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Figure 1: Main steps of GLS-PIA (Geodesic Least Square-Progressive Iterative Approximation) and examples.

Abstract
Due to the widespread applications of curves on n-dimensional spheres, fitting curves on n-dimensional spheres has received in-
creasing attention in recent years. However, due to the non-Euclidean nature of spheres, curve fitting methods on n-dimensional
spheres often struggle to balance fitting accuracy and curve fairness. In this paper, we propose a new fitting framework, GLS-
PIA, for parameterized point sets on n-dimensional spheres to address the challenge. Meanwhile, we provide the proof of the
method. Firstly, we propose a progressive iterative approximation method based on geodesic least squares which can directly
optimize the geodesic least squares loss on the n-sphere, improving the accuracy of the fitting. Additionally, we use an error
allocation method based on contribution coefficients to ensure the fairness of the fitting curve. Secondly, we propose an adaptive
knot placement method based on geodesic difference to estimate a more reasonable distribution of control points in the param-
eter domain, placing more control points in areas with greater detail. This enables B-spline curves to capture more details with
a limited number of control points. Experimental results demonstrate that our framework achieves outstanding performance,
especially in handling imbalanced data points. (In this paper, "sphere" refers to n-sphere (n ≥ 2) unless otherwise specified.)

CCS Concepts
• Computing methodologies → Parametric curve and surface models;

1. Introduction

B-spline curves on Riemannian manifolds have been receiving in-
creasing attention. Spheres are the most widely used manifold.
Data become points on spheres after nomalization. Therefore, B-
spline curves on spherical surfaces of different dimensions are

† Corresponding author.

essential tools for solving a wide range of problems, including
spherical curve modeling, rigid motion description, and tempo-
ral data description in shape space [AMAS16, Sho85, HGFL15,
SDK∗12, KDLS20, HLGQ05]. Specifically, B-spline curves on S2

are applied in the field of spherical modeling, such as fitting
Earth remote sensing data and constructing vector maps of the
Earth [AMAS16, AS19]. B-spline curves on S3 are applied in de-
scribing inertial navigation, particularly in the description of rigid
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Figure 2: The pipeline of GLS-PIA with Adaptive Knot Placement. First, the distribution of knot vectors and control points in the parameter
domain are estimated based on geodesic difference. Next, the position of the control points are adjusted using GLS-PIA method and the data
points are fitted. Finally, the fitted spherical B-spline curve is obtained.

motion. Rigid motion includes two parts: translation and rota-
tion, and the rotation motion can be described using curves on
S3 [Sho85, HGFL15]. B-spline curves on Sn are used to describe
temporal data in shape space [SDK∗12]. In the field of shape anal-
ysis, shape space is an essential tool. In shape space, each shape
is described as a point, and the similarity between two shapes can
be calculated by computing the Riemannian metric between two
points. Curves in shape space can express temporal data of a shape
and can be used to describe shape changes. Common applications
include facial expressions, human movements, and protein folding
processes [KDLS20].

The problem of fitting a spherical spline curve often needs to
balance fitting accuracy and fairness of the curve. Since the spher-
ical manifold is a non-Euclidean space, geometric calculations in
non-Euclidean space are often nonlinear, making many effective
fitting methods in Euclidean space difficult to directly transfer to
the spherical manifold. This poses a great challenge to curve fit-
ting on the n-sphere. Furthermore, commonly used descriptions
of fitting accuracy, such as least squares loss, and descriptions of
curve fairness, such as strain energy function, are difficult to op-
timize on the n-sphere. An effective method is to map the fit-
ting problem on the manifold to a Euclidean space, where it is
easier to optimize both the fitting accuracy and fairness of the
curve. Currently, most methods are based on the tangent space
[JK18, KDLS20, GMA18, SASK12], which transforms the fitting
problem on the n-sphere to a fitting problem in the tangent space at
a specific point on the n-sphere. The tangent space is a Euclidean
space, and fitting in the tangent space is straightforward. However,
the mapping between the tangent space and the spherical manifold
still introduces some errors, which require further optimization to
improve the accuracy of the fitting curve, resulting in additional
optimization steps and performance overhead.

In this paper, we adopt the geodesic least squares loss as the
loss function to accurately characterize the fitting error of the curve
on the n-sphere. To address the challenge of directly optimizing
geodesic least squares loss on the n-sphere, we leverage the pro-
gressive iterative approximation (PIA) approach to optimize it by

directly adjusting the control points’ positions on the n-sphere ac-
cording to the error vector. To ensure the smoothness of the fitting
curve, we design an error allocation method based on the contri-
bution coefficients of control points, which effectively fits the error
with a B-spline curve with fewer control points, thereby ensuring
the fairness of the fitted curve. To improve the fitting accuracy of
the B-spline curve with a limited number of control points, we need
to estimate a more reasonable distribution of knot vectors and con-
trol points in the parameter domain, so that they are placed more in
the detail-rich areas of the data. We propose an adaptive knot vector
placement method based on geodesic difference, using the cumu-
lative distribution function of geodesic difference to characterize
the density distribution of details in the input data, and estimate the
distribution of knot vectors and control points accordingly. This en-
hances the B-spline curve’s ability to capture data detail informa-
tion and improves the curve fitting accuracy with a limited number
of control points.

Our main contributions are as follows:

• A novel progressive iterative approximation method based on
geodesic least squares(GLS-PIA) for fitting B-spline curves on
n-dimensional sphere is proposed. By optimizing the geodesic
least squares loss through adjusting the control points, GLS-PIA
solves the challenge of directly optimizing on the n-sphere. It
achieves direct fitting of data points on the n-sphere and im-
proves the accuracy of the curve fitting. Meanwhile, we prove
the convergence of the method.

• An adaptive knot placement method based on geodesic differ-
ence to enhance the capability of B-spline curves in capturing
complex details in data is proposed. Geodesic difference is de-
signed to characterize the geometric features of input discrete
points and a feature function based on the cumulative distribu-
tion function (CDF) is used to describe the detail density. Higher-
density knots are placed in regions with larger feature values so
that the fitted curve can better capture the geometric details of the
input points. Moreover, this method is computationally efficient
and does not require iterative optimization of the knot vector.

• An error allocation method based on contribution coefficients is
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proposed. This method effectively reduces the number of control
points during the fitting process, thus maintaining the smooth-
ness of the curve.

2. Related Work

In this section, we will review the relevant work on the construction
and fitting methods of spherical B-spline curves.

2.1. Spline Curve Construction on n-Sphere

In Euclidean space, there are many classical spline curve rep-
resentations, such as Bézier curves, B-spline curves, and non-
uniform rational B-spline (NURBS) curves. However, due to the
non-Euclidean nature of spherical space, these classical spline rep-
resentations are difficult to directly introduce into the n-sphere
manifold. Based on these methods, two types of spline curve con-
struction methods on the n-sphere have been developed.

Projection method is the first kind. A curve defined in the Rn+1

space is projected onto the Sn. In 1979, Parker [PD79] proposed a
simple method by constructing a curve in R3 and then projecting
it onto the sphere by normalization. Although this method is sim-
ple and easy to implement, it can cause significant geometric dis-
tortion. In 1995, Kim [KKS95b, KKS95a] proposed a method that
transforms Bézier and Hermite curves into similar unit quaternion
curves using exponential mapping [KKS96] and quaternion opera-
tions [KN95], which iteratively solves a nonlinear equation system
of quaternions to obtain the position information of control points,
thus better solving the interpolation problem of spherical curves.
Based on this work, Tan [TXFH18] fit the corresponding derivative
loss with several adjacent interpolation points, and then calculate
the control points, thus constructing the curve. However, this kind
of methods has certain limitations, as they usually construct the
curve before projection, resulting in insufficient accuracy, geomet-
ric distortion, or complicated and inefficient computation.

Direct construction method is the second kind, which di-
rectly constructs spline curves on the n-sphere. In 1985, Shoe-
make [Sho85] first introduced the concept of quaternions into com-
puter graphics and constructed a new type of curve, which is a unit
quaternion spline curve satisfying C1 continuity. When construct-
ing this curve, Shoemake replaced line segments with great cir-
cle arcs (i.e., the shortest geodesics in Riemannian geometry) and
extended the De Casteljau algorithm in Euclidean space to low-
dimensional unit spheres, and gave the conditions for C1 smooth
splicing of two spherical Bézier curves. Although Shoemake only
considered cubic Bézier curves in Euclidean space, this method
can be extended to spheres of any dimension. Furthermore, Popiel
[PN06] studied the properties of spherical Bézier curves of any
dimension at the endpoints and constructed C2 spherical Bézier
curves using the concept of conjugate derivatives. This method
solves the C2 interpolation problem of data points and significantly
reduces the complexity of calculating high-order derivatives at the
endpoints of spherical Bézier curves, but still cannot achieve local
control of curve shape. Crouch extended the De Casteljau algo-
rithm to Sn manifolds and Lie groups [CKL99]. Huang used the
method of knot insertion with De Boor to calculate NURBS curves

on the sphere [HGFL15]. This method directly utilizes the proper-
ties of the sphere manifold and achieves direct and efficient spher-
ical spline construction computation. Furthermore, Cao introduced
the Spherical DCB-Spline as a means to construct a non-tensor-
product B-spline on the surface of a sphere [CLCQ12].

Overall, the projection method has the advantages of generality,
as the method of projecting curves from Euclidean space to mani-
folds is general and easy to extend to general manifolds. However,
it fails to fully utilize the special properties of spherical manifolds,
resulting in lower computational efficiency and greater geometric
distortion. The direct construction method fully utilizes the proper-
ties of spherical manifolds and extends the methods of constructing
curves in Euclidean space to spherical manifolds, with the advan-
tages of high efficiency and less geometric distortion. However, this
kind of methods also have the disadvantage of being difficult to ex-
tend to general manifolds. It can be seen that for spherical curve
methods, the direct construction method is a more optimal method
to focus on.

2.2. B-Spline Curve Fitting on n-Sphere

Methods for fitting on manifolds involve mapping the data points to
a vector space, usually the tangent space at a point on the manifold,
computing the fitting curve on the tangent space, and then mapping
the resulting curve back to the manifold. The mapping between the
manifold and its tangent space can be defined, for example, using a
rolling procedure [JK18,SHSH07,Pre87,KKL10,Uk07,MKM∗99].
For instance, Jupp and Kent [JK18] proposed a method that can
be described as “unwrapping” the data onto the plane, where
standard curve fitting techniques can then be applied. The pa-
pers [KKL10, MKM∗99] studied the problem of fitting a smooth
curve on the planar shape space. Gousenbourger proposed a method
for fitting composite Bézier-like curves and blended cubic splines
on the sphere using the exponential map and logarithmic map
[GMA18]. Samir provides an expression for the gradient vector on
a general manifold in terms of its differential geometry [SASK12].

There are also methods that do not rely on tangent spaces to
handle data on manifolds. Alderson proposed a curve multireso-
lution [AMAS16] and multiscale [AS19] method on the sphere and
ellipsoid surfaces. These methods can be indirectly used for fitting
discrete points on the sphere. Such methods are based on curve sub-
division techniques, which have the advantage of avoiding errors
introduced by the mapping between tangent spaces and the sphere.
However, these methods can only control the curve reconstruction
effect by adjusting the parameters of curve subdivision, and they
lack explicit control over the error between the discrete points and
the resulting curve. Our goal is to develop a method that not only
avoids mapping errors between tangent spaces and the sphere, but
also explicitly controls the fitting error, in order to easily obtain the
best fitting curve.

Most of the current fitting methods rely on the mapping between
the tangent space and the manifold. Due to the non-Euclidean na-
ture of the n-sphere, there is always some error in the mapping
between the tangent space and the manifold, which can lead to re-
duced fitting accuracy and slower fitting speed.

The method proposed in this paper directly adjusts the control
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points and fits the curve on the n-sphere, without relying on the
tangent space for curve fitting. We have designed a series of meth-
ods to avoid the use of the tangent space and improve the accuracy
of curve fitting. We will introduce the specific technical details later
in the paper.

3. Construction of B-Spline Curves on n-Sphere

Considering the non-Euclidean nature of the n-sphere, we will use
a spherical B-spline curve method based on spherical interpolation.
In this section, we will first introduce the definition of spherical in-
terpolation. Secondly, we will introduce the construction of spher-
ical B-spline curves based on the de Boor algorithm.

3.1. Spherical Linear Interpolation

Two-point interpolation is atomic operation in spherical space that
is analogous to the simplest atomic operations used to create curves
in Euclidean space. Spherical linear interpolation (SLERP) can be
defined by

SLERP(p,q,u) =
sin[(1−u)θ]

sin(θ)
p+

sin(uθ)

sin(θ)
q (1)

p and q are two points on unit n-sphere, θ is the angle between
p and q, can be calculated by

θ = cos−1(p ·q) (2)

With the SLERP, We can extend the de Boor algorithm from
Euclidean space to the n-sphere.

3.2. De Boor’s Algorithm on n-Sphere

We use de Boor algorithm to calculate B-spline curves on
the n-sphere. Given a set of control points Pi(i = 0,1,2...)
on the unit n-sphere S, the total number of control points
is n + 1, p denotes the degree of B-spline curve, and U =
{u0, ...,up,up+1, ...,um−p−1,um−p, ...,um} denotes knot vector.
we can insert a new knot t into U . Assuming t is in the interval
[uk,uk+1), after r insertions of t, the new control points can be ex-
pressed as follows:

Pi,r = SLERP(Pi−1,r−1,Pi,r−1,αi,r)

=
sin[(1−αi,r)θi,r−1]

sinθi,r−1
Pi−1,r−1 +

sin(αi,rθi,r−1)

sinθi,r−1
Pi,r−1

(3)

where

αi,r =


1, i ≤ k− p+ r−1

t−ui
ui+p−r+1−ui

, k− p+ r ≤ i ≤ k

0, i ≥ k+1

(4)

θi,r−1 = cos−1(Pi−1,r−1 ·Pi,r−1) (5)

According to the knot insertion algorithm of B-spline, after in-
serting t with r = p times, the new point just denotes the point on
the B-spline curve with parameter t.

4. Adaptive Knot Placement based on Geodesic Difference

Our motivation stems from the fundamental idea of knot place-
ment method in B-spline curve fitting in Euclidean space [YNPT20,
LZJ∗17,TDH15,CMRS01,AEC∗18,XQ01]. These knot placement
methods in Euclidean space have demonstrated excellent results.
In particular, fast knot placement [YNPT20] eliminates the need
for cumbersome optimizations. Instead, it provides excellent ini-
tialization effects for fitting through simple estimation, resulting
in a high-speed performance. Inspired by these methods, we have
extended them to spherical manifolds to enhance the capability of
capturing fine details in curve fitting on the sphere. For a p-order
B-spline curve, its (p − 1)th derivative has discontinuous points
that correspond to the knot locations. Given a set of sampled points
from a p-order B-spline, the original knot locations can be recov-
ered by locating the discontinuous points in the (p−1)th derivative.
In practical applications, the input data points are usually not sam-
pled from the B-spline and the derivatives may not exhibit obvious
discontinuities. Nonetheless, previous works have shown that the
input data differences can be used to guide knot placement, result-
ing in knots that are consistent with the properties of the input data,
and thus better capturing the details of the data.

For points on Sn manifold, a simple way to define differences
is to embed the Sn manifold in the Euclidean space Rn+1 and use
Euclidean differences. However, this definition does not eliminate
the influence of the non-Euclidean properties of the Sn manifold.
For example, for geodesics on the spherical manifold, which cor-
respond to straight lines in Euclidean space, their curvature should
be zero. That is, for any three ordered points on the same great cir-
cle on the n-sphere, their second-order difference should be zero.
However, if Euclidean differences are used in Rn+1 space, the cal-
culated second-order difference is obviously not zero. To eliminate
the influence of the non-Euclidean properties of the Sn manifold,
we propose a geodesic difference calculation method to eliminate
the curvature of the manifold itself in the tangent space.

In this section, we introduce an adaptive knot placement method
based on geodesic differences. First, we define and calculate
geodesic differences. Second, we introduce the calculations of
the feature function defined by geodesic differences. Finally, we
present a knot placement and control point placement method based
on the feature function.

4.1. Definition of Geodesic Difference

With a given set of m input points q = {qI : QI ∈ Sn}m
i=1 and pa-

rameters U = {ui : ui ∈ R,ui < ui+1}m
i=1, we define Q(k) = {q(k)j ∈

Sn}m−k
j=1 to be the set of kth differences of the input points at param-

eters U (k) = {u(k)j ∈ R}m−k
j=1 . We let Q(0) = Q, U (0) = U , then for

K > 0, we use the geodesic difference to find qp
j .

q(k+1)
j =

projThSn q(k)j+1 −projThSn q(k)j

u(k)j+1 −u(k)j

(6)

uk+1
j =

uk
j +uk

j+1

2
(7)
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Figure 3: Geodesic Difference Calculation

where

projThSn q(k)j = q(k)j −
q(k)j ·h
|h|2

h (8)

h =
q(k)j+1 +q(k)j

2
(9)

h denotes the midpoint of q(k)j+1 and q(k)j , ThSn denotes the tangent

space on h, projThSn q(k)j denotes the projection vector of q(k)j onto
the tangent space of point h.

To mitigate the impact of the manifold’s curvature on the curve,
we design geodesic difference to characterize the details of the data.
During the process of calculating the differentiation, we project the
vectors onto the tangent space of the midpoint and perform the
difference computation within the tangent space. It is worth not-
ing that when computing the 1st difference, we treat the points
as vectors pointing from the center of the n-sphere to the point,
and project this vector onto the tangent space of the midpoint for
difference computation. This calculation is equivalent to project-
ing the point onto the tangent space and then performing the dif-
ference computation. After this step, all operations are performed
on the vector obtained from the previous difference computation.
Similarly, when computing the projection, the normal vector of the
tangent space is required. Due to the special properties of the unit
n-sphere, the vector from the origin of the n-sphere to point h is
the unit normal vector of the tangent space at point h. This greatly
facilitates our calculations.

4.2. Cumulative Distribution Function(CDF) as Feature
Function

We use the cumulative distribution function (CDF) of the dth dif-
ference of the data points as a representation of the level of detail
in the input data, where d is the degree of the fitted B-spline curve.
First, to avoid an excessive concentration of knots in detail-rich ar-
eas, we employ a normalization function to smooth the distribution
of the difference. The normalization function f uses the pth root
of the magnitude. As a result, we obtain the normalized difference,

which can be expressed as follows:

(u
′

i , fi) =


(u1,0), i = 0

(ud
i ,(∥q(d)i ∥2)

1/p), 1 ≤ i ≤ m−d
(um,0), i = m−d +1

(10)

Before computing the CDF, we need to first estimate a contin-
uous difference function from the discrete normalized differences.
Here, we obtain the continuous difference function by linearly in-
terpolating the normalized differences over the parameter domain.

f (u) =
u−u

′

i+1

u′
i −u′

i+1
fi +

u−u
′

i

u′
i+1 −u′

i
fi+1 (11)

where u
′

i ≤ u ≤ u
′

i+1, and f (u) = 0 for u outside of the range
[u

′

0,u
′

m−d+1].

Finally, we integrate f (u) to obtain the CDF function of the dif-
ference, which is used to measure the density distribution of the
level of detail in the input data.

F(u) =
∫ u

−∞
f (v)dv (12)

4.3. Knot Placement and Control Points Placement

We determine the placement of knots and control points based
on the Cumulative Distribution Function (CDF). The CDF repre-
sents the amount of detail in the input data, and we aim to achieve
equal amounts of detail in each interval between two knots. This
is achieved by making the CDF difference between the upper and
lower bounds of each interval equal. If the number of control points
of a B-spline curve is n and its degree is p, then the knot vector is
defined as follows:

T = {
p+1︷ ︸︸ ︷

t1, ..., t1, t2, ..., tn−p,

p+1︷ ︸︸ ︷
tn−p+1, ..., tn−p+1} (13)

Here, ti is obtained by uniformly sampling the interval [0,Fmax]
and performing n− p+1 uniform samplings for a B-spline curve of
degree p and n control points. Since F is a cumulative distribution
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function of the non-negative f , F is non-decreasing. So we can
define F−1 as the inverse of F

F−1(a) = b ⇔ F(b) = a (14)

Furthermore, we can calculate the values of the knot vector by
defining the length of the intervals for the F-domain uniform sam-
pling.

∆F =
Fmax

n− p+1
(15)

Fi = (i−1)∆F (16)

ti = F−1(Fi) (17)

(a) Uniform Distribution of Control Points on Uniform Knot Vector

(b) Distribution of Control Points on Real Knot Vector

Figure 4: Control Point Placement Process

Thus, we obtain the knot vectors, and based on these knots, we
provide an initial distribution for the control points. Initially, we as-
sume that all knot values are uniformly distributed in the parameter
domain and all control points are uniformly placed. Subsequently,
we use a linear transformation to convert the uniform knot values
to their actual values and, at the same time, transform the control
points to their new positions based on the knot interval in which
they belong. This is illustrated in Figure 4.

5. GLS-PIA: Geodesic Least Square - Progressive Iterative
Approximation

Due to the non-Euclidean nature of the n-sphere, traditional opti-
mization methods are difficult to use on the n-sphere. PIA provides
a B-spline curve approximation method that can be applied on the
n-sphere. However, the traditional PIA method initializes all data
points as control points, which leads to a serious lack of fairness in
the curve generated by the traditional PIA method for large-scale
data. To solve this problem, we have designed a PIA method based
on geodesic least squares. We use geodesic distance as the mea-
sure of fitting error and allocate the total error to each control point
according to its contribution coefficient in the B-spline curve, for
adjustment.

Following this idea, our approach for GLS-PIA for B-spline
curve fitting is comprised of the following steps:

1.Initialize control points based on the adaptive knot placement
method.

2.Generate the initial fitting curve.

3.Obtain the adjustment vector based on the geodesic distance
error.

Figure 5: The difference between chord length and geodesic dis-
tance in the red segment is significantly larger than that in the blue
segment. If we use chord length as the magnitude of the error vec-
tor, it would cause the updates provided by points farther from the
curve to be insufficient, leading to a loss of accuracy in fitting the
curve.

4.Allocate the adjustment vector based on the contribution coef-
ficient of each control point.

5.Obtain the new curve.

5.1. Geodesic Least Square and Errors Allocation

For the problem of curve fitting on a spherical manifold, the com-
monly used error measurement is the geodesic least squares loss,
defined as follows:

Loss(Q = {qi : qi ∈ Sn}m
i=1,C(t)) =

m

∑
i=1

cos−1(qi ·C(ui)) (18)

Directly optimizing this function on the n-sphere is challenging.
Typically, the approach is to optimize it in Euclidean space through
a mapping between the tangent space and the n-sphere. However,
this approach introduces errors. Based on this, we propose a new
GLS-PIA method, which indirectly optimizes the geodesic least
squares loss by adjusting the control points on the n-sphere.

To facilitate the subsequent PIA optimization and control point
adjustment, we need to calculate the error vector from each data
point to the corresponding point on the curve. It is defined as fol-
lows:

δ j =
q j −C(t j)

∥q j −C(t j)∥
cos−1[q j ·C(t j)], j = 0,1, ...,m (19)

We use the direction of the chord vector from the correspond-
ing point on the curve to the data point as the direction of the error
vector, and the geodesic distance as the magnitude of the error vec-
tor. The reason for using geodesic distance as the magnitude of the
error vector instead of the length of chord is that on the n-sphere,
the difference between chord length and geodesic distance becomes
greater as the distance between two points increases.(shown in Fig-
ure 5) If we use chord length as the magnitude of the error vector, it
would cause the updates provided by points farther from the curve
to be insufficient, leading to a loss of accuracy. in fitting the curve.

In traditional PIA, all data points are initialized as control points,

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Yuming Zhao el al. / GLS-PIA: n-Dimensional Spherical B-Spline Curve Fitting based on Geodesic Least Square with Adaptive Knot Placement 7 of 14

Figure 6: Calculation of Contribution Coefficient

allowing fitting errors to be conveniently allocated to each control
point through point-to-point correspondence, thereby facilitating
the derivation of adjustment vectors. However, this approach has
the disadvantage of having too many control points. When deal-
ing with large datasets, it can lead to poor curve fairness. Through
the adaptive knot placement method discussed earlier, we have de-
termined the initialization positions of the control points and im-
proved curve fairness by reducing the number of control points.

Regarding the allocation of errors, we determine it through the
contribution coefficients of each control point. Let P be the input
data point set, and U be the parameters. For a point pi with param-
eter ui, we calculate the distance from the point on the curve with
parameter ui to point pi as its fitting loss. We use the contribution
coefficient of each control point to determine the allocation of er-
rors for each point with parameter ui on the curve. The contribution
coefficient is similar to the basis function of a B-spline curve in Eu-
clidean space, with the difference being that the basis function of a
B-spline curve in Euclidean space can be calculated independently,
while on the n-sphere, due to non-Euclidean properties, the contri-
bution coefficient depends on the intermediate value of the control
points calculated using the de Boor algorithm.

The calculation of the contribution coefficient can be achieved
using the de Boor algorithm introduced in Chapter 3, as illustrated
in the Figure 6.

B+
i,r and B−

i,r is defined as follows:

B−
i,r =

sin[(1−αi+1,r+1)θi+1,r]

sinθi+1,r
(20)

B+
i,r =

sin(αi,r+1θi,r)

sinθi,r
(21)

To calculate the contribution coefficient of any control point to a
point on the curve, we only need to follow the de Boor algorithm
and calculate the sum of the products of all B+/−

i,r along the paths
from that control point to Pk,p.

With the help of contribution coefficient, we can allocate errors
to each control points as follows:

∆i = µ
m

∑
j=0

Di(t j)δ j (22)

∆i is the adjustment vector for the control point Pi, µ is the ad-
justing rate, δ j denotes the fitting error on point C(t j). Di is the
contribution coefficient of the control point Pi, which can be calcu-
lated by de Boor algorithm with B+

i,r and B−
i,r as illustrated in the

Figure 6.

5.2. Control Points Update

After obtaining the adjustment vectors, we can update each control
point as follows:

P
′

i =
Pi +∆i

∥Pi +∆i∥
(23)

P
′

i denotes the new control point, C(t j)
′

can be constructed from
new control points. To make sure that the new control point P

′

i is
still lie on the unit n-sphere, we normalize the P

′

i by dividing it by
its magnitudes.

5.3. Algorithm Framework

Combining the adaptive knot placement method from Section 4
with the GLS-PIA method from Section 5, we obtain the complete
algorithm for our framework. For the input data points and their pa-
rameters, we first estimate the distribution of the knot vector based
on geodesic difference and place the knot vector and control points
accordingly. Next, we adjust the position of the control points using
the GLS-PIA method and perform spherical B-spline curve fitting
for the data points. The detailed algorithm is presented in Algo-
rithm 1.

5.4. Proof of Convergence

To substantiate the effectiveness of our method, in this section, we
will establish the convergence of the GLS-PIA method.

Proof Let k represent the iteration number in the GLS-PIA method,
Assuming Pk represents the control points obtained at the k-th it-
eration, and P0 represents the control points initially provided. Ac-
cording to equation (23), we can express the iteration of control
points as follows:

Pk+1
i =

Pk
i +∆

k
i

∥Pk
i +∆k

i ∥
(24)

Let mk
i represent the 1

∥Pk
i +∆k

i ∥
. It becomes apparent that mk

i repre-

sents a constant bounded by the interval (1,π/2). Consequently, the
given equation can be elegantly rephrased as follows:

Pk+1
i = (Pk

i +∆
k
i )∗mk

i (25)

In matrix form, the equation can be expressed as follows:

Pk+1 = (Pk +∆
k)∗Mk (26)
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Algorithm 1: GLS-PIA: Geodesic Least Square-
Progressive Iterative Approximation

Input: Input points Q = {qi : qi ∈ Sn}m
i=1, the parameter

U = {ui : ui ∈ R,ui < ui+1}m
i=1, error threshold E,

number of control points N
Output: A Fitting Spherical B-Spline Curve C(t) with

minimum Geodesic Error
Result: Write here the result

1 Error =∞;
2 Calculate geodesic difference of input points;
3 Normalize geodesic difference by pth root of the magnitude;
4 Calculate CDF as feature function of geodesic difference;
5 Place the knot vector and control points by CDF;
6 Construct the initial curve C(t);
7 while Error ≥ E do
8 Calculate the fitting error on point C(t j) according to

equation (19);
9 Calculate the contribution coefficient of each control

point;
10 Allocate the errors to each control point according to

equation (22);
11 Update the control points according to equation (23);
12 Error = ∑

m
i=1 cos−1[qi ·C(ui)];

13 end
14 The last C(t) is the result Spherical B-spline Curve;

Let A denote the contribution coefficient matrix.

A =


D0(t0) D1(t0) · · · Dn(t0)
D0(t1) D1(t1) · · · Dn(t1)

...
. . .

...
D0(tn) D1(tn) · · · Dn(tn)

 (27)

By considering equation (19), we can express cos−1[q j·C(t j)]
∥q j−C(t j)∥ as a

diagonal matrix for the sake of facilitating subsequent processing
and analysis, which we will refer to as F :

F =



cos−1[q0·C(t0)]
∥q0−C(t0)∥ 0 · · · 0

0 cos−1[q1·C(t1)]
∥q1−C(t1)∥ · · · 0

...
. . .

...

0 0 · · · cos−1[qn·C(tn)]
∥qn−C(tn)∥

 (28)

Expanding equation (26), we obtain the following expression:

Pk+1 = [Pk +µF ∗AT (Q−APk)]∗Mk (29)

Upon observing F , it is evident that each element within F is
bounded. This implies that F does not affect convergence. We can
always find a suitable µ to eliminate the influence of F , thus ensur-
ing convergence. Therefore, in the subsequent proof, we exclude F
to simplify the process. It is important to reiterate that this approach
does not impact the conclusion regarding convergence.
By rewriting it in iterative form, we can obtain the following ex-

pression:

Pk+1 − (Mk +MkµAT A− I)−1(MkµAT Q)

= (1−µAT A)[Pk − (Mk +MkµAT A− I)−1(MkµAT Q)]
= · · ·
= (1−µAT A)k+1[P0 − (M0 +M0µAT A− I)−1(M0µAT Q)]

(30)
Let E denote the matrix 1− µAT A, λi(E) denote the eigenvalue of
E. It is evident that the matrix AT A is non-singular and positive
definite. Given that the maximum eigenvalue of AT A is λ0, when
0 < µ < 2

λ0
, we can draw the following conclusion:

−1 < λi(E)< 1, i = 0,1, · · · ,n. (31)

Furthermore, we have the following implication:

0 < ρ(E)< 1, (32)

ρ(E) is the spectral radius of E. Therefore, we can derive the fol-
lowing:

lim
k→inf

Ek = 0, (33)

Moreover, it is evident that as k approaches infinity, m tends to 1,
and M approaches the identity matrix I. According to equation (29).
we can know

limk→inf Pk+1

= (Mk −MkµAT A− I)−1(MkµAT Q)

+(1−µAT A)k+1[P0 − (M0 −M0µAT A− I)−1(M0µAT Q)]

= A−1Q
(34)

Hence, it is proven that GLS-PIA converges.

6. Experiments

To validate the superiority and generality of our method, we con-
ducted several comparative experiments. Firstly, to verify the ef-
fectiveness of the adaptive knot placement method, we compared
the fitting accuracies obtained using different knot placement meth-
ods. Secondly, we compared our fitting framework with other meth-
ods regarding fitting accuracy. For the sake of visualization conve-
nience, the examples from S2 are selected as the subjects for the
first two experiments. Finally, we applied our method to three sce-
narios, including fitting the Earth’s national borders, rigid body ro-
tation, and shape space animation, demonstrating the generality of
our method on spherical surfaces of different dimensions.

We used two metrics to measure the accuracy of the fitting meth-
ods: maximum error and mean error.

Max_Error = max
i

cos−1[pi ·C(ui)] (35)

Mean_Error =
1
m

m

∑
i=1

cos−1[pi ·C(ui)] (36)

All experiments are implemented on MATLAB with an Intel Core
i7-10700K CPU @ 3.80 GHz and 16 GB of memory. The blue
dots represent the data points, the blue lines depict the results from
different methods, and the pink line represents the ground truth.
The solid lines represent the spline curves, while the dashed lines
represent the corresponding control polygons.
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In this subsection, we designed two experimental examples to
demonstrate the excellent performance of our adaptive knot place-
ment method, which we refer to as the simple example (see Figgure
7) the complex example (see Figure 8). We conducted experiments
on these two examples using three different knot placement meth-
ods: uniform knot placement, euclidean difference estimate knot
placement based on Rn+1 space, and geodesic difference estimate
knot placement based on Sn (ours).

Both examples are sampled from a spherical B-spline curve. The
first example is a simple example in which the distribution of fit-
ting points is relatively uniform, and the sampling is also relatively
uniform. According to our expectations, the three knot placement
methods will perform relatively similarly on this example. The sec-
ond example is a complex example in which there is obvious im-
balance in detail information and sampling. According to our ex-
pectations, the three methods will exhibit significant differences in
fitting accuracy on this example.

6.1. Comparision on different Knot Placement

(a) Groud Truth (b) Uniform Knot Placement

(c) Euclidean Difference (d) Geodesic Difference

Figure 7: Fitting result of the simple example by different knot
placement method.

To highlight these performance differences, we keep the number
of iterations for each fitting process at 30 to emphasize the impact
of different knot placement methods on fitting accuracy.

As shown in the Figure 7, on the simple example, the perfor-
mance of the three methods is relatively similar, all demonstrating
good fitting performance. Only the uniform knot placement method
had lower fitting accuracy, mainly due to poor capture of detail in-

Table 1: Numerical comparison of different knot placement method
on simple example in Figure 7.

Metrics
Uniform Knot

placement
Euclidean
Difference

Geodesic
Difference

Max_Error 1.736×10−1 1.02×10−2 3.9×10−3

Mean_Error 8.34×10−2 6.4×10−3 1.2×10−3

(a) Groud Truth (b) Uniform Knot Placement

(c) Euclidean Difference (d) Geodesic Difference

Figure 8: Fitting result of the complex example by different knot
placement method.

Table 2: Numerical comparison of different knot placement method
on complex example in Figure 8.

Metrics
Uniform Knot

placement
Euclidean
Difference

Geodesic
Difference

Max_Error 5.239×10−1 2.032×10−1 1.08×10−2

Mean_Error 2.983×10−1 1.427×10−1 6.2×10−3
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formation in the bent region. The table 1 shows the numerical com-
parison of the fitting accuracy of the three methods.

On the complex example, as shown in the Figure 8, there is a sig-
nificant difference in performance among the three methods, with
uniform knot placement being the worst, Euclidean difference esti-
mate knot placement based being relatively good, and our method
being the best. We found that the main difference among the three
methods is not entirely in the complex detail area on the right side
of the curve but in the transitional part in the middle of the curve.
This is because there are more sampling points on the right side
of the curve, resulting in larger adjustment vectors during fitting,
so the control points on the right side are updated more quickly,
leading to better fitting performance in the complex detail area on
the right side. However, for the first two knot placement methods,
due to the initial distribution of control points being less reasonable
than our method, more control points appear in the left and middle
parts with fewer details, and smaller adjustment vectors due to the
relatively few sampling points are allocated to more control points,
resulting in slower fitting and lower accuracy in that part. The ta-
ble 2 shows the numerical comparison of the fitting accuracy of the
three methods.

6.2. Comparision on different Fitting Method

In our experiments, we compared our method with four mainstream
methods: Gousenbourger’s Composite Bézier-Like Curves
[GMA18], Gousenbourger’s Blended Cubic Splines [GMA18],
Samir’s Gradient-Descent method [SASK12], and Jupp’s Un-
wrapping method [JK18].

We select the results of our method after 30 iterations in the ex-
periments. For Samir’s Gradient-Descent method and Jupp’s Un-
wrapping method, we run their iterative optimization until the same
amount of time as our 30 iterations have passed. We observe that
these two methods had almost converged within this iteration time.
Gousenbourger’s composite Bézier-like curves and blended cubic
splines do not require a threshold or stopping condition to termi-
nate optimization, and their optimization process is finite, so we
did not impose time limits on them.

We used the maximum error and mean error metrics to evalu-
ate the fitting accuracy of each method. The results showed that
our method outperformed the other methods in terms of fitting ac-
curacy, and the improvement is significant. The table 3 shows the
numerical comparison of the fitting accuracy of the five methods.
Compared to the best existing method on the this example, our
method reduces the Max_error by 51% and the mean_error by 37%.
Figure 9 shows visual results of the five methods.

Furthermore, we present several additional examples to show-
case the distinctive characteristics of our approach. In the case of
the helix curve example 10, the distribution of detailed features
within the curve itself is relatively uniform, and the provided data
points exhibit a correspondingly even distribution. As a result, dif-
ferent methods achieve commendable fitting results.

In the case of the Shock line example 11, the distribution of
data points is no longer uniform, giving rise to an imbalanced sce-
nario. Other methods exhibit significant fitting errors in regions

with fewer data points, whereas our method successfully preserves
the curve’s characteristics even in such data-sparse regions.

When dealing with curves containing sharp corners 12, our
method outperforms others in faithfully capturing the sharp corner
features. This capability stems from our adaptive knot placement
method, which adeptly captures local detailed features. However,
due to the inherent nature of B-spline curves, accurately reproduc-
ing sharp inflection points remains challenging and necessitates ap-
proximations using high-curvature curves for precise fitting.

6.3. Applications

In this subsection, we apply our method to three tasks: fitting na-
tional borders on the Earth’s sphere, shape interpolation based on
Kendall shape space, and three-dimensional rigid body rotation.

For the task of fitting national borders on the Earth’s sphere, we
selected a segment of the US-Mexico border as an example and
chose a series of discrete points on it as input for fitting. We have
selected two sets of data with different resolutions, as shown in
Figure 13. We performed fitting on the low-resolution and high-
resolution data and compared the results with them. Despite the
lack of fine details resulting from the information loss in the low-
resolution data, our method still demonstrates good fitting perfor-
mance. When we utilize high-resolution data for fitting, we achieve
excellent results. As shown in the Figure 13, our method produced
good results in restoring the details of the curve.

Kendall shape space is a discrete shape space that can express
shape attributes through landmark points while eliminating transla-
tion, rotation and scaling. Kendall shape space is essentially a high-
dimensional sphere, and each shape can be expressed as a point on
Kendall shape space. A curve on Kendall shape space can express
a shape transformation animation. As shown in the Figure 14, we
collect landmark points for the black character shape and map it
to several points on Kendall shape space, then fit a curve to ob-
tain a continuous transformation of the shape. We sample several
intermediate shapes (shown in red) from it for display.

Three-dimensional rigid body rotation can be expressed as a
quaternion, and the rotation quaternion space is essentially an S3

sphere. We expressed several rotation states of the 3D model as
points on S3 sphere and fit them to obtain a continuous represen-
tation of the rotation of the 3D model. We sample some points
from the continuous rotation transformation and visualized them
as shown in the Figure 15.

7. Conclusions

In this paper, we proposed a spherical B-spline curve fitting frame-
work based on geodesic least squares and adaptive knot placement.
The adaptive knot placement based on geodesic difference enables
B-spline curves to better capture the distribution of details in the in-
put data points on spheres, thereby improving the fitting accuracy
with less control points. We used geodesic least squares loss as the
optimization objective and proposed the GLS-PIA method to over-
come the difficulty of optimizing least squares loss on the sphere.
Meanwhile, we used an error allocation method based on control
point contribution coefficient to limit the number of control points
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(a) Gousenbourger’s CBC (b) Gousenbourger’s BCC

(c) Samir’s method (d) Jupp’s method (e) Ours

Figure 9: Fitting result by different fitting method.

(a) Ground Truth (b) Uniform Knot Placement (c) Ours with Euclidean Difference (d) Ours with Geodesic Difference

(e) Gousenbourger’s CBC (f) Gousenbourger’s BCC (g) Samir’s method (h) Jupp’s method

Figure 10: Fitting result by different fitting methods on Helix curve.In the case of the helix curve example, the distribution of detailed features
within the curve itself is relatively uniform, and the provided data points exhibit a correspondingly even distribution. As a result, different
methods achieve commendable fitting results.
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Table 3: Numerical comparison of different fitting method in Figure 9.

Metrics Gousenbourger’s CBC Gousenbourger’s BCC Samir’s method Jupp’s method Ours.

Max_Error 1.225×10−1 8.32×10−2 1.194×10−1 2.19×10−2 1.08×10−2

Mean_Error 6.92×10−2 3.27×10−2 5.37×10−2 9.8×10−3 6.2×10−3

(a) Ground Truth (b) Uniform Knot Placement (c) Ours with Euclidean Difference (d) Ours with Geodesic Difference

(e) Gousenbourger’s CBC (f) Gousenbourger’s BCC (g) Samir’s method (h) Jupp’s method

Figure 11: Fitting result by different fitting methods on Shock line. In the case of the Shock line example, the distribution of data points is
no longer uniform, giving rise to an imbalanced scenario. Other methods exhibit significant fitting errors in regions with fewer data points,
whereas our method successfully preserves the curve’s characteristics even in such data-sparse regions.

in the PIA method to ensure the fairness of the fitted curve. With our
framework, it is possible to achieve both accuracy and fairness in
spherical B-spline curve fitting. Experimental results demonstrate
that our method has good performance and generality.

Currently, the method presented in this paper can only be applied
to sphere manifolds and relies on the orderedness of the input data
points. In the future, we will focus on spline curve fitting problems
and unordered point fitting problems on general manifolds, as well
as explore and expand more related applications.
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(a) Input points with the low-resolution data.

(b) Fitting result with the low-resolution data..

(c) Input points with the high-resolution data.

(d) Fitting result with the high-resolution data.

Figure 13: US-Mexico border line fitting.

Grassmann Manifolds. On the Geometry of Rolling and Interpolation
Curves on Sn, SOn, and Grassmann Manifolds, 2007. 3

[TDH15] TJAHJOWIDODO T., DUNG V., HAN M.: A fast non-uniform
knots placement method for b-spline fitting. In 2015 IEEE Interna-
tional Conference on Advanced Intelligent Mechatronics (AIM) (2015),
pp. 1490–1495. 4

[TXFH18] TAN J., XING Y., FAN W., HONG P.: Smooth orientation in-
terpolation using parametric quintic-polynomial-based quaternion spline
curve. North-Holland (2018). 3

[Uk07] UK A. K. A. K. A.: Shape-space smoothing splines for planar
landmark data. Biometrika 94, 3 (2007), 513–528. 3

[XQ01] XIE H., QIN H.: Automatic knot determination of nurbs for
interactive geometric design. In Proceedings International Conference
on Shape Modeling and Applications (2001), pp. 267–276. 4

[YNPT20] YEH R., NASHED Y. S., PETERKA T., TRICOCHE X.: Fast
automatic knot placement method for accurate b-spline curve fitting.
Computer-Aided Design 128 (2020), 102905. 4

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Yuming Zhao el al. / GLS-PIA: n-Dimensional Spherical B-Spline Curve Fitting based on Geodesic Least Square with Adaptive Knot Placement 15 of 14

Figure 14: Kendall shape space example. The black characters correspond to the data points to be fitted on the Kendall sphere, and the red
characters correspond to the newly generated points on the fitting curve.

Figure 15: Bunny roation. We can view each rotation state as a point on S3 sphere. The red dashed box corresponds to the fitting data points,
while the rest correspond to the newly generated points on the fitting curve.
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