface. Many examples of naturally iridescent materials
exhibit a rougher look due to microscopic irregularities (see Fi-
gure 2(b)) that scatter light. We mimic such material appearance
using a layered structure of Bragg mirrors distributed across a range
of orientations (Section 4.1). We then describe how such a struc-
ture may be rendered using a position-free approach (Section 4.2),
and show that transmission is ballistic in our case. This not only
speeds up the rendering process, but also lets us introduce an effi-
cient single-reflection BRDF model (Section 4.3).

4.1. Hypothesis

We consider a layered micro-structure, where each layer is made
of a distribution of identical Bragg mirrors with different orienta-
tions, which we call a rough Bragg layer. In natural materials, pho-
tonic crystals are often layered on a pigmented background, which
is usually dark (e.g., melanin) to increase the contrast of iridescent
colors. We mimic this configuration by adding a diffuse base layer
of reflectance ρD. Figure 2(e) illustrates such a micro-structure.

We assume that the distribution of orientations in a rough Bragg
layer does not induce interference effects (e.g., no diffraction). As
a result, we model the BSDF of a Bragg layer using microfacet
theory [TS67]. The BRDF is obtained by replacing the Fresnel re-
flectance term by the Yeh reflectance Rλ of Section 3.1 :

fr(i,o) =
D(h)G(i,o,h)Rλ(i.h)

4|i.n||o.n| , (17)

where h = i+o
|i+o| is the halfway vector between the ingoing and out-

going directions i and o, and n is the geometric normal. We use the
isotropic Trowbridge-Reitz (GGX) distribution throughout, given
for an arbitrary microfacet normal m by [TR75, WMLT07] :

D(m) =
α

2
χ
+(m.n)

πcos4 θm(α2 + tan2 θm)2 (18)

with α ∈ [0,1] the roughness parameter and χ
+ the Heaviside func-

tion. The corresponding geometric attenuation factor is given by
G(i,o,m) = G1(i,m)G1(o,m), with :

G1(i,m) = χ
+
(

i.m
i.n

)
2

1+
√

1+α2 tan2 θi
. (19)

The BTDF has a special form, as detailed in Section 4.2 : since
each Bragg mirror is embedded in a host medium of index n1, the
transmitted rays are not scattered or even refracted through a rough
Bragg layer. In other words, the BTDF is ballistic.

When n1 ̸= 1, we add a smooth coating on top of the structure,
as in Figure 2(e). The case n1 = 1 maximizes the refractive index
contrast, yielding the most vivid colors. Even though it might sound
like a departure from physical realism, similar configurations are
found in nature, such as in the Morpho butterfly where a Bragg
mirror is held by a central micro-pillar. We consider that there is
no absorption nor scattering in the host medium, and that it is thick
enough so that interference effects among different layers can be
neglected. Likewise, polarisation effects among layers are ignored,
which is likely to be a valid assumption in our case [WWHN17].

4.2. Monte-carlo simulation

A straightforward solution to render a layered Bragg structure
is to rely on position-free forward Monte-Carlo light transport in
the layered structure (e.g., [GHZ18,GGN20]). This requires to pro-
perly transmit light rays through rough Bragg layers.

4.2.1. Ballistic transmission

Rays impinging on a rough Bragg layer are transmitted in the
same direction irrespective of roughness since it is bounded by the
same host medium on either side. The exit point on transmission is
laterally offset, but this is ignored in a position-free framework.

As a result, the BTDF of a Bragg layer has a special form. We
start from the general formulation of Walter [WMLT07] :

fs(i,o) =
∫

Ω

∣∣∣∣ i.mi.n

∣∣∣∣ f m
s (i,o,m)

∣∣∣o.mo.n

∣∣∣G(i,o,m)D(m)dωm, (20)

where f m
s (i,o,m) denotes the micro-BSDF of the microfacet orien-

ted in the direction m. The BTDF of Walter et al. [WMLT07] as-
sumes that each microfacet transmits in the specular direction.

f m
t (i,o,m) = Tλ(i,m)

δωo(sη(i,m),o)
|o.m| (21)

with sη(i,m) the specularly refracted direction of i across the in-
terface of normal m and refractive index ratio η ; and δωo a Di-
rac delta function whose value is infinite when sη = o and zero
otherwise. Note that we use Equation (9) of the work of Walter et
al. [WMLT07], instead of their Equation (11), which would be un-
defined in our case since the halfway vector in transmission is not
defined when o =−i.

In the ballistic case, we have instead s1(i,m) = −i for all inco-
ming directions i and micronormals m. Plugging this special confi-
guration in Equation 21 then Equation 20, we obtain the ballistic
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FIGURE 5 – We express a microfacet normal m with respect to
the ingoing direction i with a change of variable. Configurations
where i ·m < 0 are shown in beige. The integral along ψd must be
restricted to [−ψdmax ,ψdmax ] to ensure that m ·n ≥ 0.

BTDF after a few simplifications :

ft(i,o) = δωo(−i,o)
∫

Ω

|i.m|
|i.n|2

Tλ(i,m)G(i,−i,m)D(m)dωm.

(22)

4.2.2. Integrated transmissivity

In the context of a position-free Monte-Carlo simulation, we
need to evaluate ft(i,−i,n) |i.n|, the BTDF in the ballistic direc-
tion multiplied by the cosine term. If we assume that the incoming
light direction is incident from above (i.e., i.n = cosθi ≥ 0) and
with an isotropic distribution D, we may re-express Equation 22 in
terms of zenithal and azimuthal angles :

ft(θi)cosθi =∫ 2π

0

∫ π

2

0

cosθd
cosθi

Tλ(θd)G(θi,θm,φm)D(θm)sinθmdθmdφm,
(23)

where we have introduced the difference angle θd = cos−1(i.m).

Even in the isotropic case, Equation 23 remains complex to eva-
luate, and it must be recomputed whenever a parameter of a Bragg
layer is modified. However, aside from α, all parameters solely af-
fect the spectral transmissivity Tλ, which only depends on θd . We
thus perform a change of variable : we rotate the spherical domain
of integration to align i with n. As a result (see Figure 5), we have :

θm(θi,θd ,ψd) = arccos(cosθi cosθd + sinθi sinθd cosψd), (24)

which we simply write θm for concision. Equation 23 becomes :

ft(θi)cosθi = 2
∫ π

0

∫ π

2

0

cosθd
cosθi

Tλ(θd)G
2
1(θi)D(θm)sinθddθddψd ,

(25)

where the prefactor of 2 is due to the symmetry of θm with respect
to ψd (see Equation 24 and Figure 5), and the geometric attenua-
tion factor becomes G2

1(θi) in this case. Note that the χ
+ term of

Equation 19 (beige region in Figure 5) then vanishes since we have
θd ∈ [0, π

2 ] in Equation 25.

If we rewrite Equation 18 as D(θm) = χ
+(cosθm)D̃(θm), we

may explicitly derive the bounds of the outer integral in Equa-
tion 25. Indeed, using Equation 24, we find that imposing cosθm ≥

0

1

𝜃𝑑

𝐹𝛼

𝜋
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𝜋
4

7𝜋
16 0

1

𝜃𝑑
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(a) α = 0.1 (b) α = 0.4

FIGURE 6 – Plots of the transmission filter as a function of θd
for two roughness values (a,b), at three incidence angles θi ∈
{ π

32 ,
π

4 ,
7π

16}. The vertical axes differ between plots. The filter is
usually skewed and not centered on θi. It decreases in intensity for
an increasing θi. A C1 discontinuity occurs at θd = π

2 − θi (see
Equation 26), and is best seen for α = 0.4 (orange Arrow).

0 is equivalent to imposing ψd ≤ ψdmax(θi,θd) (see Figure 5), with :

ψdmax(θi,θd) =

{
arccos

(
− 1

tan θi tan θd

)
if θd +θi ≥ π

2 ,

π otherwise.
(26)

As a result, we obtain :

ft(θi)cosθi =

2
∫ π/2

0

∫ ψdmax

0

cosθd
cosθi

Tλ(θd)G
2
1(θi)D̃(θm)sinθddψddθd ,

(27)

which we rewrite as a 1D integral :

ft(θi)cosθi =
∫ π/2

0
Tλ(θd)Fα(θi,θd)dθd , (28)

where Fα is a roughness-dependent 2D filtering function :

Fα(θi,θd) = 2G2
1(θi)

cosθd
cosθi

∫ ψdmax

0
D̃(θm)sinθddψd . (29)

For an incoming light direction incident from below, we sim-
ply consider that the geometric normal of the Bragg layer is flipped.

Equation 28 explicitly shows that the ballistic BTDF is a weigh-
ted combination of transmissivities of Bragg mirrors at various dif-
ference angles θd , with weights determined by the filter function
Fα. As shown in Figure 6, Fα widens with increasing roughness
α. Moreover, it is not centered on θi, and exhibits a skewed shape
except when θi =

π

4 . As a result, the color saturation and hue of a
rough Bragg layer is modified compared to a smooth Bragg layer
with identical indices and thicknesses. The intensity also decreases,
which is due to the G1 term in Equation 29.

Such a formulation is not only useful to understand how trans-
mitted spectra are affected by roughness and angle of incidence,
but it may also be used to speed up the computation of the ballistic
BTDF, which we refer as our optimized simulation. For a given α,
we precompute, once and for all, a 2D lookup table (approx. 1.4
MB) for Fα(θi,θd) by evaluating the 1D integral of Equation 29.
We use uniform sampling in the θi dimension, and non-uniform
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sampling in the θd dimension (via a sampling of the GGX distri-
bution). Then for a Bragg layer, we precompute on the CPU a 1D
table (approx. 620KB) for the integrated transmissivity defined in
Equation 28 (instead of the 2D integral of Equation 23).

.

4.2.3. Importance sampling

The last required ingredient for rendering layered Bragg struc-
tures is the probability that a light path is transmitted through a
Bragg layer. Even though we have Rλ +Tλ = 1 for a Bragg mirror,
this does not extend to rough Bragg layers since we do not handle
multiple scattering among microfacets in our approach. A rough
Bragg layer thus absorbs a part A of the incoming light, which is
obtained from Equation 28 by assuming Tλ = 1 :

A(θi) = 1−
∫ π

2

0
Fα(θi,θd)dθd = 1−G1(θi), (30)

where the last equality is derived in Appendix C.

In order to balance out the sampling of reflection and transmis-
sion, we need to account for half of the absorption in each case.
The probability of transmission through a Bragg layer at an angle
θi and for a specific wavelength λ is then given by :

ptrans(θi) =
ft(θi)cosθi

1− A(θi)
2

= 2
∫ π/2

0 Tλ(θd)Fα(θi,θd)dθd

1+G1(θi)
, (31)

with the corresponding wavelength-independent weight given by :

weight(θi) = 1− A(θi)

2
=

1+G1(θi)

2
. (32)

Up until now, we have assumed that all wavelengths are hand-
led separately. However, since there is no dispersion in layered
Bragg structures, we may use a multiplexed implementation, whe-
reby each light path caries out all wavelengths at once. The proba-
bility of transmission ptrans is then given by Equation 31 with the
only difference that the numerator is replaced by ⟨ ft(θi)cosθi⟩λ,
with ⟨·⟩λ the average over wavelengths. The weight of a sample
obtained with this PDF is now wavelength-dependent :

weight(θi) =
1+G1(θi)

2
ft(θi)cosθi

⟨ ft(θi)cosθi⟩λ

(33)

We validate our optimized simulation against a Monte-Carlo re-
ference simulation in Supplemental material.

4.3. Single-reflection BRDF model

We now exploit the specific ballistic transmission of a Bragg
layer to derive an analytical formula for the evaluation of a single-
reflection BRDF. This approximate spectral model only considers
the light paths that have reflected once on any of the layers.

4.3.1. BRDF evaluation

The single-reflection BRDF is given by :

fr(i,o) = fr,0(i,o)+
1
n2

1

L

∑
l=1

fr,l(i,o)

(
l−1

∏
k=0

ft,k(i) ft,k(o)

)
, (34)

where L is the number of layers (not including the optional smooth
coating), fr,l and ft,l denote the BRDF and BTDF of the lth layer,
and i and o denote the refracted incoming and outgoing vectors,
except when they are used to evaluate fr,0 or ft,0. When n1 = 1, we
have fr,0 = 0, ft,0 = 1, and the incoming and outgoing directions
are never refracted.

Equation 34 is fast to evaluate thanks to the integrated transmis-
sivity introduced in Section 4.2.2, which we use to obtain the ft,k
terms. As opposed to the simulation of the previous section, it can
be directly evaluated for a pair of ingoing and outgoing directions,
which we use for next event estimation (e.g., as in Figure 11).

4.3.2. Importance sampling

When sampling the single-reflection model, one first needs to
determine the probability of the lth layer to be the one onto which
reflection occurs. It is given by :

prefll
(θi) =

(
1− ptransl

(θi)
) l−1

∏
k=0

ptransk
(θi), (35)

where ptransk
is given by Equation 31.

Figure 7 compares our single-reflection BRDF model to the refe-
rence simulation. Slight intensity differences show up when Bragg
layers are laid on a bright diffuse base ; otherwise, the approxima-
tion of our model is very good. In supplemental material, we vali-
date our model against a Monte-Carlo reference simulation where
we only consider single-reflection paths.

5. Results and discussion

In this section, we first evaluate the performance gains of our
RGB approximation and single-reflection BRDF model. We then
explore the appearance space of layered Bragg structures, and dis-
cuss its relationships to other iridescent structures.

Performance evaluation Our RGB approximation allows one to
quickly explore the appearance of a Bragg mirror, as was already
shown in Figure 4. In Figure 8, we perform a similar comparison
on a single rough Bragg layer, for different roughness values. Our
basic approximation already yields faithful color fringes, but slight
intensity differences remain. With our subdivided approximation
(using s = 3), results get closer to the reference, while still provi-
ding significant performance speedups. In the supplemental video,
we provide a live demonstration of our model, implemented as a
shader inside BRDF Explorer. The impact of the number s of subdi-
visions on rendering accuracy is detailed in supplemental material,
where we show that s = 3 is a good trade-off between speed and
accuracy. As summarized in Table 1, performance depends funda-
mentally on the Λ parameter : for higher values of Λ, more BG are
found in the visible range, which requires more basis functions and
weights evaluations. However, most of the interesting iridescent ef-
fects are achieved when Λ is below a micron, in which case our
basic and subdivided approximations can be respectively up to ten
and five times faster than the reference.

Our single-reflection model is compared to a simulation that only
involves single-reflection paths (SR sim.) in Table 2. We use a
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A on diffuse A on B A on B on diffuse A′ under smooth coating

ref. model ref. model ref. model ref. model

FIGURE 7 – Comparisons of a reference light transport in four layered Bragg structures (columns) with our single-reflection BRDF model
on a sphere placed in the Uffizi Gallery environment map. We use n1 = 1, n2 = 1.5 and N = 10 in the first three columns, with two
Bragg configurations : A (d1 = d2 = 250nm, α = 0.1) and B (d1 = d2 = 494nm, α = 0.05). The last column uses A’, a modified version of
A with n1 = 1.35 (i.e., under a smooth coating). Visual differences occur in the presence of a diffuse base (ρd = 0.5), as it tends to raise the
proportion of light paths that undergo multiple reflections. For the model, the filter Fα(θi,θd) is precomputed using 1000 samples for ψd with
a resolution of 0.25° for both θi and θd . This computation takes approximately 0.5 seconds on an Intel Core i7-9700k 3.60GHz CPU.

α = 0.05 α = 0.2 α = 0.4
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FIGURE 8 – Comparisons of our two RGB approximations (rows)
to the reference when rendering a Bragg layer (n1 = 1, n2 = 1.5,
Λ = 500nm, d1 = d2 = 0.5Λ) with three different roughness values
(columns). The subdivided approximation (sub., using s = 3) yields
more accurate results in this case, while still providing a reaso-
nable speed-up, which is roughly independent of α.

ground truth simulation involving all paths at 30K spp to serve as a
reference when computing an average SMAPE metric :

SMAPE =
1
n

n

∑
1

|Re fn −Modeln|
(|Re fn|+ |Modeln|)/2

.

Our single-reflection model shows consistently better SMAPE for
similar or smaller rendering times (i.e., it converges faster than the
SR simulation). We have also implemented a version or our model
where the Yeh reflectance term is stored in a LUT. It yields similar
SMAPE values, but in significantly smaller times. In order to com-
pare all three solutions, we use a measure of efficiency defined as

Eff =
timeGT

time×Avg. SMAPE . Our single-reflection model exhibits a
much better efficiency, in particular when using the LUT version.

Λ app. sub. (s=2) sub. (s=3) sub. (s=4) sub. (s=5)

244nm ×10.6 ×8.8 ×5.5 ×4.5 ×3.8
500nm ×6.8 ×5.0 ×3.5 ×2.6 ×2.1
988nm ×4.2 ×3.8 ×3.1 ×2.4 ×1.7

TABLE 1 – Performance speedups obtained with several versions
of our RGB approximation, and for different values of Λ.

time (sec) Avg. SMAPE Eff.
SR sim. 16−36−36 0.029−0.056−0.049 271−156−178

Model 14−15−15 0.016−0.031−0.024 570−692−882

Model-LUT 8.5−9.2−9.3 0.018−0.033−0.025 830−1044−1363

TABLE 2 – Comparisons of our single-reflection model with and
without LUT against a single-reflection (SR) simulation, on the first
three configurations of Figure 7, at 3Kspp and a 40×40 resolution.
We use ground truth renderings at 30k spp at the same resolution to
serve as references for SMAPE measurements. They take 127, 317
and 317 seconds respectively for each configuration.

Comparisons on reference scatterograms. As shown in Figure 2,
some natural materials exhibit Bragg-like structures. In the case of
the jewel beetle, three distinct regions are discernible on the cuticle,
characterized by a green, a purple, and a red hue at normal inci-
dence. These areas showcase Bragg-like structures with diverse pa-
rameters described in [SDGT11] and [SWS13]. All identified areas
possess an epicuticle (approximately 1.3µm thick), composed of se-
veral layers with alternating high and low refractive indices. We use
the parameters reported in Table 3 in our single-reflection spectral
model using a single rough Bragg layer (of roughness 0.05) on top
of an absorbing base. In this particular case, the host medium is air,
which is different from either indices used in the Bragg mirror. We
thus need to use a more general equation for reflectance, which we
derive using Yeh’s notations in Appendix D. Figure 9 compares
scatterograms obtained with our model to scatterograms measu-
red on a real jewel beetle [SWS13], showing qualitative agreement.
Note that in principle, the ballistic transmission assumption is not
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FIGURE 9 – Top row : measured scatterograms of different areas
of a jewel beetle cuticle [SWS13]. All images from Schenck et
al. [SWS13] – © IOP Publishing, reproduced with permission, all
rights reserved. Bottom row : spectral rendering of scatterograms
using the physical properties of the insect’s structures in our mo-
del. Our scatterograms are rendered using a hemispherical sensor
camera in a white environnement. The red circles indicate angular
reflection directions of 5◦, 30◦, 60◦, and 90◦.

Area n1 n2 Λ δ N
Green/Blue (a) 1.59 1.67 160 0.51 8

Red (b) 1.60 1.68 190 0.51 8
Purple (c) 1.60 1.68 205 0.51 6

TABLE 3 – Parameters used for the cuticle areas in Figure 9.

met when the host medium is not the same on either side of the
Bragg layer. This is obviously not a problem when using an ab-
sorbing base. Even when using an arbitrary Lambertian base, our
model remains valid since the distribution of transmitted rays does
not matter in this case for the single-reflection approximation.

Appearance exploration A layered Bragg structure produces a
rich variety of material appearance with vivid colors. Figure 1
shows a subset of them : using two different types of Bragg mir-
rors (here both with n1 = 1), we show the effect of roughness on
appearance, as well as a combination of a pair of Bragg layers, or of
each individual layer on Lambertian bases (colored or achromatic).
The supplemental video shows a live demonstration of our spectral
single-reflection model, with interactive parameter editing.

In Figure 10, we explore more systematically the impact of two
parameters. Appearance is very sensitive to the Bragg mirror period
Λ : clearly visible differences appear with mere 30nm increments.
The number N of repetitions mostly affects the saturation and in-
tensity of colors. The effect is subtle when the host medium is air,
but much more noticeable under a coating, in which case the re-
fractive index contrast n2

n1
is reduced. In supplemental material, we

render the diffuse component in isolation for the top two rows of
Figure 10. This shows the effect of transmission through a Bragg
layer, which yields angularly-varying color effects.

Figure 11 specifically shows the effect of varying the refractive

index contrast of a single Bragg layer : it not only affects the in-
tensity of iridescent colors, but also changes the color fringes, as
expected from Yeh’s reflectance equations.

In Figure 12, we explore how appearance is affected by varia-
tions in roughness of different layered Bragg structures. The top
and bottom rows show how color fringes are smoothed out as
roughness is increased. The middle row shows a structure invol-
ving two Bragg layers, with the smoothest Bragg layer of the top
row (framed) laid on top of Bragg layers of the bottom row. With
increasing roughness of the bottom Bragg layer, a blue-shaded haze
appears around reflections.

All spectral renderings have been made using the Malia Ren-
dering Framework [mrf21], an open source library for predictive,
physically-realistic rendering running on a desktop PC with a NVi-
dia GeForce RTX 2080.

Relationship to other iridescent structures. There is a direct
relationship between Bragg mirrors and thin-films. Indeed, when
N = 1, Yeh’s reflectance Rλ reduces to Airy’s reflectance |r1|2. As
shown in the left column of Figure 4, the corresponding spectra
have much lower magnitudes since a higher N is required for band
gaps to emerge. As a result, the color gradients are much less vivid.

Our approach bears some resemblance to the method of Guillén
et al. [GMG∗20], which involves iridescent flakes and a similar
ballistic transmission. The two methods differ in two important res-
pects though : their iridescent flakes rely on a few thin films invol-
ving complex refractive indices, and they use a volumetric descrip-
tion of the material structure. We have intentionally organized Fi-
gures 4 and 10 with a layout similar to Figures 3 and 11 in the work
of Guillén et al. [GMG∗20] to ease visual comparison. We first note
that even though superficially similar color gradients may be obtai-
ned with the two methods, reflectance spectra differ substantially.
In particular, with pearlescent flakes, there does not seem to be an
equivalent to the mirror-like reflectance achieved inside band gaps.
The appearance of pearlescent flakes in a binder also markedly dif-
fer from that of a rough Bragg layer in a host medium. Moreover,
it varies according to different parameters : for instance, color sa-
turation is controlled through flake density in their approach, while
it is controlled by the number N of repetitions in ours. We thus
believe the two methods should be treated as both structurally and
qualitatively different.

6. Conclusion and future work

In this paper, we have introduced Yeh’s equations for Bragg mir-
ror reflectance, and explored the vivid iridescent color appearance
they can produce. Our first contribution is an approximation to the
reflectance spectrum, which helps explore the iridescent color ap-
pearance produced by different combinations of Bragg mirror pa-
rameters interactively. Our second contribution is an exploration
of the appearance of rough layered Bragg structures, relying on
microfacet theory (we chose to use the Trowbridge-Reitz(GGX)
distribution, but any other distribution would work). Thanks to a
pre-integrated ballistic transmission, we introduce an optimized
position-free simulation and a fast single-reflection BRDF model.

Our main focus has been on the efficient exploration of homoge-
nerous materials made of isotropically-distributed Bragg mirrors,
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n1 = 1, n2 = 1.5

N
=
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N
=

3

Λ = 380nm Λ = 410nm Λ = 440nm Λ = 470nm Λ = 500nm Λ = 530nm Λ = 560nm

n1 = 1.4, n2 = 1.7 (coated)

N
=
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N
=

3

Λ = 380nm Λ = 410nm Λ = 440nm Λ = 470nm Λ = 500nm Λ = 530nm Λ = 560nm

FIGURE 10 – Exploration of the appearance of a single rough Bragg layer on top of a diffuse base, in air (top) or under a coating (bottom).
In both cases, we use α = 0.1, ρd = 0.2, d1 = 0.3Λ and d2 = 0.7Λ, and we vary both Λ (horizontal axis) and N (vertical axis). Appearance is
very sensitive to the value of Λ, as a mere increment of 30nm yields visible differences. The impact of N is more pronounced in the coated case
than in air, which is due to the lower refractive index contrast. The probe is illuminated by At the Window (Wells, UK) environment
map ©Bernhard Vog

as demonstrated in the supplemental video. Extending our single-
reflection BRDF model to spatially-varying materials will require
to evaluate the transmission filter on the fly, in which case we will
not be able to rely on the LUT version of the BRDF model. Dealing
with anisotropic distributions will require extending the transmis-
sion filter itself to deal with the additional dimension. Note that
these limitations do not apply to materials made of a single Bragg
layer on top of an absorbing base, since transmission through the
Bragg layer may then be disregarded. We show in Supplemental
Material an example of a spatially-varying material of this type.

We would also like to investigate spectral sampling strategies as
an alternative to spectral multiplexing, and we believe that our pie-
cewise spectral approximation could be used in that respect. Ano-
ther use of our spectral approximation would be in the inverse de-
sign of Bragg mirrors from target color gradients, an exciting to-
pic for future work. Tone mapping and RGB gamut considerations
might also be of interest since the vivid colors produced by Bragg
mirrors often challenge reproduction on screens.

A limitation of our approach is that we do not consider mul-
tiple scattering among microfacets of a same layer, which is why
we have limited roughness to α ≤ 0.4 in all of our results. It
would be interesting to extend our approach to handle higher rough-
nesses. For instance, this could be done by combining our single-
reflection model with recent advances in position-free simulation
(e.g., [Bd22]). Another, perhaps even more challenging direction
of future work would be to take into account irregularities that oc-
cur at scales comparable to visible wavelengths. As is visible in
Figure 2, natural structures are not perfect Bragg mirrors. Mode-
ling natural irregularities will likely require to take into account
diffraction effects. In other instances, structural colors are combi-
ned with absorption and scattering in media to control iridescence.
Even though absorption seems straightforward to add to our model
(in media between Bragg layers), scattering will likely raise much
more difficult issues (the layered model of Randrianandrasana et
al. [RCL20] could open interesting solutions). Finally, other types
of micro-structures are found in nature (2D or 3D photonic crystals,
cholesteric structures). We thus believe that several modifications
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n1 = 1.45,n2 = 1.5

n2 = 1.6 n2 = 1.7 n2 = 1.8

n1 = 1.4 n1 = 1.35 n1 = 1.3

FIGURE 11 – Variations of the refractive index contrast of a single Bragg layer (d1 = d2 = 250nm, N = 20, α = 0.1). Starting in the leftmost
configuration with a low refractive index ratio n2

n1
, we either increase n2 (top row) or decrease n1 (bottom row) to increase the ratio, hence

bringing in more iridescent color variations. The scene is only illuminated by two area ligths.

α = 0.01 α = 0.1 α = 0.2

FIGURE 12 – Variations of roughness (columns) in three layered
Bragg structures, all using n1 = 1, n2 = 1.5, with a diffuse albedo
ρd = 0.2. Top row : a single Bragg layer (d1 = 141nm, d2 = 329nm,
N = 3). Bottom row : another single Bragg layer (d1 = 98nm,
d2 = 882nm, N = 10). Middle row : the smoothest top Bragg layer
(framed) laid onto each of the bottom Bragg layers. The scene is
illuminated by the Green Point Park environment map featu-
ring a bright sun and a cloudy sky.

and extensions are necessary before we can tackle the ambitious
goal of comparing to measured natural iridescent materials.
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Appendix A: Spectral mode landmarks

The identification of spectral landmarks relies on spectral modes.
Here we prove that such landmarks always lie in a band gap.

We start by rewriting the dispersion relation of Equation 8 as :

cosKΛ = (1−Θ)cosn−ω+Θcosn+ω, (36)

with n±ω = k1zd1 ± k2zd2, and Θ = 1
2 (1 + 1

2 Ω). Observing that
Ω is of the form X + 1

X , we have Ω ≥ 2 since X2 − 2X + 1 ≥ 0,
and thus Θ ≥ 1. We now consider the equation of a spectral mode,

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/https://doi.org/10.1111/cgf.13936
https://doi.org/https://doi.org/10.1111/cgf.13936
https://doi.org/10.1145/3272127.3275053
https://doi.org/10.1145/3272127.3275053
https://doi.org/10.1145/3414685.3417782
https://doi.org/10.1145/192161.192202
https://doi.org/10.1145/1643928.1643952
https://doi.org/10.1145/1643928.1643952
https://doi.org/https://doi.org/10.1111/cgf.13772
https://doi.org/https://doi.org/10.1111/cgf.13772
https://doi.org/https://doi.org/10.1016/j.cag.2022.04.009
https://doi.org/https://doi.org/10.1016/j.cag.2022.04.009
https://doi.org/https://doi.org/10.1016/j.gmod.2014.12.003
https://doi.org/10.1007/s12596-012-0092-y
https://doi.org/10.1145/3388770.3407453
https://doi.org/10.1145/3388770.3407453
https://doi.org/10.1111/1467-8659.1330233
https://doi.org/10.1111/1467-8659.1330233
https://doi.org/10.1098/rstb.2010.0197
https://doi.org/10.1007/978-3-662-09287-3_13
https://doi.org/10.1007/978-3-662-09287-3_13
https://doi.org/10.1007/s11998-008-9085-9
https://doi.org/10.1007/s11998-008-9085-9
https://doi.org/10.1145/311535.311546
https://doi.org/https://doi.org/10.1016/j.matpr.2014.09.007
https://doi.org/https://doi.org/10.1016/j.matpr.2014.09.007
https://doi.org/10.1145/1122501.1122506
https://doi.org/10.1145/1122501.1122506
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01110.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01110.x
https://doi.org/10.1088/1748-3182/8/4/045002
https://doi.org/10.1364/JOSA.65.000531
https://doi.org/10.1364/JOSA.57.001105
https://doi.org/10.1038/s41563-022-01255-9
https://doi.org/10.1364/OE.25.022971
https://doi.org/https://doi.org/10.1002/adom.201701009
https://doi.org/https://doi.org/10.1002/adom.201701009


14 of 14 G. Fourneau, R. Pacanowski, P. Barla / Interactive Exploration of Vivid Material Iridescence using Bragg Mirrors

1

0
0.5

n2=1.8
n2=1.5
n2=1.3

π/2

FIGURE 13 – The approximate function w̃(θ1) (solid curves) fits
w(θ1) (discrete dots) for three values of n2, keeping n1 = 1.

ωm = mπ

n+ , yielding cosKΛ = (1−Θ)cos n−
n+ ω+Θ(−1)m. For m

even (resp. odd), it can be shown that we then have cosKΛ ≥ 1
(resp. cosKΛ ≤−1). Hence ωm is always inside a band gap.

It is interesting to note that at Brewster’s angle (i.e., when
n1 cosθ2 = n2 cosθ1), Ωp = 2 yielding cosKΛ = cosn+ω for the
’p’ polarisation. The Bloch wavenumber is thus real everywhere,
and all the band gaps "close" at places where |cosKΛ|= 1.

Appendix B: Angular correction term

As seen in Figure 3, a Bragg reflectance spectrum Rω (in blue)
converges toward its envelope Re

ω (in grey) inside band gaps with
increasing N. However, outside of band gaps, Rω exhibits more os-
cillations with increasing N but does not exactly converges to Re

ω.

Building our piecewise approximation exclusively on Re
ω would

thus tend to over-estimate the spectral reflectance outside of band
gaps. We choose to correct for that intensity mismatch by using an
angularly-dependent term in the basis weight formula. As a refe-
rence, we first compute the average ratio between the spectrum and
its envelope outside of band gaps (i.e., for KΛ ∈ [0,2π]) :

w(θ1) =
1

2π

∫ 2π

0

Rω(θ1)

Re
ω(θ1)

dKΛ,

For the sake of simplicity, we use |C|2 ≈ R1
1−R1

for both Rω and Re
ω,

with R1 the reflectance of a thick slab of index n2 in medium n1 :

R1 = R12 +
R12(1−R12)

2

1−R2
12

.

Here R12 =
(n1−n2)

2

(n1+n2)2 is the reflectance at normal incidence between
media 1 and 2. As a result, w(θ1) is independent of thicknesses d1
and d2. We further observe that w(θ1) is roughly invariant to N for
sufficiently large N. We show the reference correction term w(θ1)
for discrete values the incident angle and three refractive index va-
lues for n2 (we keep n1 = 1 constant) in Figure 13.

We have empirically found that w(θ1) is well approximated
using Schlick’s formula [Sch94] (solid curves in Figure 13) :

w̃(θ1) = w̃0 +(1− w̃0)(1− cosθ1)
5 ≈ w(θ1),

where w̃0 = 0.735R12 +0.532 is obtained by a linear regression of
w(0) for several values of R12 (i.e., different (n1,n2) pairs).

Appendix C: Absorption term

The integration of the filter Fα over difference angles θd yields :∫ π

2

0
Fα(θi,θd)dθd =

G2
1(θi)

cosθi

∫ π

2

0

∫ ψdmax

−ψdmax

D̃(θm)cosθd sinθddθddψd ,

where the double integral is equivalent to
∫

Ω
D(θm)cosθmdωm.

Since G1(θi) = cosθi/
∫

Ω
D(θm)cosθmdωm by definition, we get :∫ π

2

0
Fα(θi,θd)dθd = G1(θi).

Appendix D: General Pochi Yeh Equations

We consider a Bragg mirror of refractive indices n1 and n2, em-
bedded in a host medium of index nh.

When nh = n1, Yeh’s formulas (Equations 2 and 9) directly give
the reflectance Rω. Alternatively, we may compute reflectance as
Rω = |rN |2, with rN the reflection coefficient rN = b0

a0
where a0 and

b0 are the incident and the reflected field amplitudes. They are com-
puted using Equation 1, which we rewrite more explicitly following
Yeh [Yeh88] : (

a0
b0

)
=

(
V(A) U(B)
U(C) V(D)

)(
an
0

)
where we use the following operators :

U(X) = XUN−1 and V(X) = U(X)−UN−2 = XUN−1 −UN−2,

with UN =
sin((N+1)KΛ)

sin(KΛ)
and X ∈ {A,B,C,D}.

When nh ̸= n1, Equation 1 is modified by adding an infinitesimal
layer of index nh on top of the Bragg mirror :(

a0
b0

)
=

(
1 rh1

rh1 1

)(
V(A) U(B)
U(C) V(D)

)(
an
0

)
,

with rh1 the reflection coefficient between nh and n1, computed
using Fresnel equations. This yields :(

a0
b0

)
=

(
V(A)+ rh1C U(B)+ rh1V(D)

U(C)+ rh1V(A) V(D)+ rh1U(B)

)(
an
0

)
.

The reflection coeficient is now computed as :

rhN =
U(C)+ rh1V(A)
V(A)+ rh1U(C)

=
(
U(C)
V(A) + rh1)

(1+ rh1
U(C)
V(A) )

=
rN + rh1

1+ rh1rN
,

with the corresponding reflectance given by Rλ = |rhN |2.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.


