
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

Wavelet Potentials: An Efficient Potential Recovery Technique for

Pointwise Incompressible Fluids

Luan Lyu∗1,2 , Xiaohua Ren∗3 , Wei Cao4 , Jian Zhu5 , Enhua Wu†2,6 Zhi-Xin Yang†1,2

1SKL-IOTSC & ICI-CAR, Univ. of Macau, 2FST, Univ. of Macau, 3Tencent, 4College of CST, China Univ. of Petroleum,
5Guangdong Univ. of Technology, 6State Key Lab. of CS, ISCAS & Univ. of CAS

Figure 1: A multiresolution smoke simulation of size 28 × 27 × 27 using our wavelet potential recovery method: The top-left image shows

the unfiltered smoke, while the bottom-left, bottom-center, and bottom-right images show the results of filtering the top 2, 3, and 4 levels of

wavelet coeffs., respectively. The top-right image shows the convergence of different methods. Our method achieves comparable performance

to the direct method when targeting an accuracy threshold of 5×10−5, while also providing a 2x speedup over the sweeping methods.

Abstract

We introduce an efficient technique for recovering the vector potential in wavelet space to simulate pointwise incompressible

fluids. This technique ensures that fluid velocities remain divergence-free at any point within the fluid domain and preserves

local volume during the simulation. Divergence-free wavelets are utilized to calculate the wavelet coefficients of the vector

potential, resulting in a smooth vector potential with enhanced accuracy, even when the input velocities exhibit some degree

of divergence. This enhanced accuracy eliminates the need for additional computational time to achieve a specific accuracy

threshold, as fewer iterations are required for the pressure Poisson solver. Additionally, in 3D, since the wavelet transform is

taken in-place, only the memory for storing the vector potential is required. These two features make the method remarkably

efficient for recovering vector potential for fluid simulation. Furthermore, the method can handle various boundary conditions

during the wavelet transform, making it adaptable for simulating fluids with Neumann and Dirichlet boundary conditions.

Our approach is highly parallelizable and features a time complexity of O(n), allowing for seamless deployment on GPUs

and yielding remarkable computational efficiency. Experiments demonstrate that, taking into account the time consumed by the

pressure Poisson solver, the method achieves an approximate 2x speedup on GPUs compared to state-of-the-art vector potential

recovery techniques while maintaining a precision level of 10−6 when single float precision is employed. The source code of

’Wavelet Potentials’ can be found in https://github.com/yours321dog/WaveletPotentials.

CCS Concepts

• Computing methodologies → Physical simulation;

∗ Co-first authors; equal contribution.
† Corresponding authors (ehwu@um.edu.mo & zxyang@um.edu.mo)

1. Introduction

Incompressible fluid simulation has been widely studied in com-
puter graphics. Recent years have brought about a growing inter-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.15023

CGF 43-2 | e15023

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0008-9370-7334
https://orcid.org/0000-0002-3196-9880
https://orcid.org/0000-0002-9921-2227
https://orcid.org/0000-0002-2551-2024
https://github.com/yours321dog/WaveletPotentials
https://doi.org/10.1111/cgf.15023

2 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

est in hybrid methodologies that blend Eulerian and Lagrangian
simulation techniques. Such approaches, exemplified by works
like [Sta99], [ZB05], and [JSS*15], take the advantages of both
paradigms. This fusion enables the incorporation of Eulerian tech-
niques, which excel at interior force computation, alongside La-
grangian methods that proficiently advect fluid properties. The syn-
ergy of these techniques results in fluid simulations that are not only
robust and efficient but also exude vivid realism.

Nonetheless, the methods mentioned above do not assure in-
compressibility at arbitrary points, as their achievement of the
divergence-free condition hinges on summing the differences in
velocities across each direction within a grid cell. When comput-
ing velocities at a specific point, these approaches often resort to
direct velocity interpolation, such as the basic polynomial interpo-
lation method. These direct interpolation techniques yield veloci-
ties that do not adhere to the divergence-free constraint at specific
points. To address the problem, some researchers, such as [BHN07]
and [CPAB22], have adopted an approach where velocities are in-
terpolated from the curl of a secondary vector field, which is a
scalar stream function field in 2D and a vector potential field in
3D. Due to the inherent property that the divergence of the curl op-
erator is always zero, this type of interpolation intrinsically ensures
a divergence-free constraint at arbitrary points within the fluid do-
main.

To perform the curl operator of the vector potential, the gen-
eration of the vector potential becomes essential. Leveraging the
principles of the Helmholtz decomposition, some researchers, such
as [ATW15] and [BDG*17], solve a time-consuming vector Pois-
son equation to derive the vector potential. In 2D, the vector po-
tential essentially becomes a scalar stream function. Thus, solving
the Poisson equation to attain the stream function is relatively effi-
cient, comparable to solving the pressure Poisson equation within
the projection step of fluid simulation. However, the vector poten-
tial encompasses three components in 3D. Solving the vector Pois-
son equation in this case turns out to be extremely computationally
intensive. To address this problem, Chang et al. [CPAB22] pro-
posed a parallel sweeping method aimed at recovering the vector
potential from divergence-free velocities, which are derived from
a scalar Poisson solver. Compared to the resource-intensive vec-
tor Poisson solver, the parallel sweeping technique offers notable
computational efficiency.

Although the parallel sweeping method is known for its com-
putational efficiency, it still faces issues with non-smoothing and
reduced accuracy. To address the first issue, Chang et al. [CPAB22]
implemented an additional scalar Poisson solver for the non-
smooth vector potential, which consequently adds extra com-
putational overhead. As for the second challenge, Chang et
al. [CPAB22] demonstrate the validity of the parallel sweeping
method, assuming highly divergence-free input velocities. How-
ever, real-world simulations often require stopping the projection
step once a specific accuracy level is reached to optimize simu-
lation time. As a result, the velocities maintain a certain degree
of divergence. In such cases, the parallel sweeping method under-
goes a considerable decline in accuracy. Our experiments reveal
that the accuracy decreases to 10−3 for a velocity with an accuracy
of 10−5.

To recover the smooth vector potential efficiently with high accu-
racy, we propose a wavelet-based method based on Lematrié Rieus-
set’s proposition [Lem92]. Our method involves the transformation
of divergence-free velocities using divergence-free wavelets, subse-
quently employing an approximate projection technique to derive
the vector potential’s wavelet coefficients. Finally, inverse wavelet
transforms are applied to recover the vector potential. Wavelet-
based techniques have been extensively explored in fluid simu-
lation for many years, as evident in works like [DP06], [HP15],
and more recently, [Les19]. Many of these wavelet-based meth-
ods like [HP15] involve solving a system of linear equations within
the wavelet space to determine the coefficients of divergence-
free wavelets. While these methods yield vector potentials with
high accuracy, they conflict with our core requirement to elimi-
nate resource-intensive Poisson solvers. Other approaches, exem-
plified by [DP06], employ an approximate projection to calculate
wavelet coefficients, with exact results achieved through iterations.
However, the approximate projection proposed by Deriaz and Per-
rier [DP06] fails to achieve the exact vector potential even when
the input velocities are divergence-free in 3D cases. To address this
limitation, we propose a novel projection method that can recover
the exact vector potential for the divergence-free velocities.

In summary, we present a wavelet-based vector potential recov-
ery method that can robustly and efficiently recover the smooth vec-
tor potential from divergence-free velocities. Notably, our approach
excels even in scenarios where input velocities retain residual di-
vergence, resulting in vector potentials with significantly reduced
errors. Due to the improved accuracy, our method does not require
any additional time for fluid simulation to achieve the same level
of accuracy, as we can use fewer iterations for the pressure Poisson
solver. The key contributions are summarized as follows:

• We establish a comprehensive wavelet framework for recovering
a smooth vector potential from divergence-free velocities, lever-
aging the power of divergence-free wavelets;

• We introduce a novel and robust side-to-side approximate pro-
jection method, facilitating the derivation of vector potential co-
efficients within the wavelet space;

• Our method is efficient for recovering the vector potential for
fluid simulation when targeting a specific accuracy threshold.
Moreover, the multiresolution representation of the restored po-
tential allows us to simulate smoke with varying levels of detail;

• Both the wavelet transformation and the projection method can
be executed in parallel and optimized for GPU computation,
thereby ensuring high-performance outcomes.

2. Related Work

In this section, the related works are described in three aspects:
pointwise incompressible fluid simulation, vector potential recov-
ery and wavelet theory.

2.1. Pointwise Incompressible Fields

Several notable research efforts have emerged over the last few
decades to generate pointwise incompressible vector fields. De-
Wolf [DeW05] pioneered a method for generating divergence-free

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids 3 of 18

vector fields, accomplishing this by the cross product of the gradi-
ent of two scalar noise functions. Bridson et al.[BHN07] introduced
a straightforward technique for creating turbulent divergence-free
velocity fields through the curl of the vector potential, while
also implementing a ramping method to address behaviors around
internal solids. Drawing inspiration from their work, Kim et
al.[KTJG08] leveraged divergence-free vector fields constructed by
curling the enhanced wavelet noise function for detailed fluid an-
imations. Similarly, Schechter and Bridson [SB08] incorporated a
rudimentary turbulence model to amplify sub-grid details within
smoke animations. The pivotal component of this turbulence model
was the curl of the vector potential derived from designated noise
functions.

More recently, Chang et al.[CPAB22] devised a pointwise in-
compressible interpolation strategy, which generates fluid parti-
cle velocities by leveraging the curl of the vector potential. They
also introduced a constraint correction technique to refine fluid
behaviors around interior obstacles in three dimensions. Building
upon the concept of the LogSumExp distance function, Ding and
Batty[DB23] pioneered a differentiable curl-noise method which
further corrects the vector potential near obstacles, ultimately
achieving strictly incompressible fluid flows in two dimensions.

2.2. Vector Potential Recovery

In contrast to the conventional velocity formulation of the Navier-
Stokes equation, Elcott et al.[ETK*07] pursued a vorticity-based
formulation to facilitate fluid simulation. They recovered the vec-
tor potential from the vorticity field by solving a computationally
expensive vector Poisson equation. Ando et al. [ATW15] proposed
a stream function approach for complicated liquid-solid and liquid-
air coupling scenarios. Sato et al.[SDY*15] employed the vector
potential to modulate the flow field, enabling the manipulation of
the overall fluid behavior. In subsequent work, Sato et al.[SDK21]
harnessed the vector potential to guide fluid simulation, thereby en-
hancing fluid effects. It’s worth noting that all of these approaches
necessitated the solution of a resource-intensive vector Poisson
equation to attain the desired vector potential.

To efficiently obtain the vector potential, Chang et al.[CPAB22]
introduced a parallel sweeping method for its recovery. Their ap-
proach draws inspiration from the work of Biswas et al.[BSW*16],
who devised a technique for recovering the stream function from
divergence-free velocities to construct streamlines in two dimen-
sions.

2.3. Divergence-Free Wavelet

Lematrié-Rieusset’s proposition [Lem92] has led to the proposal
of several divergence-free wavelet construction methods for var-
ious complex situations in recent decades. These methods are
based on the curl of the vector potential and imply a relation-
ship between the vector potential and the divergence-free field
in the wavelet space. Urban [Urb01] described how to construct
the curl-free and divergence-free vector wavelets. Although curl-
free and divergence-free vector wavelets are two different kinds of
wavelets, they share a very similar construction process. Steven-
son [Ste11; Ste16] constructed the divergence-free wavelets on

the n-dimensional hypercube, addressing general homogeneous
Dirichlet boundary conditions. Harouna and Perrier [HP13] pro-
posed an efficient construction of divergence-free wavelets on the
square with the help of fast divergence-free wavelet transforms.
This approach was recently extended for homogeneous Dirichlet
wavelets in [HP22].

Urban [Urb96] employed divergence-free wavelets to address
the Stokes problem. When the input velocities are not strictly
divergence-free, the relationship between the coefficients of veloc-
ities and vector potentials in wavelet space becomes intricate. A
system of linear equations is required, constructed through the in-
version of divergence-free and curl-free wavelet Gram matrices, to
obtain the coefficients of these wavelets. Zhou et al.[ZH05] ex-
tended Urban’s approach for the numerical solution of the 2-D
stationary Navier–Stokes equations. Harouna and Perrier[HP12]
harnessed optimal preconditioning techniques to enhance the ef-
ficiency of solving the systems. Subsequently, they [HP21; HP15]
further extended their methods to simulate incompressible viscous
flows encompassing more intricate boundary conditions.

Instead of tackling a system of linear equations, Deriaz and
Perrier [DP06] carried out the Helmholtz-Hodge decomposition
by repeatedly approximating the coefficients of curl-free and
divergence-free wavelets using simple approximate projection
methods. In a subsequent endeavor [DP09], they extended this
method to arbitrary dimensions, presenting a more precise ap-
proximate projection technique to determine the coefficients of
divergence-free wavelets in higher dimensions.

In computer graphics, Ren et al. [RLH*17] introduced an ap-
proximate curl-free wavelet projection inspired by the work of De-
riaz and Perrier [DP06]. This approach achieved state-of-the-art re-
sults in gradient-domain compositing compared to multigrid meth-
ods on both CPUs and GPUs. Later, Ren et al. [RLH*18] extended
this method to three dimensions and constructed a new family of
wavelets utilizing Lematrié Rieusset’s proposition [Lem92] for 3D
surface reconstruction. Their method addressed issues with previ-
ous wavelet techniques that were not resilient to missing or nonuni-
formly sampled data, while also inheriting the feature of a friendly
streaming implementation to process very large datasets.

3. Background

3.1. Pointwise Incompressible Fluids

The pointwise incompressible fluid simulation is based on the in-
compressible Euler equations:

∂u

∂t
=−(u ·∇)u−∇p+ f, (1)

∇·u = 0, (2)

where u and p are the velocity and pressure of the fluid, respec-
tively, and f accounts for external forces. We have arbitrarily set
the constant density of the fluid to one.

Based on the governing equations, Alg. 1 presents the pointwise
incompressible fluid simulation algorithm. The key distinction be-
tween pointwise incompressible fluid simulation and traditional hy-
brid fluid simulation, such as [Sta99; ZB05; JSS*15], lies in the

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

Algorithm 1: Pointwise incompressible fluid simulation

Input: f // external forces

Input: nsim // step number of simulation

1 for i = 0 : (nsim −1) do

2 Add external forces f ⇒ ūi

3 Project ūi via the pressure Poisson solver ⇒ ui

4 Recover the vector potential from ui ⇒ q

5 Calculate the vector potential of particles at position xp

using linear or cubic interpolation of q ⇒ q(xp)
6 Advect particles via ∇×q(xp)

7 Advect the velocity on the grid ui ⇒ ui+1

velocity interpolation method from the grid to particles. The tradi-
tional method for determining particle velocity involves linear or
cubic interpolation of the velocity u. In contrast, pointwise incom-
pressible interpolation consists of three steps (lines 4 ∼ 6 in Alg.
1): first, recovering the vector potential from u; second, performing
linear or cubic interpolation of the potential to obtain the potential
of particles; third, deriving the velocity of particles by taking the
curl of the particle potential.

Among the three steps of the pointwise incompressible inter-
polation, the first step - recovering the vector potential from the
divergence-free velocity - is considered the most computationally
expensive. A common solution is to solve a vector Poisson equa-
tion, as demonstrated in [ATW15; BDG*17], but this approach
is costly. Chang et al.[CPAB22] propose a more efficient method
that initially employs the parallel sweeping method to recover an
approximate vector potential and then solves an additional scalar
Poisson equation to smooth the potential. Although the fast discrete
sine transform (DST) is utilized for the additional scalar Poisson
equation, the DST has a time complexity of O(nlogn). Another lim-
itation is that the parallel sweeping method relies on the assump-
tion that the input velocity is highly divergence-free. Otherwise, the
accuracy would significantly decrease (refer to Sec. 5.1 for conver-
gence analysis).

Drawing inspiration from the curl-free wavelet projection meth-
ods introduced by Ren et al. [RLH*17; RLH*18] for applications
in gradient-domain compositing and 3D surface reconstruction, we
propose a robust and efficient divergence-free wavelet projection
method for vector potential recovery. Our method has a time com-
plexity of O(n) and can improve the accuracy when the input ve-
locity exhibits a certain degree of divergence. Before delving into
the method, let’s introduce some concepts in wavelet theory.

3.2. Wavelet Theory

In this section, a brief overview of wavelet theory is provided.
Readers seeking a more in-depth understanding are encouraged to
consult the comprehensive literature provided in [Mal08].

Multiresolution Analysis (MRA). A sequence of closed sub-
spaces {V j = span{φ(2 jt−k) : k ∈ Z} : j ∈ Z} is called a multires-
olution analysis of L2(R) if they satisfy the following requirement:

{0} ⊂ · · · ⊂V j−1 ⊂V j ⊂V j+1 ⊂ ·· · ⊂ L
2(R),

Figure 2: Discretization in a) 1D: the potential q(t) is sampled on

segment vertices (red squares) and the velocity u(t) is sampled on

segment centers (blue rectangles); b) 2D: the potential is sampled

on the cell vertices (red squares) and the velocity is sampled on cell

edges (rectangles). Green and blue rectangles represent the x and y

components of the velocity, respectively; c) 3D: the vector potential

is sampled on the cell edges (boxes) and the velocity is sampled on

the cell faces (squares). Red, green and blue represent the x, y and

z components, respectively.

where L2(R) is the vector space of all functions f (t) : R → R of
finite energy and φ(t) : R→ R is referred to as a scaling function.

Wavelet Space. Wavelet spaces W j = span{ψ(2 jt −k) : k ∈ Z} are
constructed to be the complements such that V j+1 =V j ⊕W j . Here,
ψ(t) : R→ R is referred to as a wavelet.

We now present Lemarié-Rieusset’s proposition [Lem92], which
connects two MRAs through differentiation and serves as the foun-
dation for our method. For more details, please refer to [DP09;
RLH*17; RLH*18].

Lemarié-Rieusset’s Proposition. Let {V 1
j } be a MRA of L2(R)

with associated scaling function and wavelet (φ1(t),ψ1(t)). Then,
there exists another MRA {V 0

j } of L2(R) with associated scaling

function and wavelet (φ0(t),ψ0(t)), satisfying

(φ1)
′

(t) = φ0(t +1)−φ0(t), (3)

(ψ1)
′

(t) = 4 ·ψ0(t), (4)

4. Our Approach

This section introduces our wavelet approach for recovering the
vector potential from divergence-free velocities. To make it easier
to understand, we begin with one dimension before extending to
two dimensions and three dimensions.

4.1. 1D Wavelet Potential Recovery

Problem Setting. A one-dimensional potential recovery problem
can be viewed as a one-dimensional integration problem. Consider
the following one-dimensional integration problem defined on the

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids 5 of 18

unit interval [0,1] with periodic boundary conditions:

q
′(t) = u(t), t ∈ [0,1], (5)

q(0) = q(1).

Discretization. To solve the problem numerically, we discretize
Eq. 5 using the staggered grid scheme. As illustrated in Fig. 2a), we
evenly partition the domain [0,1] into 2n parts with the size of step
h = 1/2n, and then sample qn

k = q(kh) of q(t) and un
k = u(kh+h/2)

of f (t), respectively, for each k ∈ {0,1, · · · ,2n − 1}. Here, n is a
positive integer number. The superscript n in qn

k and un
k denotes the

values are sampled at level n.

The goal of a numerical integration method is to solve qn
k when

provided with the values of un
k . In one dimension, the parallel

sweeping method [CPAB22] reduces to the Euler method. There-
fore, in order to establish a link between our wavelet method and
the parallel sweeping method [CPAB22], we revisit the derivation
of the Euler method using Eq. 3 from Lematrié-Rieusset’s Proposi-
tion.

Euler Method. Let φ1(t) and φ0(t) be two functions that satisfy
Eq.3. We can approximate the function q(t) and u(t) as follows:

q
n(t) = ∑

k

q
n
kφ1(2n

t − k), (6)

u
n(t) = ∑

k

u
n
kφ0(2n

t − k). (7)

Taking the derivative of qn(t) and using Eqs. 3 and 5, we obtain

∑
k

2n · (qn
k+1 −q

n
k)φ

0(2n
t − k) = ∑

k

u
n
kφ0(2n

t − k)

⇒ q
n
k+1 = q

n
k +hu

n
k . (8)

Eq. 8 is nothing more than the Euler method, which also happens
to be the parallel sweeping method [CPAB22] for one dimension.

Wavelet Method. Unlike the Euler method, which performs in-
tegration in the spatial domain, the proposed method operates in
the wavelet domain. More specifically, the method calculates the
wavelet coefficients of qn(t) from those of un(t). To simplify the
explanation, we will illustrate the relationship after a one-level
wavelet transform.

First, we apply a one-level wavelet transform to qn(t) and un(t)
individually, using appropriate wavelets ψ1(t) and ψ0(t) that sat-
isfy Eq. 4 and resulting in

q
n(t) = q

n−1(t)+∑
k

q̃
n−1
k ψ1(2n−1

t − k), (9)

u
n(t) = u

n−1(t)+∑
k

ũ
n−1
k ψ0(2n−1

t − k), (10)

q
n−1(t) = ∑

k

q
n−1
k φ1(2n−1

t − k),

u
n−1(t) = ∑

k

u
n−1
k φ0(2n−1

t − k)

where k ∈ {0,1, · · · ,2n−1 − 1}. qn−1
k

and un−1
k

are referred to the

approximate coefficients at level n− 1. q̃n−1
k

and ũn−1
k

are known
as the wavelet (or detail) coefficients at level n−1.

Second, we take the derivative of qn(t) and use Eqs. 3, 4 and 5

Figure 3: 1D wavelet potential recovery on a grid of size 22: First,

a full-level wavelet transform is applied to the velocity u2 to obtain

its wavelet coefficients. Second, the wavelet coefficients q̃ j of q2 are

extracted using Eq.15. Finally, q2 is recovered by applying a full-

level inverse wavelet transform to q̃ j .

to obtain the following results:

∑
k

2n−1 · (qn−1
k+1 −q

n−1
k)φ0(2n−1

t − k) = ∑
k

u
n−1
k φ0(2n−1

t − k)

⇒ q
n−1
k+1 = q

n−1
k +2hu

n−1
k , (11)

∑
k

4 ·2n−1 · ỹn−1
k ψ0(2n−1

t − k) = ∑
k

f̃
n−1
k ψ0(2n−1

t − k)

⇒ q̃
n−1
k =

1
4
·2hũ

n−1
k . (12)

Eq. 11 presents the outcome of the Euler method, but this time on
the coarser grid of level n−1. Eq. 12 is the crucial finding, reveal-
ing that the wavelet coefficients of the unknown qn(t) at level n−1
are equal to those of un(t), with the only difference being a constant
factor.

We can now perform a full-level wavelet transform to qn(t) and
un(t), yielding

q
n(t) = q

0
0φ1

c(x)+∑
j
∑
k

q̃
j
k
ψ1(2 j

t − k), (13)

u
n(t) = u

0
0φ0

c(x)+∑
j
∑
k

ũ
j
k
ψ0(2 j

t − k), (14)

where k ∈ {0,1, · · · ,2 j −1} for each j ∈ {n−1, · · · ,0}. Taking the
derivative of qn(t), we can obtain

q̃
j
k
=

1
4
·2− j · ũ

j
k
, (15)

As Eq. 5 has an unconstrained mean value for the periodic bound-
ary conditions, φ1

c is a constant function and φ0
c = (φ1

c)
′ = 0. We

set the coarsest undetermined approximate coefficient q0
0 to zero.

Finally, qn is recovered by applying a full-level inverse wavelet
transform to the wavelet coefficients q̃ j. Fig. 3 illustrates the en-
tire process of the 1D wavelet potential recovery on a grid of size
22.

Although the wavelet method may appear more complicated than
the Euler method, it has the advantage of being able to perform in-
tegration for higher dimensions in a robust manner. In the following
sections, we extend it to two and three dimensions, demonstrating
its effectiveness for recovering vector potentials in these higher-
dimensional spaces.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

4.2. 2D Wavelet Potential Recovery

Problem Setting. The 2D vector potential recovery problem aims
to find a vector potential that reduces to a scalar stream func-
tion q(x,y) in 2D and satisfies the perpendicular gradient equa-
tion, given a divergence-free vector field u(x,y) = [u(x,y),v(x,y)]T .
Specifically, the problem on the unit square [0,1]2 with periodic
boundary conditions is defined as follows:

∇⊥
q(x,y) = u(x,y), [x,y]T ∈ [0,1]2, (16)

q(0,y) = q(1,y),

q(x,0) = q(x,1).

Here, the perpendicular operator ∇⊥ = [∂
∂y
,− ∂

∂x
]T is a 90◦ rotation

of the gradient operator.

Parallel Sweeping Method [CPAB22]. Eq. 16 can be expressed as

∂q

∂y
(x,y) = u(x,y), −

∂q

∂x
(x,y) = v(x,y). (17)

The fundamental concept behind the parallel sweeping method in-
volves using the one-dimensional Euler method as a building block
and separately evaluating the two integration problems in Eq. 17.
There are two approaches to implement the method.

The first approach involves calculating the one-dimensional in-
tegration ∂q

∂y
(0,y) = u(0,y) to obtain q(0,y). Then, for each fixed

y, the one-dimensional integration ∂q
∂x
(x,y) =−v(x,y) is performed

using q(0,y) as the initial value. Both steps utilize the Euler method
described in Sec.4.1, and the second step is executed in parallel.

Alternatively, the method can begin by computing ∂q
∂x
(x,0) =

−v(x,0) to obtain q(x,0), and then integrate ∂q
∂y
(x,y) = u(x,y) for

each fixed x using q(x,0) as the initial value.

The parallel sweeping method is highly efficient, as it requires
only n2 floating-point operations on a grid of size n2. However, if
the input velocity u is not highly divergence-free, the accuracy of
the method is significantly compromised. Moreover, in such cases,
the two approaches of the method are not equivalent, resulting in
ambiguity.

Next, we will introduce a wavelet method that uniquely com-
putes q(x,y) using the wavelet coefficients of both u(x,y) and
v(x,y).

Discretization. Similar to the one-dimensional case, we employ the
staggered grid scheme to discretize Eq.16. As shown in Fig. 2b),
the computational domain [0,1]2 is divided into identical cells
with a cell size of h = 1/2n. We then sample qn

k = q(k1h,k2h),
un

k = u(k1h,k2h+ h/2) and vn
k = v(k1h+ h/2,k2h) for each k =

[k1,k2]
T ∈ {0,1, · · · ,2n − 1}2. The superscript n in qn

k, un
k and vn

k

denotes the values are sampled at level n = [n,n].

Wavelet Method. We approximate qn(x,y) and un(x,y) as follows:

q
n(x,y) = ∑

k

q
n
kφ1(2n

x− k1)φ
1(2n

y− k2),

u
n(x,y) = ∑

k

u
n
kφ1(2n

x− k1)φ
0(2n

y− k2),

v
n(x,y) = ∑

k

v
n
kφ0(2n

x− k1)φ
1(2n

y− k2).

We perform a full-level wavelet transform to qn(x,y), un(x,y) and
vn(x,y) individually, resulting in

q
n(x,y) = q

0
0φ1

c(x)φ
1
c(y)

+∑
j1

q̃
j1
k1

ψ1(2 j1 x− k1)φ
1
c(y)

+∑
j2

q̃
j2
k2

φ1
c(x)ψ

1(2 j2 y− k2)

+∑
j

∑
k

q̃
j
kψ1(2 j1 x− k1)ψ

1(2 j2 y− k2), (18)

u
n(x,y) = u

0
0φ1

c(x)φ
0
c(y)

+∑
k1

ũ
j1
k1

ψ1(2 j1 x− k1)φ
0
c(y)

+∑
k2

ũ
j2
k2

φ1
c(x)ψ

0(2 j2 y− k2)

+∑
j

∑
k

ũ
j
kψ1(2 j1 x− k1)ψ

0(2 j2 y− k2), (19)

v
n(x,y) = v

0
0φ0

c(x)φ
1
c(y)

+∑
k1

ṽ
j1
k1

ψ0(2 j1 x− k1)φ
1
c(y)

+∑
k2

ṽ
j2
k2

φ0
c(x)ψ

1(2 j2 y− k2)

+∑
j

∑
k

ṽ
j
kψ0(2 j1 x− k1)ψ

1(2 j2 y− k2), (20)

where k = [k1,k2]
T ∈ {0, · · · ,2 j1 − 1}× {0, · · · ,2 j2 − 1} for j =

[j1, j2] ∈ {n− 1, · · · ,0}2. Our goal is to compute the wavelet co-
efficients q̃ j1 , q̃ j2 and q̃j using the wavelet coefficients of un and
vn. By applying the perpendicular gradient operator to qn(x,y) and
considering that φ0

c(x) = (φ1
c(x))

′ = 0 and φ0
c(y) = (φ1

c(y))
′ = 0 for

the periodic boundary conditions, we obtain the following results:

q̃
j2
k2
=+

1
4
·2− j2 · ũ

j2
k2
, q̃

j1
k1
=−

1
4
·2− j1 · ṽ

j1
k1

(21)

q̃
j
k

[

+4 ·2 j2

−4 ·2 j1

]

=

[

u
j
k

v
j
k

]

(22)

Remark 1: In Eq. 22, if the input velocity un is divergence-free,
then we can compute q̃

j
k =+ 1

4 ·u
j
k =− 1

4 ·v
j
k. However, if the input

velocity is not divergence-free, it is unclear how to determine q̃
j
k.

To address this, we use the least-squares method to compute it as
follows:

q̃
j
k =

2 j2 ·u
j
k −2 j1 · v

j
k

4 j1 +4 j2
. (23)

Remark 2: Eq. 23 can be interpreted as the orthogonal pro-
jection of the 2D vector wavelet [ũ

j
kψ1(2 j1 x − k1)ψ

0(2 j2 y −

k2), ṽ
j
kψ0(2 j1 x− k1)ψ

1(2 j2 y− k2)]
T in Eqs. 19 and 20 onto the 2D

divergence-free wavelet defined as follows:

∇⊥ψ1(2 j1 x− k1)ψ
1(2 j2 y− k2)

=

[

+4 ·2 j2 ψ1(2 j1 x− k1)ψ
0(2 j2 y− k2)

−4 ·2 j1 ψ0(2 j1 x− k1)ψ
1(2 j2 y− k2)

]

.

Finally, qn can be recovered by applying a full-level inverse

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids 7 of 18

Figure 4: 2D wavelet potential recovery on a grid of size 22 × 22:

First, a full-level wavelet transform is applied to the velocity u[2,2]

to obtain its wavelet coefficients. Second, the wavelet coefficients

q̃j of q[2,2] are extracted using Eqs. 21 and 23. Finally, q[2,2] is

recovered by applying a full-level inverse wavelet transform to q̃j.

wavelet transform to q̃j. Fig. 4 illustrates the entire process of our
2D wavelet potential recovery on a grid of size 22 ×22.

4.3. 3D Wavelet Potential Recovery

Problem Setting. The 3D vector potential recovery problem on the
unit cube [0,1]3 with periodic boundary conditions is defined simi-
larly to the 2D case. It can be expressed as follows:

∇×q(x) = u(x), x = [x,y,z]T ∈ [0,1]3, (24)

q(0,y,z) = q(1,y,z),

q(x,0,z) = q(x,1,z),

q(x,y,0) = q(x,y,1).

Here, the vector potential function q = [qx(x),qy(x),qz(x)]
T needs

to be recovered and u(x) = [u(x),v(x),w(x)]T represents a diver-
gence free vector field.

Discretization. Similar to the two-dimension case, we divide the
unit cube [0,1]3 into identical cells with a cell size of h = 1/2n, as
illustrated Fig. 2c). We then sample q(x) on cell edges and u(x) on
cell faces as follows:

q
n
x,k = qx(k1h+h/2,k2h,k3h),

q
n
y,k = qy(k1h,k2h+h/2,k3h),

q
n
z,k = qz(k1h,k2h,k3h+h/2),

u
n
k = u(k1h,k2h+h/2,k3h+h/2),

v
n
k = v(k1h+h/2,k2h,k3h+h/2),

w
n
k = w(k1h+h/2,k2h+h/2,k3h),

for each k = [k1,k2,k3]
T ∈ {0,1, · · · ,2n − 1}3. The superscript n

in qn
x,k, qn

y,k, qn
z,k, un

k, vn
k and wn

k denotes the values are sampled at
level n = [n,n,n].

Wavelet Method. With the sampled values, we approximate qn(x),
un(x) as follows:

q
n
x (x) = ∑

k

q
n
x,kφ0(2n

x− k1)φ
1(2n

y− k2)φ
1(2n

z− k3),

q
n
y (x) = ∑

k

q
n
y,kφ1(2n

x− k1)φ
0(2n

y− k2)φ
1(2n

z− k3),

q
n
z (x) = ∑

k

q
n
z,kφ1(2n

x− k1)φ
1(2n

y− k2)φ
0(2n

z− k3),

u
n(x) = ∑

k

u
n
kφ1(2n

x− k1)φ
0(2n

y− k2)φ
0(2n

z− k3),

v
n(x) = ∑

k

v
n
kφ0(2n

x− k1)φ
1(2n

y− k2)φ
0(2n

z− k3),

w
n(x) = ∑

k

w
n
kφ0(2n

x− k1)φ
0(2n

y− k2)φ
1(2n

z− k3),

We can utilize the 2D wavelet potential recovery method described
in Sec. 4.2 as a fundamental component to derive the wavelet co-
efficients of qn(x) from those of un(x). Since the curl operator is
linear, Eq. 24 can be reformulated as follows:

∇×q(x) =∇×

qx(x)
0
0

+∇×

0
qy(x)

0

+∇×

0
0

qz(x).

We now have three coupled 2D wavelet potential recovery prob-
lems. Considering the wavelet transform is also linear and utilizing
Eqs. 21 and 22, we can compute the wavelet coefficients of qn(x)
from those of un(x) as follows:

{

q̃
j3
x,k3

=+
1
4
·2− j3 · ṽ

j3
k3
, q̃

j2
x,k2

=−
1
4
·2− j2 · w̃

j2
k2

} j1

k1

, (25)

{

q̃
j1
y,k1

=+
1
4
·2− j1 · w̃

j1
k1
, q̃

j3
y,k3

=−
1
4
·2− j3 · ũ

j3
k3

} j2

k2

, (26)

{

q̃
j2
z,k2

=+
1
4
·2− j2 · ũ

j2
k2
, q̃

j1
z,k1

=−
1
4
·2− j1 · ṽ

j1
k1

} j3

k3

, (27)

q̃
j
x,k

0
+4 ·2 j3

−4 ·2 j2

+ q̃
j
y,k

−4 ·2 j3

0
+4 ·2 j1

+ q̃
j
z,k

+4 ·2 j2

−4 ·2 j1

0

=

ũ
j
k

ṽ
j
k

w̃
j
k

,

(28)

where k = [k1,k2,k3]
T ∈ {0, · · · ,2 j1 − 1} × {0, · · · ,2 j2 − 1} ×

{0, · · · ,2 j3 −1} for each j= [j1, j2, j3]∈{0, · · · ,n−1}3. The curly

braces
{

Equations
} j1

k1

in Eq. 25 indicate that Equations holds for

each k1 ∈ {0, · · · ,2 j1 − 1} and for each j1 ∈ {0, · · · ,n− 1}. The
same applies to Eq. 26 and Eq. 27.

Remark 1: The linear equation Eq. 28 is under-determined and
has a rank of two, due to the presence of one degree of freedom in
Eq. 24. This can be seen by noting that the gradient of any scalar
field p can be added to q to obtain a new solution qnew = q+∇p

that satisfies Eq. 24. The parallel sweeping method [CPAB22] se-
lects a smooth solution by enforcing ∇ · q = 0, which results in
solving an expensive scalar Poisson equation. Instead, we select a
solution that satisfies the constraint:

2 j1 · q̃
j
x,k +2 j2 · q̃

j
y,k +2 j3 · q̃

j
z,k = 0. (29)

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

Experiments demonstrate that our solution is sufficiently smooth
for vector potential interpolation. Please refer to Sec. 5.4 for visual
results.

Remark 2: Solving Eq. 28 can be interpreted as performing a pro-
jection of the 3D vector wavelet:

u
j
k = ũ

j
k

0
ψ0(2 j1 x− k1)ψ

1(2 j2 y− k2)ψ
0(2 j3 z− k3)

ψ0(2 j1 x− k1)ψ
0(2 j2 y− k2)ψ

1(2 j3 z− k3)

+ ṽ
j
k

ψ0(2 j1 x− k1)ψ
1(2 j2 y− k2)ψ

1(2 j3 z− k3)
0

ψ1(2 j1 x− k1)ψ
1(2 j2 y− k2)ψ

0(2 j3 z− k3)

+ w̃
j
k

ψ1(2 j1 x− k1)ψ
0(2 j2 y− k2)ψ

0(2 j3 z− k3)

ψ0(2 j1 x− k1)ψ
1(2 j2 y− k2)ψ

0(2 j3 z− k3)
0

onto the 3D divergence-free wavelet defined as follows:

∇×

ψ0(2 j1 x− k1)ψ
1(2 j2 y− k2)ψ

1(2 j3 z− k3)

ψ1(2 j1 x− k1)ψ
0(2 j2 y− k2)ψ

1(2 j3 z− k3)

ψ1(2 j1 x− k1)ψ
1(2 j2 y− k2)ψ

0(2 j3 z− k3)

=

0
+4 ·2 j3 ·ψ0(2 j1 x− k1)ψ

1(2 j2 y− k2)ψ
0(2 j3 z− k3)

−4 ·2 j2 ·ψ0(2 j1 x− k1)ψ
0(2 j2 y− k2)ψ

1(2 j3 z− k3)

+

−4 ·2 j3 ·ψ1(2 j1 x− k1)ψ
0(2 j2 y− k2)ψ

0(2 j3 z− k3)
0

+4 ·2 j1 ·ψ0(2 j1 x− k1)ψ
0(2 j2 y− k2)ψ

1(2 j3 z− k3)

+

+4 ·2 j2 ·ψ1(2 j1 x− k1)ψ
0(2 j2 y− k2)ψ

0(2 j3 z− k3)

−4 ·2 j1 ·ψ0(2 j1 x− k1)ψ
1(2 j2 y− k2)ψ

0(2 j3 z− k3)
0

Finally, with the wavelet coefficients q̃j = [q̃
j
x, q̃

j
y, q̃

j
z]

T at hand,
qn can be recovered by performing a full-level inverse wavelet
transform to q̃j.

4.4. Boundary Conditions

Up to this point, we have only considered potential recovery prob-
lems based on periodic boundary conditions. However, in real-
world applications, Neumann and Dirichlet boundary conditions
are frequently employed. When simulating free-slip fluids, the po-
tential recovery problem uses Dirichlet boundary conditions, while
the pressure Poisson equation uses Neumann boundary conditions.
Conversely, when simulating free-surface fluids, the potential re-
covery problem uses Neumann boundary conditions, and the pres-
sure Poisson equation uses Dirichlet boundary conditions. Fig. 5
depicts the boundary condition configurations for these two types
of fluids. In this section, we will expand our wavelet potential re-
covery to include the Neumann and Dirichlet boundary conditions.

The Neumann and Dirichlet boundary conditions for the 1D po-
tential recovery problem 5 are defined as follows, respectively:

q
′(0) = q

′(1) = 0, (30)

q(0) = q(1) = 0. (31)

To extend the 1D wavelet potential recovery described in Sec.4.1

Figure 5: Boundary condition configurations for simulating free-

slip fluids and free-surface fluids are presented. In the top row, the

normal component of velocity for free-slip fluids is zero, resulting

in fluid flow along the tangent of the boundaries. Conversely, for

free-surface fluids, the tangent component of velocity is zero, caus-

ing the fluid to flow along the normal of boundaries. It is crucial to

apply the appropriate boundary conditions accurately when simu-

lating these two types of fluids. The table below lists the boundary

condition configurations for each type of fluid.

to support these two boundary conditions, we need to implement
1D wavelet transforms satisfying the boundary conditions. Here,
we adopt a practical approach. During each one-level wavelet trans-
form, when we require the unknown approximate coefficients out-
side the boundaries, we extrapolate the coefficients using mirror
reflection for Neumann boundary conditions and skew reflection
for Dirichlet boundary conditions. Fig. 6 illustrates our approach
for enforcing the Neumann and Dirichlet boundary conditions.

With the availability of 1D wavelet transforms that satisfy Neu-
mann or Dirichlet boundary conditions, the wavelet potential recov-
ery for problem 5 with Neumann boundary conditions requires only
two modifications. Firstly, the wavelet transform of un needs to be
changed from periodic to Dirichlet. Secondly, the inverse wavelet
transform of ũn needs to be changed from periodic to Neumann.
The changes required for the wavelet potential recovery for prob-
lem 5 with Dirichlet boundary conditions are similar.

Since our 2D wavelet transform are separable for each dimen-
sion, we can perform the 2D wavelet transform by first applying
the 1D wavelet transform to each row of the input signal (row trans-
form) and then to each column of the row-transformed signal (col-
umn transform). The same applies to the 3D wavelet transform.
Therefore, the modifications for the wavelet potential recovery to
support the two boundary conditions in 2D and 3D are similar to
the 1D case.

4.5. Implementation

The one-dimensional wavelet transform serves as the key compo-
nent of our wavelet potential recovery methods in all dimensions
(1D, 2D, and 3D). To implement this transform, we utilize the lift-
ing scheme [SS96], which has lower complexity than the conven-
tional convolution-based methods and can be performed in-place
without requiring additional memory. In this section, we present
algorithms for the wavelet potential recovery methods described

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids 9 of 18

Figure 6: Enforcing Neumann and Dirichlet boundary condi-

tions using reflection and skew-reflection: a) To enforce Neumann

boundary conditions, the unknown approximate coefficients out-

side the boundaries are extrapolated by mirror reflection along the

boundaries during a one-level wavelet transform; b) To enforce

Dirichlet boundary conditions, the unknown approximate coeffi-

cients outside the boundaries are extrapolated by skew reflection

along the boundaries during a one-level wavelet transform.

in Secs. 4.1∼ 4.3, using the one-dimensional lifting wavelet trans-
form (referred to as LWT) and its inverse (referred to as iLWT) as
building blocks.

We first implement the full-level one-dimensional lifting wavelet
transform and its inverse as shown in Algs. 5 and 6, respectively.
Using these transforms as building blocks, we then implement the
full-level 2D lifting wavelet transform and its inverse as shown in
Algs. 7 and 8, respectively. Finally, we implement the full-level 3D
transform and its inverse based on the 1D and 2D transforms, as
shown in Algs. 9 and 10, respectively.

With these transforms, we can implement algorithms for wavelet
potential recovery methods for all dimensions (1D, 2D and 3D).
These algorithms are listed in Algs. 2, 3 and 4 in Appendix A.

Memory Usage. We define N as the memory block size needed for
values equal to the grid’s size. Using a MAC grid for fluid proper-
ties, each velocity component’s memory allocation slightly exceeds
N. However, for simplicity, we approximate this as N. We also use
the same treatments for the vector potentials. To compare the mem-
ory usage of the sweeping method and the proposed method, we
use direct velocity interpolation as a baseline and count the extra
memory blocks needed for pointwise incompressible interpolation.

In 2D, our method needs 2N memory to recover the vector po-
tential. Initially, we transform the input velocities (with two com-
ponents) into wavelet space, storing the coefficients in the 2N al-
located memory. After obtaining the vector potential coefficients
using Eq.22, we overwrite the velocity coefficients with them since
the coefficients of velocities are no longer needed. Subsequently, an
inverse wavelet transform is then performed on these coefficients,
and due to the in-place wavelet transform, it can be done in the

same memory block, making 2N sufficient for our method. In 3D,
the process is similar, requiring 3N memory for vector potential
recovery.

The sweeping method efficiently computes the vector potential
in 2D using Eq. 8, requiring only N memory for vector potential
storage. In 3D, the total memory usage for the sweeping method in-
creases to 5N, including 3N for storing the output vector potentials
and two extra N-sized blocks for DST. One of the extra memory
blocks is used to store the divergence of vector potentials obtained
via Eq. 8. To enhance DST performance, we employ NVIDIA’s Fast
Fourier Transform, which requires another memory block.

5. Experiments

All of our experiments were conducted on a PC equipped with
a 3.6-GHz Intel Core i7-6850K CPU and an NVIDIA GeForce
RTX 3080 GPU. Our proposed method is mainly compared to the
state-of-the-art parallel sweeping method [CPAB22]. The sweeping
method requires an additional Poisson solver after obtaining the
vector potential to guarantee its smoothness. Therefore, we com-
pare both the sweeping methods with and without a smoothness
solver in this article. For the proposed wavelet potential recovery
method, we utilize the symmetry biorthogonal wavelets constructed
by Cohen-Daubechies-Feauveau (cdf) in [CDF92]. In all of our ex-
periments, we employ cdf4.6 and cdf3.7 for ψ1 and ψ0, respec-
tively. All of the experiments use the cut-cell Multigrid [WMSF15]
as the pressure Poisson solver.

5.1. Convergence Comparison of Various Methods

We begin by comparing the convergence of the proposed method
to the parallel sweeping method in both 2D and 3D contexts. The
results of these comparisons in 2D, under free-slip and free-surface
boundary conditions for exterior boundaries, are clearly displayed
in Fig. 7. The convergence of 3D scenes with varying boundary
conditions is illustrated in Figs. 8 and 9.

After obtaining the resulting velocity from the Multigrid solver,
we recover the vector potential using both the parallel sweeping
method and our method. We then use the finite difference method
to evaluate the velocity, denoted as ur, on the computational grids.
Finally, we compare the velocity to the ideal divergence-free ve-
locity ug. The relative error is calculated using the L∞ norm as
follows:

ǫ=
‖ug(xi)−ur(xi))‖∞

‖ug(xi)‖∞
, (32)

where xi represents position i within the grid.

In the following convergence comparison figures, the curve la-
beled "Sweep" represents the results obtained from the parallel
sweeping method. The "Wavelet" label indicates the outcomes de-
rived from the proposed wavelet-based method. Meanwhile, the
curve marked "Origin" displays the comparative results between
the output velocities generated by the Multigrid solver and the ideal
divergence-free velocities. A key difference between the 2D and
3D sweeping methods is the requirement for an additional Poisson
solver to ensure the smoothness of vector potentials in 3D. In this
article, we use the discrete sine transform (DST) as the additional

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

Figure 7: Convergence comparison of different methods on a 5122 grid without internal obstacles (top row) and with a central circular

obstacle (bottom row), using randomly generated divergence-free velocity as the ground truth. Center-left: free-surface boundary conditions;

Center-right: free-slip boundary conditions.

Figure 8: Convergence comparison of different methods on a 1283 grid without internal obstacles (top row) and with a central sphere

(bottom row), using randomly generated divergence-free velocity as the ground truth. Center-left: free-surface boundary conditions; Center-

right: free-slip boundary conditions.

Poisson solver, a technique employed in [CPAB22]. In the three-
dimensional figures, the sweeping method with the DST solver is
denoted as "Sweep", while the version without the DST solver is
referred to as "Sweep w/o DST".

2D Case. The top row of Fig. 7 presents results without interior
obstacles, while the bottom row of Fig. 7 includes a central cir-
cular obstacle within the domain, both using randomly generated
divergence-free velocities as ground truth. It can be observed that
the proposed method requires about 1.5ms less time to achieve the
same level of accuracy compared to the parallel sweeping method.
Taking into account the time consumed by the pressure Poisson
solver, our approach demonstrates an impressive speedup, approx-

imately 1.5x, compared to the parallel sweeping method, while
maintaining a precision threshold of 10−5. When the output ve-
locities have residual divergence after a set number of Multigrid
iterations, the advocated wavelet method proves effective in reduc-
ing this divergence and enhancing the overall accuracy. In contrast,
the parallel sweeping method, instead of alleviating, introduces fur-
ther divergence, resulting in a negative impact on accuracy. Conse-
quently, the parallel sweeping method requires a higher number of
Poisson solver iterations to match the accuracy levels achieved by
our proposed method. From the provided figures, one can observe
that before reaching full convergence, the curves representing both
the proposed method and the Multigrid solver are almost overlap-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids 11 of 18

ping, indicating that the proposed method does not need any addi-

tional time in deriving the vector potential when targeting a specific
accuracy threshold.

3D Case. The 3D experiments yield results analogous to those
observed in 2D. Fig. 8 presents comparisons conducted on 1283

grids under both free-slip and free-surface boundary conditions,
utilizing randomized input velocities. Specifically, the top row of
Fig. 8 shows results without any internal obstacles, while the bot-
tom row of Fig. 8 displays results with a central spherical obsta-
cle. Compared to the results in two dimensions, the acceleration
benefits of the proposed method in three dimensions become dis-
tinctly evident. Observations reveal that the proposed method re-
quires roughly 8ms less to recover the vector potentials than the
sweeping method, maintaining equivalent accuracy levels. More-
over, the proposed method has an approximate 2x speedup over the
sweeping method when targeting a precision of 10−5.

Beyond the scope of random velocities, we further evaluate per-
formance using velocities derived from simulation scenes, as illus-
trated in Figs. 14 and 15. We use the output velocities of the Multi-
grid solver with a tolerance factor of 10−13 as the ground truth. As
can be discerned from Fig. 9, the outcomes in simulation scenes
bear a close resemblance to those observed with random velocities.
Moreover, Fig. 9 shows the advantage of the proposed method over
the sweeping method is robust and not affected by initial guesses.

5.2. Accuracy Analysis

In this section, we evaluate the order of accuracy of various inter-
polation methods in both 2D and 3D. We use analytical divergence-
free velocities as ground truth.

For both dimensions, we begin by generating a substantial num-
ber of random particles within the domain. Using the defined an-
alytical velocities, we can then calculate the analytical velocity of
each particle at its location. Subsequently, we sample the velocities
on the staggered grid with various resolutions and recover the vec-
tor potentials using different methods. After that, we compute the
interpolated velocities of particles using the bilinear direct inter-
polation method and vector potential interpolation method, respec-
tively. Notably, we employ the quadratic B spline kernel [JST*16]
for the vector potential interpolation. Finally, we compute the rela-
tive L2-norm error between the interpolated velocities and the ana-
lytical velocities.

Beyond the labels previously introduced, the curves labeled "Di-
rect" in Figs. 10 and 11 represent the outcomes obtained through
direct velocity interpolation.

In addition to the error measurement, Figures 10 and 11 display
the streamlines corresponding to the defined analytical velocities.
The streamlines are colored based on the magnitude of velocities,
with the maximum magnitude colored yellow and the minimum
magnitude colored red. Intermediate values are colored using a lin-
ear interpolation between these extremes.

2D Case. For 2D, we use the following analytical divergence-free
velocity as the input for the compared methods:

ua(x,y) =

[

sin(3πx)cos(3πy)

−cos(3πx)sin(3πy)

]

. (33)

Table 1: Computational time for vector potential recovery.

Cases
Recovery Time (ms)

Sweeping Method Proposed Method
Fig. 7 (Top-Left) 0.101 0.100

Fig. 7 (Top-Right) 0.078 0.100
Fig. 8 (Top-Left) 1.884 1.008

Fig. 8 (Top-Right) 1.867 1.019
Fig. 9 (Top) 1.854 1.044

Fig. 9 (Bottom) 1.852 1.042

The rate of convergence of the compared methods employing the
velocities is depicted in Fig. 10.

In Fig. 10, the curve associated with the proposed method is par-
allel to the curve of O(h2), where h denotes the cell spacing. This
indicates that the proposed method achieves second-order accuracy,
similar to the direct velocity interpolation and the parallel sweeping
methods.

3D Case. The analytical divergence-free velocity in 3D is given by:

ua(x,y,z) =

sin(3πx)cos(3πy)− sin(3πx)cos(3πz)

sin(3πy)cos(3πz)− cos(3πx)sin(3πy)

cos(3πx)sin(3πz)− cos(3πy)sin(3πz)

. (34)

The convergence rate of the compared methods using the velocity
is presented in Fig. 11.

It can be observed from Fig. 11 that the parallel sweeping
method without DST leads to significant numerical error. In con-
trast, the proposed method achieves second-order accuracy, sim-
ilar to the parallel sweeping method and the direct interpolation
method, without an additional Poisson solver after recovery.

In these experiments, by employing a double-precision floating-
point format, all methods achieve convergence with an accuracy of
less than 10−13 compared to the results of Multigrid via Eq. 32. Al-
though the sweeping method and the proposed method do not con-
verge to identical results as shown in Figs 7, 8, and 9, the curves for
both methods in Figs. 10 and 11 nearly overlap since the accuracy
of the quadratic spline kernel dominates the error.

5.3. Time Comparison of Potential Recovery

We compare the computational time for vector potential recovery of
both the sweeping method and the proposed wavelet-based method
in Table 1. It can be seen that the proposed method is faster than the
sweeping method in most of the cases except for the 2D case with
the free-flip boundary conditions. Given that the free-flip boundary
has a prior condition where the vector potential on the boundary is
zero, in the 2D case, unlike free-surface, the free-flip boundary does
not require handling of boundary values. Therefore, the sweeping
method with a free-flip boundary is faster compared to the free-
surface boundary. In 3D scenarios, no matter what kinds of bound-
aries are employed, the proposed method is significantly faster than
the sweeping method, as the latter incorporates an additional DST
to ensure the smoothness of the vector potential.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

12 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

Figure 9: Convergence comparison of different methods at a specific frame in a 1283 smoke simulation without internal obstacles (top row,

the simulation result is shown in Fig. 14) and with a central sphere (bottom row, the simulation result is shown in Fig. 15). Center-left: the

results using the predicted pressure that is the output of the projection Poisson solver in the previous frame; Center-right: the results without

predicted pressures.

Figure 10: Convergence rate of velocity interpolation in 2D. Left:

the streamlines of the divergence-free velocity given by Eq.33.

Right: a comparison of the L2-norm relative error between direct

velocity interpolation, vector potential interpolation using the par-

allel sweeping method, and vector potential interpolation using the

proposed method.

5.4. Simulation Results

In this section, smoke simulations generated by the proposed
method are compared to those simulated by the sweeping method.

Robust Test Cases. We begin our experiments by evaluating the
robustness of the proposed method and the sweeping method. To
conduct these evaluations, we simulate fluid scenes in both 2D and
3D, where smoke rises from a constant source using various Multi-
grid iterations. The smoke source is strategically placed at the cen-
ter along the x and z axes. As the smoke rises from the source, it
should display symmetry along the y-axis, resulting in a symmet-
rical pattern of smoke along this axis. It is worth noting that the
velocity field in these experiments is advected by the velocity field
interpolated from the recovered vector potential. Furthermore, to

Figure 11: Convergence rate of velocity interpolation in 3D. Left:

the streamlines of the divergence-fee velocity given by Eq. 34.

Right: a comparison of the L2-norm relative error between di-

rect velocity interpolation, vector potential interpolation using the

sweeping method without DST, vector potential interpolation using

the sweeping method, and vector potential interpolation using the

proposed method.

eliminate the influence of errors caused by single-float precision,
we employ double-float precision.

Figs. 12 and 13 reveal that the proposed wavelet potential re-
covery method converges more rapidly than the sweeping method.
These simulation results are consistent with the numerical com-
parison findings detailed in Section 5.1. Furthermore, the pro-
posed wavelet potential recovery method produces smoke simula-
tions without noticeable artifacts using only one Multigrid iteration,
whereas the sweeping method exhibits evident asymmetry even af-
ter four iterations.

Convergence Comparison Cases. Fig. 14 shows the smoke rising
from the constant source, whereas Fig. 15 depicts the smoke rising
from the constant source and passing a spherical solid located in

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids 13 of 18

(a) 1 Iteration (b) 4 Iterations (c) 20 Iterations

Figure 12: Robust comparison of the proposed method and parallel sweeping method at frame 130 of a 256x512 simulation. Top: the

sweeping method; Bottom: the proposed method.

(a) 1 Iteration (b) 5 Iterations (c) 20 Iterations

Figure 13: Robust comparison of the proposed method and parallel sweeping method at frame 98 of a 128x256x128 simulation. Top: the

sweeping method; Bottom: the proposed method.

the center of the simulation domain. It is evident that the outcomes
from the proposed method closely resemble the results obtained
from the sweeping method. The proposed method does not require
an additional Poisson solver to generate a smooth smoke simu-
lation. In contrast, the sweeping method without DST may pro-
duce noticeable artifacts. It is worth noting that as the divergence-
free wavelet projection improves accuracy, the proposed method
may reach this threshold with fewer iterations and less time than
the baseline simulation without vector potential recovery in some
frames.

Accuracy Analysis Cases. Fig. 16 presents simulation cases where
fluid particles are advected by Eq. 34 using various velocity inter-
polation methods. At the initiation of the simulation, smoke parti-
cles are sampled in the subdomain (1

3 ,
2
3)×(1

3 ,
2
3)×(2

3 ,1). Accord-
ing to Eq. 34, the velocities are equal to 0 at locations where the x,
y, or z components are 0, 1

3 , 2
3 , or 1. Consequently, the smoke par-

ticles initialized within the subdomain should remain constrained
within its boundaries, without crossing the subdomain.

In Fig. 16, the subdomain is represented by a white wireframe
cube. The proposed wavelet potential recovery method can produce
results similar to those simulated by the sweeping method. Some
particles escape the subdomain when using the sweeping method
without DST.

Pointwise Incompressible Interpolation Cases. We demonstrate
the superiority of pointwise incompressible interpolation through
five experiments. In order to distinguish between the pointwise in-
compressible interpolation using vector potentials recovered by the
sweeping method and the proposed method, we refer to the former
as "Sweeping Curl-Flow interpolation" and the latter as "Wavelet-
based Curl-Flow interpolation".

The first one is the comparison of the particle trajectories flow-
ing under a static 2D random velocity field on a 4x4 grid as shown

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

14 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

(a) Direct Velocity Interpolation (b) Sweeping Method without DST (c) Sweeping Method (d) The Proposed Method

Figure 14: Comparisons of the proposed method and the parallel sweeping method at frame 160 of a 1283 smoke simulation without internal

obstacles. When targeting an accuracy threshold of 5× 10−5, the average time cost per frame for the various methods are as follows: a)

10.25ms; b) 17.04ms; c) 18.77ms; d) 9.96ms. Our method achieves comparable performance to the direct method and provides a 2x speedup

over the sweeping methods.

(a) Direct Velocity Interpolation (b) Sweeping Method without DST (c) Sweeping Method (d) The Proposed Method

Figure 15: Comparisons of the proposed method and the parallel sweeping method at frame 192 of a 1283 smoke simulation with a sphere.

When targeting an accuracy threshold of 5× 10−5, the average time cost per frame for the various methods are as follows: a) 9.13ms; b)

15.72ms; c) 17.92ms; d) 8.96ms. Our method achieves comparable performance to the direct method and provides a 2x speedup over the

sweeping methods.

in Fig. 17. Observations from Fig. 17 reveal that the direct bilinear
interpolation method exhibits several spurious sinks which means
particles may cluster at such places. Regardless of whether lin-
ear or quadratic interpolation kernels are employed, the Wavelet-
Based Curl-Flow interpolation does not result in such spurious
sinks. Moreover, the use of a quadratic interpolation kernel, due
to its higher order, yields smoother particle trajectories.

Figs. 18 and 19 show the position of particles advected from uni-
formly sampled particles under static random velocity fields in 2D
and 3D, respectively. After a period of time, particles using direct
interpolation will cluster together while some areas become sparse
or completely devoid of particles, reflecting an uneven distribution
from their initially uniform state. Particles using Wavelet-based
Curl-Flow interpolation will continue to be uniformly distributed
in the domain.

The primary reason for these experimental results is that di-
rect velocity interpolation cannot guarantee divergence at arbitrary
points. In contrast, interpolation using the curl of vector potential
can provide pointwise incompressible interpolation, thereby ensur-
ing that fluid particles, which were originally uniformly distributed,
remain uniformly distributed over time. Moreover, it can be ob-
served that the sweeping method and the proposed method are ca-
pable of producing very similar results.

As mentioned in [CPAB22], Curl-Flow uses ramping methods
to correct the behavior near the obstacles. This serves as a post-
processing technique and does not affect the vector potential re-
covery process. Therefore we use a ramping method to correct the
motion near the obstacles for both the proposed method and Curl-
Flow in the following experiments.

Fig. 20 shows a slice of fluid particles passing a central spher-
ical obstacle. In this experiment, fluid particles are frozen if they
penetrate the interior of the spherical obstacle. The second exper-
iment is smoke rising from the bottom of the domain and passing
a cow-shaped obstacle, as illustrated in Fig. 21. In this experiment,
smoke is represented by numerous smoke particles during the sim-
ulation. In the rendering process, the smoke particles are converted
into smoke volume, and subsequently rendered in Houdini.

Figs. 20 and 21 show that some fluid particles are halted in the
interior of the obstacles when using the direct velocity interpola-
tion method. Conversely, fluid particles using the vector potential
interpolation method traverse the obstacles smoothly regardless of
whether vector potential is recovered by the sweeping method or
the proposed wavelet potential recovery method.

Multiresolution Smoke. Thanks to our wavelet-based approach,
we can obtain a natural multiresolution representation of the re-
stored potential. Leveraging signal processing tools within the

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids 15 of 18

(a) Direct Velocity Interpolation (b) Sweeping Method without DST

(c) Sweeping Method (d) The Proposed Method

Figure 16: Comparisons of the proposed method and parallel

sweeping method at frame 250 within a 3D computational domain

[0,1]3, where the fluid particles are advected by Eq. 34. The red

points symbolize fluid particles, which were initially situated within

the subdomain (1
3 ,

2
3)× (1

3 ,
2
3)× (2

3 ,1). The boundary of this sub-

domain is demarcated by the white wireframe cube.

Figure 17: The particle trajectories flowing under a static 2D ran-

dom velocity field on a 4x4 grid. The velocity interpolation meth-

ods from left to right: Direct bilinear velocity interpolation; Lin-

ear Wavelet-based Curl-Flow interpolation; Quadratic Sweeping

Curl-Flow interpolation; Quadratic Wavelet-based Curl-Flow in-

terpolation. The red box in the left figure contains a spurious sink.

wavelet community, we can simulate smoke with varying levels of
detail.

To achieve this, we first eliminate the high frequencies of the
potential by zeroing out the wavelet coefficients at the top levels.
Next, we advect the smoke density using the vector potential that
has been filtered for high frequencies. Finally, we generate mul-
tiresolution smokes. Figure 1 depicts a multiresolution smoke sim-
ulation.

6. Conclusion and Future Work

In this article, we have proposed a robust and efficient wavelet po-
tential recovery method for simulating pointwise incompressible
fluid. The key technique of our proposed method is to derive the
wavelet coefficients of the vector potential from the wavelet co-
efficients of the divergence-free velocity using a fast approximate
projection. Although previous research, such as [CPAB22], has ex-
plored vector potential recovery, we believe our work is the first
in computer graphics to employ divergence-free wavelets to re-
cover vector potential with little overhead when targeting a spe-
cific accuracy threshold. Experimental results support this claim.
Furthermore, our wavelet-based approach can propose smooth re-
sults, eliminating the need for an extra Poisson solver to enhance

Figure 18: Uniform sampled particles advected through a static

2D random velocity field within a 32x32 grid at frame 100. The ve-

locity interpolation methods from left to right: Direct bilinear ve-

locity interpolation; Direct monotonic cubic velocity interpolation;

Quadratic Sweeping Curl-Flow interpolation; Quadratic Wavelet-

based Curl-Flow interpolation.

the smoothness of the vector potentials. Additionally, we propose
specialized handling for wavelet transforms, allowing our approach
to cater not only to periodic boundary conditions but also to Neu-
mann and Dirichlet boundary conditions, thereby facilitating more
intricate fluid simulations.

Although our method in this paper is tailored for pointwise in-
compressible fluid simulation, we believe that wavelet potential re-
covery can be applied to other fields due to the wide range of ap-
plications of vector potential in computer graphics.

In terms of future directions, there are two ways to extend our
work. Firstly, wavelets naturally allow us to capture velocity fields
at different frequencies. By incorporating higher-frequency wavelet
coefficients during the potential recovery process, the fluid detail
can be further enriched. Second, given that our wavelet potential re-
covery hinges on ideal divergence-free velocities, it can not recover
the exact vector potential when the input velocities have residual
divergence. Therefore, devising a more precise projection method-
ology becomes imperative to achieve higher accuracy during the
potential recovery process.

Acknowledge

This work was funded in part by the Science and Technol-
ogy Development Fund, Macau SAR (Grant no. 0075/2023/AMJ,
0003/2023/RIB1, 001/2024/SKL), in part by NSFC (62332015,
62072449, 62237001), in part by the Guangdong Science and
Technology Department (Grant no. 2020B1515130001), in part
by the Zhuhai Science and Technology Innovation Bureau (Grant
no. ZH2220004002524), in part by the International Science and
Technology project of Guangzhou Development District (Grant no.
2022GH09), in part by Zhuhai UM Research Institute (Grant no.
HF-011-2021), in part by the University of Macau (Grant No.:
MYRG2022-00059-FST, MYRG-GRG2023-00237-FST-UMDF),
and in part by the Fund of China University of Ptroleum (Grant
No. 21CX06042A).

References

[ATW15] ANDO, RYOICHI, THUEREY, NILS, and WOJTAN, CHRIS. “A
stream function solver for liquid simulations”. ACM Transactions on

Graphics (TOG) 34.4 (2015), 1–9 2–4.

[BDG*17] BAO, YUANXUN, DONEV, ALEKSANDAR, GRIFFITH, BOYCE

E, et al. “An immersed boundary method with divergence-free velocity
interpolation and force spreading”. Journal of computational physics 347
(2017), 183–206 2, 4.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

16 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

Figure 19: Uniform sampled particles advected through a static

3D random velocity field within a 16x16x16 grid at frame 300. The

velocity interpolation methods from left to right: Direct bilinear ve-

locity interpolation; Direct monotonic cubic velocity interpolation;

Quadratic Sweeping Curl-Flow interpolation; Quadratic Wavelet-

based Curl-Flow interpolation. The color of each particle is deter-

mined by the number of particles within a spherical domain cen-

tered on that particle. The more particles there are, the closer the

color of the central particle is to yellow; the fewer the particles, the

closer it is to red.

(a) Direct Velocity Interpolation

(b) Sweeping Method

(c) The Proposed Method

Figure 20: Simulation results of fluid particles passing a spherical

obstacle. In this case, fluid particles that run into the interior of the

solid are halted.

[BHN07] BRIDSON, ROBERT, HOURIHAM, JIM, and NORDENSTAM,
MARCUS. “Curl-noise for procedural fluid flow”. ACM Transactions on

Graphics (ToG) 26.3 (2007), 46–es 2, 3.

[BSW*16] BISWAS, AYAN, STRELITZ, RICHARD, WOODRING,
JONATHAN, et al. “A Scalable Streamline Generation Algorithm Via
Flux-Based Isocontour Extraction.” EGPGV@ EuroVis. 2016, 69–78 3.

[CDF92] COHEN, ALBERT, DAUBECHIES, INGRID, and FEAUVEAU,
J. C. “Biorthogonal bases of compactly supported wavelets”. Commu-

nications on Pure and Applied Mathematics 45 (1992), 485–560 9.

(a) Initial State (b) Direct Velocity Interpolation

(c) Sweeping Method (d) The Proposed Method

Figure 21: Simulation results of smoke passing a spotted-cow-

shaped obstacle. In this case, smoke that runs into the interior of

the obstacle is halted and colored red.

[CPAB22] CHANG, JUMYUNG, PARTONO, RUBEN, AZEVEDO, VINI-
CIUS C, and BATTY, CHRISTOPHER. “Curl-Flow: Boundary-Respecting
Pointwise Incompressible Velocity Interpolation for Grid-Based Fluids”.
ACM Transactions on Graphics (TOG) 41.6 (2022), 1–21 2–7, 9, 10, 14,
15.

[DB23] DING, XINWEN and BATTY, CHRISTOPHER. “Differentiable
Curl-Noise: Boundary-Respecting Procedural Incompressible Flows
Without Discontinuities”. Proceedings of the ACM on Computer Graph-

ics and Interactive Techniques 6.1 (2023), 1–16 3.

[DeW05] DEWOLF, IVAN. “Divergence-free noise”. Martian Labs

(2005) 2.

[DP06] DERIAZ, ERWAN and PERRIER, VALÉRIE. “Divergence-free and
curl-free wavelets in two dimensions and three dimensions: application
to turbulent flows”. Journal of Turbulence 7 (2006), N3 2, 3.

[DP09] DERIAZ, ERWAN and PERRIER, VALÉRIE. “Orthogonal
Helmholtz decomposition in arbitrary dimension using divergence-free
and curl-free wavelets”. Applied and Computational Harmonic Analysis

26.2 (2009), 249–269 3, 4.

[ETK*07] ELCOTT, SHARIF, TONG, YIYING, KANSO, EVA, et al. “Sta-
ble, circulation-preserving, simplicial fluids”. ACM Transactions on

Graphics (TOG) 26.1 (2007), 4–es 3.

[HP12] HAROUNA, SOULEYMANE KADRI and PERRIER, VALÉRIE.
“Helmholtz-Hodge Decomposition on [0, 1] d by Divergence-free and
Curl-free Wavelets”. Curves and Surfaces: 7th International Conference,

Avignon, France, June 24-30, 2010, Revised Selected Papers 7. Springer.
2012, 311–329 3.

[HP13] HAROUNA, S KADRI and PERRIER, VALÉRIE. “Effective con-
struction of divergence-free wavelets on the square”. Journal of Com-

putational and Applied Mathematics 240 (2013), 74–86 3.

[HP15] HAROUNA, S KADRI and PERRIER, VALÉRIE. “Divergence-free
wavelet projection method for incompressible viscous flow on the
square”. Multiscale Modeling & Simulation 13.1 (2015), 399–422 2, 3.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids 17 of 18

[HP21] HAROUNA, SOULEYMANE KADRI and PERRIER, VALÉRIE. “No-
Slip and Free-Slip Divergence-Free Wavelets for the Simulation of In-
compressible Viscous Flows”. Cartesian CFD Methods for Complex Ap-

plications. Springer. 2021, 37–65 3.

[HP22] HAROUNA, S KADRI and PERRIER, VALÉRIE. “Homogeneous
Dirichlet wavelets on the interval diagonalizing the derivative operator,
and application to free-slip divergence-free wavelets”. Journal of Math-

ematical Analysis and Applications 505.2 (2022), 125479 3.

[JSS*15] JIANG, CHENFANFU, SCHROEDER, CRAIG, SELLE, ANDREW,
et al. “The affine particle-in-cell method”. ACM Transactions on Graph-

ics (TOG) 34.4 (2015), 1–10 2, 3.

[JST*16] JIANG, CHENFANFU, SCHROEDER, CRAIG, TERAN, JOSEPH,
et al. “The material point method for simulating continuum materials”.
Acm siggraph 2016 courses. 2016, 1–52 11.

[KTJG08] KIM, THEODORE, THÜREY, NILS, JAMES, DOUG, and
GROSS, MARKUS. “Wavelet turbulence for fluid simulation”. ACM

Transactions on Graphics (TOG) 27.3 (2008), 1–6 3.

[Lem92] LEMARIE-RIEUSSET, PIERRE GILLES. “Analyses multi-
résolutions non orthogonales, commutation entre projecteurs et deriva-
tion et ondelettes vecteurs à divergence nuIIe”. Revista Matemática

Iberoamericana 8.2 (1992), 221–237 2–4.

[Les19] LESSIG, CHRISTIAN. “Divergence free polar wavelets for the
analysis and representation of fluid flows”. Journal of Mathematical

Fluid Mechanics 21.1 (2019), 18 2.

[Mal08] MALLAT, STPHANE. A Wavelet Tour of Signal Processing, Third

Edition: The Sparse Way. 3rd. USA: Academic Press, Inc., 2008. ISBN:
0123743702 4.

[RLH*17] REN, XIAOHUA, LYU, LUAN, HE, XIAOWEI, et al. “Effi-
cient Gradient-Domain Compositing Using an Approximate Curl-free
Wavelet Projection”. Computer Graphics Forum. Vol. 36. 7. Wiley On-
line Library. 2017, 207–215 3, 4.

[RLH*18] REN, XIAOHUA, LYU, LUAN, HE, XIAOWEI, et al. “Biorthogo-
nal wavelet surface reconstruction using partial integrations”. Computer

Graphics Forum. Vol. 37. 7. Wiley Online Library. 2018, 13–24 3, 4.

[SB08] SCHECHTER, HAGIT and BRIDSON, ROBERT. “Evolving sub-grid
turbulence for smoke animation”. Proceedings of the 2008 ACM SIG-

GRAPH/Eurographics symposium on Computer animation. 2008, 1–7 3.

[SDK21] SATO, SYUHEI, DOBASHI, YOSHINORI, and KIM, THEODORE.
“Stream-guided smoke simulations”. ACM Transactions on Graphics

(TOG) 40.4 (2021), 1–7 3.

[SDY*15] SATO, SYUHEI, DOBASHI, YOSHINORI, YUE, YONGHAO, et
al. “Incompressibility-preserving deformation for fluid flows using vec-
tor potentials”. The Visual Computer 31 (2015), 959–965 3.

[SS96] SWELDENS, WIM and SCHRÖDER, PETER. “Building your own
wavelets at home”. Wavelets in Computer Graphics. ACM SIGGRAPH
Course notes. 1996, 15–87 8.

[Sta99] STAM, JOS. “Stable Fluids”. In Proceedings of the 26th An-

nual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH ’99). USA: ACM Press/Addison-Wesley Publishing Co.,
1999 2, 3.

[Ste11] STEVENSON, ROB. “Divergence-free wavelet bases on the hy-
percube: Free-slip boundary conditions, and applications for solving
the instationary Stokes equations”. Mathematics of computation 80.275
(2011), 1499–1523 3.

[Ste16] STEVENSON, ROB. “Divergence-free wavelets on the hyper-
cube: General boundary conditions”. Constructive Approximation 44
(2016), 233–267 3.

[Urb01] URBAN, KARSTEN. “Wavelet Bases in H(div) and H(curl)”.
Mathematics of Computation 70.234 (2001), 739–766. ISSN: 00255718,
10886842. (Visited on 08/31/2023) 3.

[Urb96] URBAN, KARSTEN. Using divergence free wavelets for the nu-

merical solution of the Stokes problem. Citeseer, 1996 3.

[WMSF15] WEBER, DANIEL, MUELLER-ROEMER, JOHANNES, STORK,
ANDRÉ, and FELLNER, DIETER. “A Cut-Cell Geometric Multigrid Pois-
son Solver for Fluid Simulation”. Computer Graphics Forum. Vol. 34. 2.
Wiley Online Library. 2015, 481–491 9.

[ZB05] ZHU, YONGNING and BRIDSON, ROBERT. “Animating sand as a
fluid”. ACM Transactions on Graphics (TOG) 24.3 (2005), 965–972 2,
3.

[ZH05] ZHOU, XIAOLIN and HE, YINNIAN. “Using divergence free
wavelets for the numerical solution of the 2-D stationary Navier–Stokes
equations”. Applied mathematics and computation 163.2 (2005), 593–
607 3.

Appendix A: Algorithms for Wavelet Potential Recovery

Algs. 2, 3, and 4 describe wavelet potential recovery algorithms
for all dimensions (1D, 2D, and 3D). These algorithms are based
on full-level lifting wavelet transforms and their inverses for all
dimensions (1D, 2D and 3D) as shown in Algs. 5∼10 described in
Appendix B.

Algorithm 2: 1D Wavelet Potential Recovery

Input: un
// a 1D n-level velocity

Output: qn
// output potential

// Compute ũ j

1 ũn = full-LWT(un)
// Compute q̃n

2 for j = 0 : n−1 do

3 Compute q̃ j by Eq. 15

// Compute qn

4 qn = full-iLWT(q̃n)

Algorithm 3: 2D Wavelet Potential Recovery

Input: un = [un,vn]T // a n-level velocity

Output: qn
// output potential

// Compute ũn and ṽn

1 ũn = full-LWT2(un)
2 ṽn = full-LWT2(vn)
// Compute q̃n

3 for j2 = 0 : n−1 do

4 Compute q̃[0, j2] by the first Eq. in Eq. 21

5 for j1 = 0 : n−1 do

6 Compute q̃[j1,0] by the second Eq. in Eq. 21

7 for j = [j1, j2] ∈ {0, · · · ,n−1}2 do

8 Compute q̃j by Eq. 23

// Recover qn

9 qn = full-iLWT2(q̃n)

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

18 of 18 Luan Lyu et al. / Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids

Algorithm 4: 3D Wavelet Potential Recovery

Input: un = [un,vn,wn]T // a n-level velocity

Output: qn = [qn
x ,q

n
y ,q

n
z]

T
// output potential

// Compute ũn, ṽn and w̃n

1 ũn = full-LWT3(un)
2 ṽn = full-LWT3(vn)
3 w̃n = full-LWT3(wn)
// Compute q̃n

x, q̃n
y and q̃n

z

4 for j1 = 0 : n−1 do

5 for j3 = 0 : n−1 do

6 Compute q̃
[j1,0, j3]
x by the first Eq. in Eq. 25

7 for j2 = 0 : n−1 do

8 Compute q̃
[j1, j2,0]
x by the second Eq. in Eq. 25

9 for j2 = 0 : n−1 do

10 for j1 = 0 : n−1 do

11 Compute q̃
[j1, j2,0]
y by the first Eq. in Eq. 26

12 for j3 = 0 : n−1 do

13 Compute q̃
[0, j2, j3]
y by the second Eq. in Eq. 26

14 for j3 = 0 : n−1 do

15 for j2 = 0 : n−1 do

16 Compute q̃
[0, j2, j3]
z by the first Eq. in Eq. 27

17 for j1 = 0 : n−1 do

18 Compute q̃
[j1,0, j3]
z by the second Eq. in Eq. 27

19 for j = [j1, j2, j3] ∈ {0, · · · ,n−1}3 do

20 Compute q̃j by solving Eq. 28 with constraint Eq. 29

// Compute qn
x, qn

y and qn
z

21 qn
x = full-iLWT3(q̃n

x)
22 qn

y = full-iLWT3(q̃n
y)

23 qn
z = full-iLWT3(q̃n

z)

Appendix B: Algorithms for Full-level Lifting Wavelet
Transforms

Algorithm 5: full-LWT (Full-level LWT)

Input: sn
// a 1D n-level signal

Output: s̃n
// wavelet coefficients

1 for j = n : 1 do

2 s̃ j−1,s j−1 = LWT(s j)

Algorithm 6: full-iLWT (Full-level Inverse LWT)

Input: s̃n
// wavelet coefficients

Output: sn
// output signal

1 for j = 0 : n−1 do

2 s j+1 = iLWT(s̃ j,s j)

Algorithm 7: Full-LWT2 (Full-level 2D LWT)

Input: sn
// a 2D n-level signal

Input: s̃n
// output wavelet coeffs.

// 1) Take full-LWT to each row of sn

1 for y = 0 : 2n −1 do

2 s̄n(:,y) = full-LWT(sn(:,y))

// 2) Take full-LWT to each column of s̄n

3 for x = 0 : 2n −1 do

4 s̃n(x, :) = full-LWT(s̄n(x, :))

Algorithm 8: Full-iLWT2 (Full-level Inverse 2D LWT)

Input: s̃n
// wavelet coeffs.

Input: sn
// output 2d signal

// 1) Take full-iLWT to each column of s̃n

1 for x = 0 : 2n −1 do

2 s̄n(x, :) = full-iLWT(s̃n(x, :))

// 2) Take full-iLWT to each row of s̄n

3 for y = 0 : 2n −1 do

4 sn(:,y) = full-iLWT(s̄n(:,y))

Algorithm 9: Full-LWT3 (Full-level 3D LWT)

Input: sn
// a 3D n-level signal

Input: s̃n
// output wavelet coeffs.

// 1) Take full-LWT2 to each z-slice of sn

1 for z = 0 : 2n −1 do

2 s̄n(:, :,z) = full-LWT2(sn(:, :,z))

// 2) Take full-LWT to each s̄n(x,y, :)
3 for x = 0 : 2n −1 do

4 for y = 0 : 2n −1 do

5 s̃n(x,y, :) = full-LWT(s̄n(x,y, :))

Algorithm 10: Full-iLWT3 (Full-level Inverse 3D LWT)

Input: s̃n
// wavelet coeffs.

Input: sn
// output 3d signal

// 1) Take full-iLWT to each s̃n(x,y, :)
1 for x = 0 : 2n −1 do

2 for y = 0 : 2n −1 do

3 s̄n(x,y, :) = full-iLWT(s̃n(x,y, :))

// 2) Take full-iLWT2D to each z-slice of s̄n

4 for z = 0 : 2n −1 do

5 sn(:, :,z) = full-iLWT(s̄n(:, :,z))

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

