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Figure 1: We propose a new technique to generate well-dispersed samples on non-Euclidean domains (spherical, hyperbolic and projective
spaces) using an extension of the sliced optimal transport sampling. As an example, this allows us to sample probability measures on the
high-dimensional sphere (left). Using the uniformization theorem to conformally embed discrete manifolds to spherical or hyperbolic spaces,
we can also generate blue noise samples in a purely intrinsic manner (red samples on the flatten geometry that exhibits blue noise properties
when mapped back to a better embedding in R3 in blue). Finally, we also demonstrate that such an approach can be used to blue noise
sample unit quaternions (hence rotations) on the projective space of dimension 3 (right).

Abstract
In machine learning and computer graphics, a fundamental task is the approximation of a probability density function through
a well-dispersed collection of samples. Providing a formal metric for measuring the distance between probability measures on
general spaces, Optimal Transport (OT) emerges as a pivotal theoretical framework within this context. However, the associated
computational burden is prohibitive in most real-world scenarios. Leveraging the simple structure of OT in 1D, Sliced Optimal
Transport (SOT) has appeared as an efficient alternative to generate samples in Euclidean spaces. This paper pushes the
boundaries of SOT utilization in computational geometry problems by extending its application to sample densities residing on
more diverse mathematical domains, including the spherical space Sd , the hyperbolic plane Hd , and the real projective plane
Pd . Moreover, it ensures the quality of these samples by achieving a blue noise characteristic, regardless of the dimensionality
involved. The robustness of our approach is highlighted through its application to various geometry processing tasks, such as
the intrinsic blue noise sampling of meshes, as well as the sampling of directions and rotations. These applications collectively
underscore the efficacy of our methodology.

CCS Concepts
• Computing methodologies → Computer graphics;

1. Introduction

In recent years, Optimal Transport has become a key mathematical
framework for manipulating generalized probability density func-

tions (e.g. [V∗09]). The most general way to describe the interest
of OT is that it allows quantifying meaningfully how costly it is
to move masses from a generalized probability density function
to another one. This defines a natural notion of distance between
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probability measures, the Wasserstein distance, allowing the design
of displacement interpolations between measures or when dealing
with more than two measures, the notion of Wasserstein barycenter.

The high versatility of the framework and the numerous develop-
ments of efficient numerical solvers make the OT become standard
in many machine learning [HGK∗16, CFTR16, ACB17],computer
vision, or computer graphics applications [DGBOD12, SRGB14,
SdGP∗15,BRPP15,QCHC17,NG18,BC19,PBC∗20,SGSS22] (see
[BD23] for a recent survey).

Among computer graphics applications, OT has become a
widely spread tool for point pattern design and Monte Carlo in-
tegration [QCHC17, PBC∗20, SGSS22]. The main argument is
that OT offers a mathematical framework to characterize well-
distributed, or blue noise, samples in a domain leading to an ef-
ficient Monte Carlo integration or signal reconstruction [SÖA∗19].
This can be achieved by optimizing the samples positions such that
the Wasserstein distance to the uniform measure in the domain is
minimized. More recently, OT on non-Euclidean spaces has been
developed in the machine learning context, as it allows efficiently
processing of data for which a spherical or hyperbolic geometry
is a natural representation space [BBC∗22, BCDC22]. In geom-
etry processing, a spherical or hyperbolic embedding of geomet-
rical objects can be at the core of many surface parametrization,
texture mapping or shape matching problems [HAT∗00, GY03,
GGS03, KSS06, CPS13, BCK18, SCBK20, GSC21]. The challenge
addressed in this paper is the design of an OT driven sampling
techniques on Riemannian manifolds with applications to computer
graphics.

Contributions. Relying on sliced optimal transport formulation
for the sphere and the hyperbolic space formulated by Bonet et
al. [BBC∗22, BCDC22], we propose a blue noise sampling strat-
egy of probability measures on these non-Euclidean spaces. This
is achieved by providing explicit formulas for the samples advec-
tion steps and direction pooling in a Riemannian gradient descent
approach. We then demonstrate the strength of the approach to effi-
ciently sample meshes through the uniformization theorem allow-
ing transforming the intrinsic blue noise sampling problem on the
mesh, to a blue noise sampling problem in S2 or H2 depending on
the mesh topology. We also highlight the interest of the approach
through projective plane sampling that can be used to sample 3D
rotations (by sampling quaternions in 4d), as well as various ge-
ometric objects befined by projective equations (e.g. lines, direc-
tions...).

2. Background

Optimal transport. Given two measures µ and ν, over some do-
main Ω, and a function c(x,y) that dictates the cost of moving a
particle from x to y in Ω, one can define the Optimal Transport
problem from µ to ν as

min
π∈Π(µ,ν)

∫
Ω

c(x,y)dπ(x,y) . (1)

where Π(µ,ν) is the set of couplings:

{π ∈ P(Ω×Ω),∀A ⊂ Ω,π(A×Ω) = µ(A),π(Ω×A) = ν(A)} .

In most contexts, c(x,y) = dp(x,y) where d is a distance on
Ω (e.g. [PC∗19]). In such cases we call the minimum cost the
p−Wasserstein distance between µ and ν, W p

p (µ,ν). The interest
of using measures is that its general enough to handle both discrete
and continuous objects at the same time. Depending on the nature
of the measures, discrete-to-discrete, semi-discrete, or continuous-
to-continuous, a huge literature exists on numerical methods to ef-
ficiently solve OT problems [PC∗19, FCG∗21].

Sliced Optimal Transport. Among alternative numerical meth-
ods, we are interested in fast approximation techniques that scale
up with the size of the discrete problem and the dimension. First,
we observe that the one-dimensional OT problem admits the fol-
lowing closed form solution:

W p
p (µ,ν) =

∫ 1

0
|F−1

µ (u)−F−1
ν (u)|pdu , (2)

where Fµ is the cumulative function of the 1D density µ, and F−1
µ

its generalized inverse, or quantile function. For p = 1, one can
derive the equivalent formula:

W1(µ,ν) =
∫ 1

0
|Fµ(u)−Fν(u)|du . (3)

The transport plan is then simply given by associating the ith point
of µ to the ith point of ν (see for example [PC∗19]) in the case when
µ and ν are both discrete with the same number of atoms. The ob-
tained result is the mapping that minimizes the cost to transport µ
to ν. Hence, a very natural idea is to break a d dimensional OT
problem into an infinity of 1 dimensional one. Such an approach
is referred to as Sliced Optimal Transport since it amounts to pro-
jecting the measures onto 1D slices [PKD05, RPDB11, BRPP15].
Given a direction θ ∈ Sd−1 and the projection Pθ(x) := ⟨x,θ⟩ of
any , for all x ∈ Rd , the sliced Wasserstein distance is defined as

SW p
p (µ,ν) :=

∫
Sd−1

W p
p (P

θ
# µ,Pθ

# ν) dλ(θ) , (4)

where Pθ
# µ is the image measure of µ by the projection operator.

The sliced approach receives a lot of attention in the literature as it
is topologically equivalent to OT [NDC∗20] with bounded approx-
imation of Wp [Bon13]. On the algorithmic side, the integral over
Sd−1 is obtained used a Monte Carlo approach: we draw random
directions uniformly on Sd−1 and accumulate 1d Wasserstein dis-
tances. The computational advantage is that each 1d slice W p

p only
requires to sort the points, leading to an overall computation cost in
O(K · n(d + log(n))) time complexity if K denotes the number of
slices used in the Monte Carlo estimation.

Sliced Optimal Transport Sampling (SOTS). In the context of
Monte Carlo sampling, Paulin et al. [PBC∗20] leveraged the Eu-
clidean sliced optimal transport formulation to optimize a point
set such that it better approximates a given target distribution, in
the sense of the SW2 metric. In this Monte Carlo rendering setting,
given a target measure ν in [0,1)d (uniform measure for blue noise
sampling), the objective is to construct n samples {xi} ∈ [0,1)d

defining the discrete distribution µ = ∑
n
i=1 δxi , such that SW2(µ,ν)

is minimized. One iteration of the sliced optimal transport sam-
pling, SOTS for short, algorithm is the following, if µ = ∑

n
i=1 δxi
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and if ν is a continuous measure with closed form projection for-
mula on a line (mainly the uniform measure over a ball or a square),
we iterate:

x(K+1)
i = x(K)

i +
γ

L

L

∑
l=1

(
Tl

(
Pθl (x(K)

i )
)
−Pθl

(
x(K)

i

))
, (5)

where Tl is the transport plan associated with the solution of the
continuous-to-discrete problem between Pθl

# ν and Pθl
# µ and γ > 0

is a step size (see Fig.2-left). For the sake of simplicity, the Pθ(x)
notation refers to the projection of the sample x onto the slice θ (i.e.
Pθ

# µ = ∑i δPθ(xi)). Intuitively, we move each point in the direction
of the slice proportionally to the distance to its projected 1d optimal
mapping. In [PBC∗20], the authors have demonstrated the interest
of such blue noise sampling in [0,1)d for Monte Carlo integration
and Monte Carlo rendering. This paper extends this approach to
non-Euclidean metric spaces.

Non-Euclidean Sliced Wasserstein Distance. Bonet et al. ex-
tend the SW distance to Spherical [BBC∗22] and Hyperbolic met-
ric spaces [BCDC22], by replacing the Euclidean notions of lines
and projections with the Riemannian equivalent of projection over
geodesics. Namely, the spherical geodesics are great-circles of the
sphere and geodesics passing through the origin of any hyperbolic
model are valid replacements. With these constructions at hand,
authors perform various machine learning tasks where the SW dis-
tance is generally used as a data fitting loss or a meaningful metric
to compare objects defined over such spaces.

Blue Noise Mesh Sampling. Blue noise sampling of surfaces in
R3 is one of our targeted applications. On Euclidean domains, a
classical approach to construct well-spread samples in a domain
consists in making sure that each pair of samples are separated by
at least a given minimum distance. Dart throwing and its variations
[Bri07] have naturally been extended to manifolds to achieve such
Poisson disk sampling [CJW∗09, BWWM10, Yuk15, GYJZ15].
Alternatively, Voronoi diagrams driven approaches [LWL∗09a,
BSD09] and their restriction of discrete manifolds (triangular
meshes in most cases), have been used to construct blue noise sam-
ples [LWL∗09b, XHGL12, AGY∗17, XLC∗16]. While focusing on
remeshing applications, Peyré and Cohen [PC06] have proposed
an instrinsic sampling strategy that inserts samples one by one at
the location maximizing the (geodesic) distance from the previ-
ous samples (approach denoted farthest-point, FP, below). While
being efficient from an FMM approximation of the geodesic dis-
tance, this algorithm has a greedy approach and is not fit to sam-
ple generic non uniform densities. Starting from an initial sam-
pling and pairwise (geodesic) distances between samples, Qin et
al. [QCHC17] optimized samples position so that the regularized
optimal transport distance between the samples and the uniform
measure on the manifold is minimized. Particle based systems can
be designed by optimizing the sample distribution on a mesh to
unformize the distances between neighboring samples in ambient
space, while staying close to the surface thanks to a projection op-
erator [TMN∗00, ZGW∗13, JZW∗15]. Samples could also be op-
timized such that they capture the spectral content of the targeted
surfaces [ÖAG10]. In most cases, for efficiency purposes, the sam-
pling is performed in ambient space and later projected onto the
manifold. While those techniques can be very efficient in terms of

blue noise quality when the mesh embedding to R3 is ambient-
compatible (no too-close sheets of meshes or large enough local
shape diameter function [SSCO08], Euclidean unit balls is a good
approximation of the geodesic ones. . . ), we propose an efficient
purely intrinsic blue noise sampling that can deal with shapes with
incorrect embedding (see Fig. 1).

3. Sliced optimal transport sampling on constant curvature
manifolds

We first extend the SOTS approach defined on Euclidean domains,
to the spherical and hyperbolic cases in arbitrary dimensions, re-
spectively denote Sd and Hd (see Fig. 2).

To define the SOTS in such non-Euclidean spaces, we first need
to refine the notion of projection onto a straight line as the pro-
jection of a set of samples onto geodesic slices for the targeted
model (Sec. 3.1). Then we need to solve the matching 1d problem
on the geodesic slice (Sec. 3.2). These key ingredients are mostly
borrowed from Bonet et al. [BBC∗22, BCDC22] dedicated to the
computation of SW on Sd and Hd . We extend these works with
explicit formulas to perform the advection of the samples using
group action principle (Sec. 3.3) and Exp and Log maps (Sec. 3.4).
Finally, Section 3.5 completes the algorithm describing the exten-
sion of the gradient descent of the SW2 energy. In Section 3.7, we
describe a technical improvement of the advection step on batches
using a geometric median instead of an average as usually used in
SOTS. We summarize the generic algorithm in Alg. 1. Note that
we consider a discrete target measure ν = ∑

m
i=1 δyi with a number

of Diracs m that may be greater than n. This will be discussed in
Section 3.6 to allow the sampling of non-uniform densities. Start-
ing from line 5, we thus solve a balanced optimal transport problem
as ν̃ is a random sampling of ν with exactly n Diracs.

3.1. Geodesic slices and projections

The first step is to find an equivalent to straight lines in the
Euclidean space. The most natural choice is a geodesic passing
through the origin of the model. In both Sd and Hd cases, such
an object can be obtained by the intersection of a plane with the
canonical embedding of each space in Rd+1.

Spherical geometry. As proposed by Bonet et al. [BBC∗22], ran-
dom slices are defined by the intersection of Sd by uniformly
sampled Euclidean 2D planes in Rd+1 passing through the ori-
gin. This is done by generating two (d + 1)−dimensional vectors
with components in N (0,1), that we orthonormalize (by Gram-
Schmidt or Givens rotations). We denote by θ = {e1,e2} the two
vectors in Rd+1 generated by this process. Such basis of the plane
allows defining the projection in Rd+1 onto the associated subspace
span(e1,e2):

Π
θ(x) = ⟨x,e1⟩e1 + ⟨x,e2⟩e2 . (6)

The projection onto the great circle = span(e1,e2)∩Sd becomes

Pθ(x) :=
Π

θ(x)
∥Πθ(x)∥

. (7)
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µ
ν

θ

Pθ(x)

T (x)

R2 S2 H2

Figure 2: Sliced optimal transport sampling and notations: from left to right, on the Euclidean domain (zero curvature metric space), on the
spherical one (positive constant curvature metric space), and on the hyperbolic model (Lorentz’s model with only a part of the hyperboloid,
negative curvature metric space). We only illustrate the assignment and the associated advection for a single sample (yellow bars).

Algorithm 1: Non Euclidean Sliced Optimal Transport
Sampling – NESOTS

Data: The discrete target distribution ν = ∑
m
i=1 δyi , the number of

iterations K, the batch size L, the gradient descent step γ

Result: The discrete distribution µ(K) after K iterations.
1 µ(0) = SubSample(ν̃,n) ; // Init.
2 for j ∈ [[1,K]] do
3 parallel for l ∈ [[1,L]] do // Batch
4 ν̃ = SubSample(ν̃,n) ; // Sec. 3.6
5 θ = RandomSlice() ; // Sec. 3.1
6 ν̃θ = Pθ

(
ν̃l
)
; // Sec. 3.1

7 µθ = Pθ
(
µ( j)

)
; // Sec. 3.1

8 T = Solve1DOT(µθ,ν̃θ) ; // Sec. 3.2
9 for i ∈ [[1,n]] do

10 g = Γθ

(
Pθ

(
x( j)

i

)
,T

(
Pθ

(
x( j)

i

)))
; // Sec. 3.3

11 dl
i = Log

x( j)
i

(
g
(

x( j)
i

))
; // Sec. 3.4

12 end
13 end
14 parallel for i ∈ [[1,n]] do
15 di = GeoMed

(
{dl

i}L
)

; // Sec. 3.7

16 x( j+1)
i = Exp

x( j)
i

(γdi) ; // Sec. 3.5

17 end
18 end
19 return µ(K) = ∑

m
i=1 δ

x(K)
i

Hyperbolic geometry. The d−dimensional hyperbolic plane Hd

admits many isometric models (e.g. the Poincaré disk or the
Lorentz’s hyperboloid models) [Lee06]. For the sake of simplic-
ity of the associated formulas and numerical reasons, we will be
using the hyperboloid model, i.e., the upper sheet of the hyperbola

Hd := {x ∈ Rd+1,⟨x,x⟩L =−1} ,

where ⟨x,y⟩L := ∑
d
i=1 xiyi − xd+1yd+1 is the Lorentzian dot prod-

uct. We denote by xO the origin of the hyperbola (red dot in Fig. 2),
i.e., xO =

(
0, . . . ,0,1

)t . We follow Bonet et al. [BCDC22] by defin-
ing the projection on the geodesic obtained as the intersection be-

tween a 2D plane containing xO and the hyperboloid. The sampling
of uniform slices is achieved by sampling uniformly the space or-
thogonal to xO, i.e. d ∼ U(Sd ×{0}). We then have the projector

Pθ(x) :=
Π

θ(x)√
−⟨Πθ(x),Πθ(x)⟩L

, (8)

where we denote by θ := {d,xO} the generator of the 2D slice in
Hd .

3.2. Solving the discrete 1D Wasserstein problem

As we will need to evaluate the transport cost on projected sam-
ples onto the sliced θ, we need to clarify the distances between two
points in Sd or Hd , and the coordinate on their projection onto θ,
denoted tθ(x), the signed geodesic distance to a given origin in θ .

Spherical geometry On the d−dimensional unit sphere,
geodesics are great circles (intersection of a 2-plane passing
through the origin, and Sd). The geodesic distance between two
points x,y ∈ Sd is simply the angle between the two vectors from
the origin to the points

dS(x,y) := arccos(⟨x,y⟩) . (9)

As projections lie on a circle, any origin on θ can be considered to
define tθ. If θ = {e1,e2}, we use

tθ(x) :=
π+ arctan2(⟨e2,x⟩,⟨e1,x⟩)

2π
. (10)

On Sd , the optimal transport problem needs to take into account
the periodicity of the space, and its associated coordinate systems.
Fortunately, it can be shown [DRG09] that the problem still boils
down to a simple sorting of the samples coordinates tθ provided that
the circle is identified to the Real line through an optimal cut. Find-
ing the optimal cut can be formulated as a weighted median prob-
lem, as detailed in Cabrelli et al. [CM98], and admits a O(n log(n))
solution. For some µ, ν in Sd and x ∈ µ, the map T (Pθ(x)) denotes
the optimal assignment on the slice θ of x to some y ∈ ν.

© 2024 Eurographics - The European Association
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Hyperbolic geometry On Hd , the geodesic distance between two
points is

dH(x,y) := arccosh(−⟨x,y⟩L) . (11)

Since the slice is directed by d, we define the geodesic distance
coordinate induced by d

tθ(x) := sign(⟨x,d⟩)dH(xO,x) . (12)

On Hd , the optimal assignment is simply obtained by sorting the
projected samples on θ and mapping the first projected sample in
Pθ

# µ to the first one in Pθ
# ν (with respect to tθ), similarly to the

Euclidean case.

3.3. Transitivity and group action

In the Euclidean space, samples are advected by a simple trans-
lation in the straight line direction by the distance tθ(x) −
tθ(T (P

θ(x))). In spherical (Eq. (13)) and hyperbolic (Eq. (14)) do-
mains, we rely on group actions. More precisely, we are interested
in group actions that preserve the geodesics.

Spherical Geometry The right group to act on the sphere is
SO(d), i.e., the group of all d−dimensional rotations. One can build
the rotation that maps a point x to a point y in Sd simply by building
the 2D rotation in their common span, span({x,y}), i.e(

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)
,

for some φ ∈ R. To make sure that the part of the vector orthogo-
nal to span(x,y) is left unchanged and to avoid building the d × d
matrix, we decompose any vector w in the orthonormal basis given
as the result of the Gram-Schmidt algorithm applied to x and y.
Leading to

Γθ(x,y) : w → w⊥+x(cos(ϕ)wx − sin(ϕ)wy)

+ ỹ(sin(ϕ)wx + cos(ϕ)wy) , (13)

where ỹ = y−⟨x,y⟩x, wx = ⟨w,x⟩, wy = ⟨w, ỹ⟩, w⊥ is the compo-
nent of w orthogonal to span({e1,e2}) and ϕ = dS(x,y). One can
verify that we have Γθ(x,y)(x) = y. It is also possible to check that
a rotation of ϕ degree along the slice θ applied to x will offset tθ(x)
by ϕ (modulo 1). Hence, it is indeed a translation along the slice,
which is the behavior we wanted to translate from the Euclidean
setting.

Hyperbolic Geometry As a direct analogy, translations along hy-
perbolic slices are hyperbolic rotations, i.e., the elements of the
Lorentz group SO0(d − 1,1) (standard rotations preserve the Eu-
clidean scalar product whereas hyperbolic ones preserve ⟨·, ·⟩L,
hence the hyperboloid). Computationally, it is very similar to the
spherical case, we want to apply the following 2D rotation in the
span(x,y): (

cosh(ϕ) sinh(ϕ)
sinh(ϕ) cosh(ϕ)

)
,

leading to the analogous decomposition along the right subspaces:

Γθ(x,y) : w → w⊥+d(cosh(ϕ)wd + sinh(ϕ)w0)

+xO(sinh(ϕ)wd + cosh(ϕ)w0) , (14)

y = Expx(v)

x
T Mx v = Logx(y)

Figure 3: Exp and Log maps: on S2, the orange point is
the point obtained by iteratively going in the average of the
Logs xn+1 = Expxn

( γ

n ∑i Logxn
(yi)), which is equivalent to Fréchet

means, whereas the red one is obtained by going in the geometric
median of the directions xn+1 = Expxn

(γ GeoMed({Logxn
(yi)}i)).

where d =
Πx⊥0

(y−x)

∥Πx⊥0
(y−x)∥ , wd = ⟨w,d⟩, w0 = ⟨w,xO⟩, w⊥ is the com-

ponent of w orthogonal to span(xO,d) and ϕ = dH(x,y). The only
difference being that we decompose along xO and y− x instead of
directly x and y (which gives the same span) to make sure that the
points remain on the hyperboloid. We also have Γθ(x,y)(x) = y.

3.4. Exp and Log Maps

Beside group actions, Exp and Log maps are key ingredients in Rie-
mannian geometry [Lee06] (see illustration Fig. 3). The Expx(v)
map allows one to follow the geodesic γ, satisfying γ(0) = x and
γ̇(0) = v ∈ T Mx, i.e., following the most natural path going from x
with initial direction and velocity v from t = 0 to t = 1. Conversely,
the Logx(y) ∈ T Mx map, the inverse of Expx, gives the direction
(and velocity) to go from x to y, i.e. Expx(Logx(y)) = y. In Sd and
Hd , Exp and Log maps admit closed form expressions.

Spherical geometry. If ΠT Mx denotes the projections from Rd

onto the tangent space of Sd at v, we have

Expx(v) = cos(∥v∥)x+ sin(∥v∥) v
∥v∥ , (15)

Logx(y) =
ΠT Mx(y−x)

∥ΠT Mx(y−x)∥d(x,y) , (16)

(see Alimisis et al.’s supplemental [ADVA21]).

Hyperbolic geometry. In the Lorentz hyperbolic model, we have
similar expressions (see e.g. Dai et al. [DWGJ21]):

Expx(v) = cosh(||v||L)x+ sinh(||v||L)
v

||v||L
, (17)

Logx(y) =
arccosh(−⟨x,y⟩L)√

⟨x,y⟩2
L−1

(y+ ⟨x,y⟩Lx). (18)

3.5. Stochastic Riemannian gradient descent

In Euclidean SOTS, when optimizing point sets for blue noise sam-
pling, one can compute a descent direction of the SW energy for

© 2024 Eurographics - The European Association
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each point by averaging each advection computed for a given num-
ber of slices (batch size L in Alg. 1), hence recovering a mini-
batch stochastic gradient descent. On non-Euclidean domains, the
advected positions cannot be simply averaged. We propose to use a
stochastic Riemannian gradient descent (SRGD) approach combin-
ing the gradients obtained in each batch in the tangent plane of each
sample [Bou23]. In standard SRGD this would be done by taking
the average of the gradients

di :=
1
L

L

∑
l=1

dl
i , (19)

but we instead use the geometric median, see 3.7. In our case, dl
i :=

Logx( j)
i

(
g(x( j)

i )
)

, where, following the notations of Alg. 1, g is the

map that advects the point x( j)
i in the θ direction following the 1D

assignment obtained from the projection onto θ. Once the descent
direction is computed for each sample, we advect the points using
the Exp map by an, exponentially decaying, step size γ:

x( j+1)
i = Expx( j)

i
(γ di) . (20)

Note that in the Euclidean setting, this boils down to the original
SOTS algorithms [BRPP15] for blue noise sampling in [0,1)d . As a
first experiment, Figure 4 compares the blue noise characteristics of
the uniform sampling of using NESOTS and classical point patterns
on S2 [PSC∗15].

3.6. Non-uniform densities

When dealing with continuous non-uniform measures φ using a
sliced approach (e.g. importance sampling Monte Carlo rendering,
image stippling), we would first need to have a closed-form formu-
lation of the Radon transform of the target measure of φ along the
slice θ, as discussed Paulin et al. [PBC∗20] for the uniform measure
in [0,1)d . To overcome such issue, Salaün et al. [SGSS22] have
used a binning strategy of the target points across n adaptive bins
that follow the target distribution. We further simplify this approach
on Sd and Hd using an empirical approximation of φ from a discrete
measure ν with a large number of samples m (see Fig. 5). The key
idea of Alg. 1 is to start from ν with m ≫ n, and to uniformly pick n
samples from ν at each slice (line 5). As long as ν ∼ φ, this does not
affect the minimization of the SW energy, while allowing a lot of
flexibility with respect to the applications (see below) and keeping
a balanced n-to-n 1d optimal transport problem to solve.

3.7. Geometric median

In our experiments, we observe that when targeting non-uniform
measures, artifacts may appear during the gradient descent (e.g.
alignment of samples as illustrated in Fig. 5-c). Some approaches
handle this fact with a more robust advection computation, such as
Salaün et al. [SGSS22] but they all require a non-negligible compu-
tational overhead, proportional to the input size (for example taking
m = kn). To overcome this problem without adding limited extra
computations, instead of taking the mean of the descent directions,
we compute their geometric median. The idea arose from the anal-
ogy between the arbitrary bad batches that occurs with poor quality
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Figure 4: Blue noise on the sphere. On S2, we evaluate the blue
noise property of our sampling (2048 samples). Our result as to
be compared to a uniform sampling, a stratified sampling using a
healpix spherical structure [PSC∗15], a Poisson disk sampling, a
spherical Fibonacci sequence [KISS15], and a Lloyd’s relaxation
approach (Centroidal Voronoi Tesselation, CVT) [LWL∗09b], and
a geodesic farthest point greedy strategy [PC06] (FP) . The graph
corresponds to the angular power spectra of the spherical har-
monic transform of the point sets (except for spherical Fibonacci
whose regular patterns make the spectral analysis less relevant) .
As discussed in Pilleboue et al. [PSC∗15], our sampler exhibits
correct blue noise property with low energy for low frequencies, a
peak at the average distance between samples and a plateau with
few oscillations for higher frequencies.

subsamples ν̃
l and malignant voters in voting systems, see [EM-

FGH23]. The geometric median can be computed very efficiently,
in practice using the Weiszfeld algorithm [Wei37], see Appendix 8.

3.8. Real projective plane sampling

A slight modification of the NESOTS algorithm on the sphere al-
lows sampling any density defined on the real projective plane Pd

in the same blue noise way. Such sampling might have great use
in graphics applications since many geometric objects are defined
up to signs (such as directing vectors of lines or plane normals).
Applications are detailed in section 6.

4. Intrinsic discrete manifold sampling

As a first application, we demonstrate the interest of the non-
Euclidean sliced optimal transport approach for intrinsic sampling

© 2024 Eurographics - The European Association
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(a) (b)

(c) (d)

Figure 5: Non-uniform measure sampling: given a non-uniform
probability measure φ in S2 (a), we first construct a discrete mea-
sure ν ∼ φ with a large number of samples, 2048 samples here
(b). Figures (c) and (d) are the output of the NESOTS algorithm
for 2048 samples (L = 32, K = 300), when averaging the direc-
tions during the advection (c), or using the geometric median (d).
While both distributions approximate the density, the latter pro-
vides a more stable result without sample alignment artifacts.

of meshes in R3. Given a (closed) mesh M, the core idea is to con-
struct an injective map ψ from M to S2 or H2, to apply NESOTS on
these domains to sample the image of the uniform measure U(M)
on the mesh by ψ and to pull back the samples onto M with ψ

−1.
Fig. 6 gives an illustration of this general pipeline.

For surfaces in Rd , ψ can be built as a conformal map through
the uniformization theorem [Abi81]. For short, any Riemannian
surface of genus g admits a constant Gaussian curvature metric:
spherical metric if g = 0 (Sd−1, positive constant curvature space),
a flat metric f g = 1 (Rd−1, zero-curvature space) and an hyper-
bolic metric for g ≥ 2 (Hd−1, negative curvature space). In the dis-
crete setting, M and M′ are discrete conformal equivalent if the
edge lengths li j and l′i j are such that l′i j = exp(ui+u j)/2 li j , for some
conformal factors {ui} ∈ R on vertices [SSP08, BPS15, GLSW18,
SCBK20]. In the following, we specifically target the g = 0 and
g ≥ 2 cases.

Note that in our pipeline, we do not explicitly require the map to
be conformal. Any injective map between the mesh and the target
space could be considered. We focus here on conformal maps as
theoretical guarantees of existence and efficient algorithms to com-
pute them exist. In Fig. 7, we illustrate that comparable blue noise
sampling can be obtained non-conformal maps.

In the next section, we describe the sampling algorithm on the
sphere, also illustrated in Fig. 6. Section 4.2 focuses on high genus
surfaces using an iterated local hyperbolic embedding. Our sam-
ples minimize the sliced transport energy to the target measure with
respect to the ground metric of the embedded space (Sd or Hd), not
the intrinsic metric of M. Yet, from the regularity of the conformal
maps we observe that blue noise characteristics are preserved when
pulled back from the embedded space to M (see Sec. 4.3).

4.1. Global spherical embedding

The construction of the mapping ψ through the uniformization the-
orem depends on the genus g of M. For the sake of simplicity,
we start with the spherical case i.e., g = 0. By the uniformization
theorem, a conformal map exists from M to S2. Here, we take ad-
vantage of the robust tools provided by Gillespie et al. [GSC21] to
construct a bijective conformal map ψ : M→ S2, allowing a global
optimization.

Algorithm 2: Intrinsic Spherical blue noise surface sam-
pling

Data: M, ν, m, n, K, L and γ (see Alg. 1)
1 MG = BuildMapping(M,S2) ;
2 νG = sampleMeshFaces(MG,ν,m) ;
3 µ̃G = SubSample(νG,n) ;
4 µG = NESOTS(µ̃G,νG,K,L,γ) ; // Alg. 1
5 µ = MapToMesh(µG,M,MG) ; // Alg. 5
6 return µ

The global spherical sampling algorithm (Alg. 2) can thus be
sketched as follows. For a mesh M homeomorphic to the sphere,
we first construct ψ and the global mesh layout MG on S2. We then
construct the target density νG by uniformly sampling M with a
large number of samples m (importance sampling of the triangles
from the face areas), and projecting the samples onto MG. Note
that νG is not uniform on the sphere since it captures the distortion
induced by ψ. Finally, we use the NESOTS algorithm to compute
the sliced optimal transport sampling µG and pullback this measure
onto the input mesh as described in Sec. 4.3.

4.2. Local hyperbolic embedding

If M has higher genus, a conformal map exists from M to H2.
Conformal coefficients can be obtained using the hyperbolic Dis-
crete Yamabe Flow formulation [Luo04, BPS15]. Please refer to
Section 4.3 for numerical details. The Yamabe flow allows us to
compute the per vertex conformal factors {ui}, and then the asso-
ciated (hyperbilic) edge length l′i j of the embedded mesh MG onto
H2. From the updated metric, one can embed MG onto the hyper-
boloid of the Lorentz model (see Fig 6) using a greedy approach:
starting from a initial vertex V0 set to the origin xO, triangles are
layed down onto H2 in a greedy breadth first strategy process fol-
lowing Schmidt et al.’s approach [SCBK20]. If we continue the
BFS visiting the triangles several times, this process reveals that
the mapping from M to H2 is periodic and the conformal map pave
the entire hyperbolic plane. This prevents us from duplicating the
global approach as described in Section 4.1 since the image of the

© 2024 Eurographics - The European Association
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NESOTS
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NESOTS
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Figure 6: Overall pipeline of our intrinsic discrete manifold sampling: starting from an input shape, we conformally embed the discrete
structure onto either S2 for 0-genus surfaces, or local patches to H2 for higher genus one. Then, the NESOTS (Alg. 1) is used (globally or
locally) to blue noise sample the embedded structure targeting a measure taking into account the metric distortion.

Figure 7: Sampling using a non-conformal spherical mapping:
first, we recall the NESOTS samplings using CEPS conformal maps
(first row). In green, we have updated the mapping using some
Laplacian smoothing steps on the sphere, resulting comparable
sampling (second row).

uniform measure U(M) by a periodic function is not integrable
anymore, and hence the Optimal Transport framework cannot be
used since it is only defined for probability measures.

To overcome this problem we restrict the embedding to patches
of the mesh (see Fig. 6 and Alg. 3): starting from a global Yam-
abe Flow that is solved only once, we iterate over a local layout
construction with an associated low distortion map ψi, and use NE-

SOTS on this compact subset of H2. In this process, the choice
of the first vertex of the layout matters since the distortion will be
very low in a neighborhood of V0 (mapped to xO), and will grow
exponentially with the distance to it. Hence, using the embedding
for H2 in R3, the main idea of the local algorithm is to construct a
local layout until the (Euclidean) distance to the origin xO,in the z
direction, exceeds a certain threshold ε. As we will ignore triangles
far from the origin, we only build low distortion mappings. Note
that the size of the patch for which the distortion is low depends
on the quality of the mesh (triangle aspect), and on the curvature
around V0. The choice of ε allows controlling the scale of the op-
timization, giving a tradeoff between the sliced energy quality and
speed (smaller patches leads to faster iterations). The effect of ε is
evaluated in Fig. 9.

When a sample is displaced outside of the patch layout on H2,
we just ignore the displacement (similarly to [PBC∗20] when sam-
pling [0,1)d or the d-Ball). To make sure that all the points are
optimized as equally as possible, we just keep track of the num-
ber of times a given vertex M has been used as the origin v0 of
a patch and iterate on the local patch construction starting by the
least embedded vertex (the priority queue in Alg. 3). Note that the
local layout construction is extremely fast (linear complexity in the
number of triangles of the patch).

In Fig. 8, we demonstrate the interest of the intrinsic sampling
on high genus meshes. When the embedding is ambient-compatible
(first row), we observe a slightly better sample distribution using
our approach than FP and Poisson Disk sampling. In contrast, the
CVT based approach produces a very high quality point pattern.
Although, when the embedding is defective, our purely intrinsic
approach led to an almost identical point pattern (in red) when
mapped back to a better embedding (in blue) (b), whereas both

© 2024 Eurographics - The European Association
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Figure 8: Intrinsic blue noise sampling of manifolds: Given the fertility shape with two different Euclidean embeddings (a). The
flattened one is obtained through a physical simulation such that the two embeddings are intrinsically isometric. We illustrate the sampling of
the meshes with red dots using our approach (b), the intrinsic farthest point approach (FP) [PC06] (c), the Poisson disk sampling in ambient
space (d), and the CVT sampling [LWL∗09b] (e). The blue dots correspond to the sampling on the flat embedding that are mapped to the
unflattened one. First, we observe that our purely intrinsic approach leads to similar point sets in blue and red in (c). Best point patterns
are obtained using CVT when the embedding is correct in R3, i.e. no thin layers ((d)−top). However, for both Poisson disk and CVT, the
sampling of the flat embedding leads to defective point patterns (holes in blue samples in (d) and (e)). In ( f ), we present pair correlation
functions for each sampler (both on the flat and top row meshes).

Algorithm 3: Intrinsic local hyperbolic blue noise surface
sampling

Data: M, ν on M, n, N , K, L, γ, G = H2 (see Alg. 1)
1 {ui} = YamabeFlow(M) ;
2 νG = sampleMeshFaces(MG,ν,m) ;
3 for i ∈ [[1,N]] do
4 vert = PopVertexVisitPriorityQueue();
5 (Vi,Fi) = ComputeLocalHyperbolicLayout({ui},vert,ε) ;
6 UpdateVertexVisitPriorityQueue(Vi);
7 µi = ComputeRestrictionToLayout(µ,Fi);
8 νi = ComputeRestrictionToLayout(ν,Fi);
9 µG = NESOTS(µi,νi,K,L,γ) ; // Alg. 1

10 µ = MapToMesh(µG,M,MG) ; // Alg. 5

11 end
12 return µ

Poisson disk and CVT have critical voids and clusters due to bad
assignments. To quantify this finding, we have computed the pair
correlation function (pcf) [IPSS08] the exact geodesic distance on
the manifold between each pair of samples [MMP87]. In Euclidean
domains, pcf and radial mean power spectra capture similar point
pattern characteristics [SÖA∗19]. In Fig. 8-( f ), we observe similar
blue noise distribution (a peek at some characteristic distance and
no too-close samples). We also observe that on the flat and non-
flat meshes, our approach leads to similar pcfs. The pcfs CVT and
Poisson disk are highly degraded on the flat geometries. In Fig. 10
we present sampling examples of non-uniform target measures on
meshes. Additional sampling results are given in Fig. 13.
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Figure 9: NESOTS convergence results: we illustrate the con-
vergence of Alg. 3 using N = 500 iterations (K = 500and
L = 32) for 2048 samples, as a function of the ε param-
eter. If ε is too small, local patches are small which im-
plies short timing but low quality blue noise point pattern (as
quantified by the SW distance to the uniform measure). As
ε increases, the blue noise quality is improved, but each it-
eration is longer. For ε ∈ {1.01,1.1,1.2,1.4,1.8,2.6}, the av-
erage number of µi samples in each patch is respectively
{3.31,14.76,29.97,61.86,124.92,242.82}. Sampled meshes cor-
respond to the final step of ε ∈ {1.1,1.4,2.6} respectively.
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(a) (b) (c) (d)

Figure 10: Non-uniform target density examples on meshes: given an input probability density function, a smooth one (a) on the fertil-
ity shape (genus−4 manifold, AIM@shape) and mean curvature driven one in (c) (gryroid surface, genus−32 manifold), our approach is
able to generate blue noise samples µ approximating the density (2048 samples for (b) and 4096 samples for (d)). In (d) we also illustrate
the sampling of the gyroid targeting the uniform density for comparison.

4.3. Implementation details and complexity

First of all, for the hyperbolic case, discrete conformal coefficients
{ui} are obtained by minimizing a convex energy, whose gradient
and Hessian are given in [BPS15]. We thus apply a Newton de-
scent approach with backtracking to ensure convergence. On the
models presented in this paper, timings are detailed in Table 1. In
the spherical case, we rely on the CEPS code provided by Gille-
spie et al. [GSC21] to explicitly construct the spherical embedding.
Once obtained, Alg. 2 is a direct application of Alg. 1 with the same
computational cost.

For the analysis of the local hyperbolic optimization (Alg. 3), we
experimentally observe that the number of samples µi and νi on the
layout grows linearly with ε. If Cε denotes the average computation
cost per slice and per patch, using a batch size L, K steps per patch
and N global iterations, we obtain a O(N ·K · L ·Cε) complexity.
Note that unless specified otherwise, we have used N = 500,K =
10,ε = 1.5 and L = 32 for all experiments. Although performances
were not our primary concern, typical timings are given in Table 1.
Please refer to Appendix 8 for a discussion on the computational
cost overhead when using the geometric median instead of simply
averaging directions in Alg. 1.

Once samples are optimized in, either globally for S2, or lo-
cally for H2, we need an efficient way to retrieve the face of the
mesh a given sample falls in (and the barycentric coordinates of
that sample in the face). For that purpose, we exploit the convex-
ity of the domains: we first construct a BVH of the spherical or
hyperbolic layout triangles and get the face id by shooting a ray
through the origin (0,0,0) and the sample (see Alg. 5 in Appendix
A). Finally, in the hyperbolic case, to avoid having to map all the
m points of ν̃ on each layout, for each slice, we only map the
n points that are subsampled from ν̃. Source code is available at
https://github.com/baptiste-genest/NESOTS.

Shape Credits |V | |F| g Yamabe
Flow

NESOTS

spot [CPS13] 2930 5856 0 n.a. 17.48
duck deriv. of K. Crane 29999 60006 3 10.67 27.73
fertility AIM@Shape 8192 16396 4 3.02 15.13
macaca [WAA∗05] 3494 7000 4 1.36 11,12
gyroid Thingi10k #111246 22115 44354 32 30.37 1.94

Table 1: Timings. Mesh statistics and typical timings (in seconds)
for the g ≥ 2 shapes using the parameters presented in Sec. 4.3
(AMD Ryzen 5000-H, 16 cores).

5. Real projective plane Pd sampling

Many objects generated by vectors are defined regardless of their
length or sign. For instance, the orthographic projection of a 3d
shape in the direction d is the same for all λd,∀λ ≠ 0. The space
where collinear vectors are identified is called the Projective Plane
Pd . One idea might be to project the points on the sphere, which
will successfully identify the vectors equivalent up to a positive
scale λ > 0 but not up to a sign. Hence, trying to generate a "uni-
form" set of lines with any blue noise sampler on the sphere does
not output satisfactory results as the points are not optimized to
take into account this equivalence relationship. A simple modifica-
tion of Alg. 1 described in Alg. 4, allows us to successfully extend
the blue noise generation of points, in any dimension on Pd follow-
ing any density on the sphere satisfying f (x) = f (−x) for x ∈ Sd .
To the best of our knowledge, this is new.

Lines and Hyperplanes sampling. As already stated, lines, char-
acterized by their unit vector, can be generated uniformly on Pd

using Alg. 4 (see Fig. 5 for a 3d blue noise line sampling in P2). By
taking the orthogonal complement of such lines, we can similarly
obtain a blue noise sampling of (d −1)−hyperplanes.

Affine line and hyperplane sampling. Note than even affine
spaces can be sampled by Alg. 4. For instance, an affine line can

© 2024 Eurographics - The European Association
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Figure 11: Projective plane P2 sampling: red points are sampled
with Alg. 4, light blue points are the opposites of the red ones. Sim-
ilarly, blue and yellow points are given by a spherical Fibonacci
[KISS15]. Points obtained by Alg. 4 have better blue noise charac-
teristics when considered with their opposites. To illustrate its use,
we display at the bottom row the lines generated by the points.

described by its Cartesian equation, i.e. in dimension 2

ax+by+ c = 0, (21)

but notice that, ∀k ≠ 0, if x and y are solutions of (21), then
kax+ kby+ kc = 0. Hence each affine space of dimension d can
be represented in the projective plane Pd by its Cartesian coeffi-
cients (here (a,b,c)t ). See Fig. 12 for a 2d affine line sampling
experiment.

Rotation Sampling by Unit Quaternion sampling. A unit
quaternion q can act on a vector as a rotation

x 7→ q−1x̃q ,

where x̃ is the imaginary quaternion with x as vector part. Since
q appears twice in the product, q and −q gives the same rotation.
Hence one can use Alg. 4 on P3 to uniformize a set of unit quater-
nions (represented as unit 4 dimensional unit vectors). Previous ap-
proaches such as Alexa’s technique [Ale22], provides good sam-
pling on the 3-Sphere but does not directly tackle the sign equiv-
alence problem, which leads to imperfect rotation sampling . The
results of the rotation sampling process is displayed in Fig. 1-(right)
where each shape is rotated by a rotation generated by Alg. 4.

6. Limitations and future Work

Our approach extends the blue noise sampling of any probability
measure through the sliced optimal transport energy, originally de-
signed for Euclidean domains, to Riemannian manifolds: the spher-
ical space Sd , the hyperbolic space Hd , and the projective one Pd .
In a nutshell, from explicit advection and direction averaging steps

Figure 12: Affine lines sampling: from the mapping of lines co-
efficients to P2, we generate 64 blue noise affine lines following a
non-uniform density (top row) using either a white noise sampling
(left column) or Alg. 4. When mapped back to R2, our sampling
exhibits blue noise characteristics in R2 with respect to the met-
ric induced by the Cartesian mapping (second row). Note that here
only segments are displayed for the sake of clarity but they are ac-
tual lines of R2.

Algorithm 4: Real Projective Plane Sampling Pd

Data: ν = ∑
m
i=1 δyi , K, L, and γ (see Alg. 1).

Result: µ(K)

1 µ(0) = subSample(ν,2n)
2 for j ∈ [[1,K]] do
3 parallel for l ∈ [[1,L]] do // Batch
4 ν̃ = subSample(ν̃,2n) ; // Sec. 3.6
5 θ = RandomSlice() ; // Sec. 3.1
6 ν̃θ = Pθ

(
ν̃l
)
; // Sec. 3.1

7 µθ = Pθ
(
µ( j)

)
∪−Pθ

(
µ( j)

)
; // Sec. 3.1

8 T = Solve1DOT(µθ,ν̃θ) ; // Sec. 3.2
9 for i ∈ [[1,2n]] do

10 g = Γθ

(
Pθ

(
x( j)

i

)
,T

(
Pθ

(
x( j)

i

)))
; // Sec. 3.3

11 dl
i = Log

x( j)
i

(
g
(

x( j)
i

))
; // Sec. 3.4

12 end
13 end
14 parallel for i ∈ [[1,n]] do
15 di = GeoMed

(
{dl

i}L ∪{−dl
i+n}L

)
; // Sec. 3.7

16 x( j+1)
i = Exp

x( j)
i

(γdi) ; // Sec. 3.5

17 end
18 end
19 return µ(K) = ∑

m
i=1 δ

x(K)
i
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on these spaces, we present a gradient descent strategy that opti-
mizes a point set minimizing the sliced Wasserstein energy.

First of all, concerning the generic NESOTS approach, there are
many opportunities for performance improvements. We are con-
vinced that many variance reduction techniques could be borrowed
from Monte Carlo rendering approach to speed up the sliced strat-
egy (e.g. importance sampling of the θ directions, control variates
using a proxy for the SW energy).

Thanks to the uniformization theorem, we demonstrated the in-
terest of the approach for intrinsic blue noise sampling of discrete
surfaces. Although we may not compete with existing extremely
fast restricted Voronoi based techniques when the mesh has a good
embedding, we advocate that the purely intrinsic nature of our con-
struction is of interest. An important limitation is the robustness
of the global conformal map in the spherical case that may impact
the sampling when high distortion occurs. In the hyperbolic case,
our local construction mitigates this by controlling potential distor-
tion issues (the ε parameter) but we are convinced that improve-
ments exist, e.g. using implicit intrinsic remeshing as in Gillespie
et al. [GSC21]. On the geometric side, we only focused g = 0 and
g ≥ 2 surfaces leaving the flat metric space case aside. For g = 1,
cut-and-open strategies must be designed that we avoid in spher-
ical and hyperbolic domains. In this paper, we also focus on the
sample generation, leaving the use cases of the point set as future
work (e.g. decal placement, function reconstruction, remeshing).
For remeshing, the convexity of
the S2 and H2 could be further ex-
ploited to reconstruct a mesh: on
the S2 the convex hull of the op-
timized samples leads to a trivial
(manifold) surface reconstruction
(see inset). The hyperbolic case is
more complicated as holes could
be embedded in a compact subset
of H2 for which the global convex
hull topology does not make sense. We believe that a local combi-
natorial construction from the convex hull using a small ε could be
investigated.

Finally, we have only scratched the use of blue noise sampling
in the projective space Pd for computer graphics applications. For
instance, Monte Carlo-like line and segment sample estimators may
lead to drastic reductions of variance in rendering for some effects
such as soft shadows or defocusing blur [SMJ17]. We believe that
affine line sampling approaches as illustrated in Fig. 12 would be
of great interest in this context.
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Appendix A: Additional algorithms

The objective of Alg. 5 is to find the face a point is lying on, and to
compute the correspondence between its position on the face em-

bedded in R3 and on the layout in S2 (resp H2) through barycentric
coordinates. Even if we theoretically should use spherical (resp.
hyperbolic) barycentric coordinates, we observe that the Euclidean
barycentric coordinates make a good enough quality proxy while
avoiding computing transcendental functions at each mapping. For
high performances, the face retrieval can be done leveraging the
convexity of S2 and H2 through a ray shooting approach (rays start-
ing from the domain origin to the sample to locate), with a BVH of
the faces. In our implementation, we used the library [PG23]. In

Algorithm 5: Mapping measures between two meshes
Data: µG ,M and MG

1 BVH = BuildBVH(MG) ;
2 for i ∈ [[1,n]] do
3 F̃ = BVH.intersect(MG,xO,xG

i ) ;
4 bi = ComputeBarycentricCoordinates(MG,xG

i , F̃) ;
5 F = FindCorrespondingFace(F̃ ,M) ;
6 xi = PositionFromBarycentricCoordinates(M,bi,F) ;
7 end
8 return µ

Alg. 6, we detail the Weiszfeld’s algorithm we use for the geomet-
ric median computation using an iterative least squares approach.
Note that, as stated in Section 3.7, Weiszfeld’s algorithm is used
to combine the gradients (in Rn) during the Riemannian stochastic
gradient descent. Theoretically, without the τ term, this algorithm

Algorithm 6: Weiszfeld’s geometric median algorithm
[Wei37]

Data: The samples {xi}L ∈ Rd , a stability parameter τ ∈ R
1 y = 0 ;
2 j = 2τ ;
3 while j > τ do
4 d = 0 ;
5 w = 0 ;
6 ỹ = 0;
7 for i ∈ [[0,L]] do
8 d = τ+∥y−xi∥2 ;
9 w += d ;

10 ỹ += xi
d ;

11 end
12 ỹ /= w ;
13 j = ∥y−next∥2 ;
14 y = ỹ ;
15 end
16 return y

does not converge if y0 = xi for some i. In practice, with τ > 0, we
do not observe convergence issues (interested readers may refer to
Cohen et al. [CLM∗16] for a review of standard algorithms). While
geometric median is an essential element to guarantee quality of
the result for highly non-uniform density functions, a slight com-
putational overhead exists when compared to the geometric mean.
On the fertility mesh with standard parameters (see Sec 4.3),
the optimization part of the Alg. 3 takes 12.38s with the mean and
13.33s with the geometric median (L = 32 and τ = 10−7 for all
experiments).
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Figure 13: Intrinsic discrete manifold sampling: additional sampling results with 2048 samples for g = 0 and g ≥ 2 surfaces.
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