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Figure 1: The line below shows Cusick drape test results and tag info for five actual fabrics. The tag information includes fabric type, fiber
composition, and density. Using this data, we estimated optimal simulation parameters (stretching and bending) to replicate each fabric’s
drape property in a cloth simulator. For verification, we made two dresses: one with real fabric and another with the estimated parameters
in a virtual environment. In the upper line, each pair consists of a real-fabric dress (left) and a virtually simulated dress (right).

Abstract

In recent years, the fashion apparel industry has been increasingly employing virtual simulations for the development of new
products. The first step in virtual garment simulation involves identifying the optimal simulation parameters that accurately re-
produce the drape properties of the actual fabric. Recent techniques advocate for a data-driven approach, estimating parameters
from outcomes of a Cusick drape test. Such methods deviate from standard Cusick drape tests, introducing high-cost tools, which
reduces practicality. Our research presents a more practical model, utilizing 2D silhouette images from the ISO-standardized
Cusick drape test. Notably, while past models have shown limitations in estimating stretching parameters, our novel approach
leverages the fabric’s tag information including fabric type and fiber composition. Our proposed model functions as a cascaded
system: first, it estimates stretching parameters using tag information, then, in the subsequent step, it considers the estimated
stretching parameters alongside the fabric sample’s Cusick drape test results to determine bending parameters. We validated
our model against existing methods and applied it in practical scenarios, showing promising outcomes.
(see https://www.acm.org/publications/class-2012)

CCS Concepts
• Computing methodologies → Neural networks; Physical simulation;
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1. Introduction

In recent years, the fashion apparel industry has increasingly turned
to virtual simulations for new product development. Virtual gar-
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ment simulations enable designers to verify and enhance a prod-
uct’s design before creating the actual item. The primary step in
this simulation process is to identify the ideal simulation parame-
ters that mirror the actual fabric’s physical properties chosen by the
designer. Currently, the industry standard is to measure the fabric’s
physical properties directly using various tools, then determining
the simulation parameters based on these measurements [KLG20].
Even for seasoned professionals, this process is considered a diffi-
cult and time-consuming task.

Lately, to address these problems, a data-driven approach has
been proposed. This technique estimates simulation parameters by
observing the results of a simple drape test on fabric samples,
aiming for a simulation outcome that mirrors the drape test re-
sults. Prior studies have utilized methods similar to the Cusick
drape test [Cus65]—a widely recognized method in the textile and
cloth industry, corroborated by multiple research endeavors to have
a significant correlation with various fabric properties [SCCE13;
HC98]. Our study also builds upon these foundations, introducing
a novel methodology utilizing the Cusick drape test to estimate sim-
ulation parameters.

However, many past studies did not strictly adhere to the original
Cusick drape test method. Instead, they modified sample shapes or
used advanced tools like 3D scanners or depth cameras to mea-
sure the three-dimensional shape of the drape. This addition of
high-cost equipment and complex measurement processes dimin-
ishes the method’s practicality. We present a new estimation model
that assesses 2D silhouette images of the drape, taken following the
ISO-standardized Cusick drape test procedure [08]. Therefore, our
method holds the advantage of being seamlessly applicable using
existing Cusick drape test equipment.

One limitation of the Cusick drape test in estimating simula-
tion parameters is its weak correlation with a fabric’s stretching
stiffness. Due to this limitation, [FHXW22] suggested models that
fix stretching-related simulation parameters, focusing only on esti-
mating parameters related to bending. However, even if it is chal-
lenging to determine stretching parameters from draping results,
changes in these parameters significantly influence the drape test
simulation results. In other words, even if bending parameters re-
main consistent, varying stretching parameters can lead to different
draping simulation outcomes. Hence, models that estimate bend-
ing parameters from draping results without considering stretching
parameters inevitably have limitations in accuracy.

To address this, we propose leveraging fabric tag information,
which includes details like fabric type and fiber composition. This
tag data is routinely consulted by designers during fabric selection
and is easily accessible. Therefore, its inclusion does not compro-
mise the practicality of the existing method. Our proposed model
functions as a cascaded system: first, it estimates stretching param-
eters using tag information, then, in the subsequent step, it consid-
ers the estimated stretching parameters alongside the Cusick drape
test results to determine bending parameters (see Fig. 6). This ap-
proach factors in the influence of stretching properties from draping
results, enhancing the accuracy of bending parameter estimation.
To our knowledge, no attempts have been made to derive simula-
tion parameters from tag information, primarily due to challenges
in data acquisition. However, recent digital fabric services, notably

VMOD, offer optimized simulation parameters along with tag de-
tails [Swa22]. We utilized data for about 5000 real fabrics from
VMOD in our work.

To validate the efficacy of our model, we compared outcomes
where the drape test results were measured as a 3D shape (as in
prior methods) to those where results were measured as 2D sil-
houettes (as in our approach). Furthermore, we compared the ac-
curacy of bending parameter estimations when using and not using
the inferred simulation parameters from tag information. Finally, to
demonstrate practical application, we created dresses using various
real fabrics, compared virtual garments made with our estimated
simulation parameters, and analyzed the visual differences

2. Background

Cloth simulation technology has undergone significant advance-
ments aimed at increasing calculation stability, accelerating sim-
ulations, and expanding the range of expressions. Implicit time
integration methods, such as stable integration methods pro-
posed by various authors [CK02; VM05; LBOK13], have im-
proved integration stability. Additionally, IPC (Incremental Po-
tential Contact)-based methods have improved collision stability
[LKJ21]. For faster simulations, the projective dynamics method
[BML*14] and GPU-based solvers [TTN*13; LTT*20] have been
proposed. Recently, deep learning-based simulations have been
introduced to achieve real-time and high-accuracy simulations
[OLL18; BME22].

There have been significant efforts towards expanding the ex-
pressiveness of simulations. The range of expressiveness in a typ-
ical mass-spring model is primarily determined by the definition
of stiffness models. The stiffness model has evolved from a lin-
ear isotropic model to a non-linear anisotropic model to improve
expressiveness [VMF09; WOR11]. In this study, we address the
problem of estimating simulation parameters for the anisotropic
nonlinear model. On the other hand, efforts are also underway to
simulate specific types of fabric that are difficult to represent us-
ing the mass-spring model. Yarn-level simulation methods have
been proposed to simulate the detailed characteristics of knit fab-
rics[KJM08; CLMO14; SNW20; SSL*22].

The development of cloth simulation technologies has made vir-
tual cloth simulation a widely used tool in the apparel industry for
developing new fashion products. Consequently, there is a growing
demand for a practical and reliable method to find sets of simulation
parameters that can accurately reproduce the mechanical properties
of specific real-world fabrics under given simulator conditions. Re-
cently, a learning-based approach was proposed to estimate simu-
lation parameters from a static drape test, which offers practicality
and accuracy [JC20; FHXW22; RPCG23].

2.1. Drape Test

Fabric properties are crucial for designers to choose the right fabric
for a garment. The physical or mechanical properties of fabrics are
often used to classify and index them based on their characteristics.
The KES-F [KN89] and the FAST system [Min95] are specialized
devices for measuring the physical properties of fabrics. However,
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for the average cloth designer, these physical measures do not help
in comparing different fabrics or choosing the right fabric for a par-
ticular garment. The drape properties of fabrics have gained more
attention in the apparel industry than their physical properties.

The Cusick drape test [Cus65] is the most widely used drape
measurement method. This method observes the drape shape by
placing a circular fabric specimen on a circular disk. In Cusick’s
original method, a 2D image of the drape projected on the horizon-
tal plane is recorded by rotoscoping. The drape image can be used
as a visual index representing the drape property intuitively. Vari-
ous numerical indicators, such as drape area ratio, wrinkle depth,
and wrinkle wave amplitude, have been introduced by quantify-
ing the drape images [CCV17]. Cusick’s method has evolved to
measure dynamic drape properties and to analyze the 3D shape of
drapes [MY03; Hal06; KLPE08; GZ14].

Studies have investigated the correlation between drape and me-
chanical properties in textile engineering. The literature has shown
that most bending mechanical properties correlate highly with
drape properties, although this is the case for only some tensile
mechanical properties. Sanad et al. [SCCE13] investigated the cor-
relation between measures of the FAST system and drape proper-
ties. In that study, most of the values measured by the cantilever
showed a high correlation, and only some of those measured by the
tensile device showed a high correlation with drape properties. Hu
and Chan [HC98] investigated the correlation between measures of
the KES-F and drape properties and showed that tensile linearity is
highly correlated with drape properties.

Like the correlation between mechanical properties and drape
properties, cloth simulation parameters correlate with simulated
drape test results. Ju et al. [JC20] predicted drape test simulation
results from simulation parameters, whereas Feng et al. [FHXW22]
estimated bending parameters from actual drape test results. Both
methods performed drape tests using square samples, not the circu-
lar ones defined in Cusick’s method. In this study, we demonstrate
that circular specimens are more advantageous than square ones for
parameter estimation by analyzing massive drape test simulation
results.

2.2. Estimating Simulation Parameters

One common approach to obtain simulation parameters for a spe-
cific fabric is to measure its mechanical properties using special-
ized devices such as KES-F or FAST systems, and then convert
the measurements into parameters defined for the given simula-
tor [BHW94]. However, this method has some limitations, includ-
ing the high cost of equipment and the imperfections of the simu-
lators, which may result in inaccurate parameter conversion. To ad-
dress these limitations, software providers have developed special-
ized measurement devices and conversion programs for their simu-
lators [CLO20]. Nonetheless, even with these tools, manual param-
eter tuning may still be necessary to reproduce the drape properties
of the target fabric [JKL*22].

Optimization approaches offer an automated solution to param-
eter tuning. Bhat et al.[BTH*03] optimized simulation parameters
for a hanging drape video, while Wang et al.[WOR11] and Miguel
et al.[MBT*12] applied artificial force to a specimen of the target

fabric to deform it, and then optimized the simulation parameters to
reproduce the same deformations with the same force in the simula-
tion. Other researchers optimized simulation parameters using fea-
ture vectors extracted from images of drape tests[MRMŽ12] or the
drape shape in photos of people wearing clothes [YPA*18]. How-
ever, optimization approaches have some drawbacks, such as long
computation times and sensitivity to the initial parameter values.

Recently, researchers have proposed learning-based approaches
to enhance the accuracy and practicality of parameter estimation.
Methods have been introduced for estimating simulation parame-
ters by observing dynamic changes such as fabric fluttering in the
wind [BTH*03; BXBF13; YLL17], and for estimating stretching
properties by observing shape changes when artificial force is ap-
plied to a specimen [WOR11; MBT*12; RPCG23]. Among these,
a method focusing on practicality and user convenience is to train a
model to estimate simulation parameters from a single static drape
test result [JC20; FHXW22]. Although such studies have shown ex-
cellent performance, relying solely on a single static drape test has
limitations, as there is not a one-to-one correspondence between
simulation parameters and static drape. To improve this limitation,
this study proposes a method of estimating parameters using tag
information that is readily available when purchasing fabric, in ad-
dition to drape test results.

3. Simulation Model and Parameters

Our cloth simulation is based primarily on the mass-spring model
proposed by Baraff and Witkin in 1998 [BW98]. This model uti-
lizes various spring-like energies, such as stretching and bending,
to connect cloth particles. To achieve stable integration, we use the
BDF-2 implicit integration method [CK02]. We present an exten-
sion of the original fabric model to accommodate a variety of real-
world fabric materials for our cloth simulation. Here, we describe
each simulation parameter, and the details are described in the Sup-
plementary Material.

Stretching Stiffness The original Baraff-Witkin formulation
uses a constant stiffness value for the stretching springs, but real-
world cloth exhibits non-linear tendencies. Therefore, we modify
the stiffness to be a function of the length scale li for each basis
direction i = u,v,h, weft, warp, and bias, respectively. Our analy-
sis from the stretching property data measured from 5,000 actual
fabric samples (see Section 4) revealed that the exponential func-
tion best fits the nonlinear relationship between the length scale and
the stiffness. Therefore, we define the stretching stiffness function,
ki(li), as follows:

ki(li) = αi exp(βi(
li
l̄i
−1)), (1)

where l̄i is the rest length of the stretching spring in the ith direc-
tion.

Bending Stiffness We define an anisotropic non-linear bending
energy term calculated for each bending wing (comprised of two
adjacent triangles). We model the bending stiffness to be a piece-
wise constant function of the bending angle θ,. The bending stiff-
ness energy term of the jth piece, k j, is interpolated from the three
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bending stiffness values k j
u, k j

v , and k j
h(θ), depending on the folding

direction of the bending wing. To keep the model simple, we limit
the number of pieces in the function to a maximum of two and fix
the threshold angle switching between k0 and k1 at 15 degrees. k1

is defined as a multiplication of scalar factor sb and k0. For more in-
formation about our cloth model, please refer to the Supplementary
Material.

We aim to estimate the 12 simulation parameters defined above.
The stretching parameters, Ps, and the bending parameters, Pb, are
defined as follows:

Ps = {αu,αv,αh,βu,βv,βh} (2)

Pb = {k0
bu,k

0
bv,k

0
bh,sbu,sbv,sbh} (3)

4. Fabric Data

We have acquired a comprehensive dataset, known as 5K–DATA,
encompassing around 5,000 real fabrics, all of which are commer-
cially available and were sourced from VMOD. This dataset not
only includes tag information for each fabric but also features sim-
ulation parameter data, meticulously optimized by experts, tailored
for each specific fabric. These fabrics are categorized into 64 dis-
tinct types, and across all these fabric types, there are 37 unique
fiber types represented. This dataset showcases a diverse range of
fabrics, each with its unique characteristics. For more detailed in-
formation on the distribution of fabric types and fibers within the
5K–DATA, please refer to the supplementary materials provided.

We conducted the Cusick drape test on 500 randomly selected
fabrics from the entire data set and scanned the 3D geometry for
analysis. From that, we made the following observations:

• Circular specimens exhibit higher visual diversity in the drape
test compared to square specimens. As a result, circular speci-
mens are recommended for accurate estimation of bending pa-
rameters (refer to Section 5.1 for details).

• The stretching stiffness of a fabric has a significant impact on
the results of the drape test. Therefore, it should be taken into
consideration while estimating the bending parameters from the
test results. Further details are provided in Section 6.2.1.

• The stretching parameters of a fabric are correlated with its ba-
sic information. Therefore, it is possible to regress the stretching
parameters based on the fabric’s basic information, achieving an
acceptable accuracy score. Refer to Section 6.1 for more infor-
mation.

5. Cusick Drape Test

We employed the original Cusick drape test, which has the advan-
tage of accepting the results of abundant existing literature, despite
the existence of many variations. The test involves observing the
wrinkles on the unsupported part of a circular specimen with a di-
ameter of 30 cm, when it is placed on a circular disk with a diameter
of 18 cm.

5.1. Circular vs. Square

Previous studies have utilized square samples for parameter esti-
mation problems due to their ease of cutting and clarity in distin-
guishing the weft and warp directions [JC20; FHXW22]. However,

square specimens in drape tests often result in a cross shape, as
the four corner areas of the unsupported part are wider than other
unsupported areas and are consequently more affected by grav-
ity. This leads to limited visual variability across the overall drape
shape.

Figure 2: Histograms of the number of folds of drape tests using
square and circular specimens.

(a) Square specimen. (b) Circular specimen.

Figure 3: Comparison of drape test results for FLANNEL type,
wool 100% fabric (top) and CLIP JACQUARD type, polyester
100% fabric (bottom). When using square specimens, both fab-
rics formed a similar cross shape, whereas entirely different shapes
were formed with circular specimens.

We simulated drape tests using square and circular specimens
for the parameter sets of 5K–DATA and counted the number of
folds in each drape. Fig.2 displays the histogram. An overwhelm-
ing number of cases had four folds when using square specimens.
In contrast, the number of folds was relatively evenly distributed
when using circular specimens. Consequently, the visual variabil-
ity of drape results for different fabrics was higher with circular
specimens than square specimens. Fig.3 presents specific examples
of drape tests using square and circular specimens for two distinct
fabrics. When using square specimens, both fabrics formed a simi-
lar cross shape, whereas entirely different shapes were formed with
circular specimens.

5.2. Test Device for Consistency

Drape test results are influenced by various factors beyond the
physical properties of the fabric itself. Notably, the initial state of
the specimen has a significant impact on the final result. Conse-
quently, it is essential to avoid holding and dropping the sample by
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(a) Our draping device (b) Initial state (c) Final state

Figure 4: (a) Our custom-designed Cusick Draping Device. Our
device features a dropping disk densely perforated with holes to
allow air passage during descent. (b) shows the initial setup of the
draping experiment. (c) depicts the completion of the experiment
following the descent of the dropping disk.

hand to prevent artificial wrinkles from forming on the part held
by the fingers and to eliminate the likelihood of obtaining differ-
ent results based on the holding position. To address these issues
and maximize the consistency of experimental results, we devel-
oped the device. In the experiment’s initial state, both supporting
and dropping disks are at the same height, enabling the entire cir-
cular specimen to be spread flat and placed on the disks, as demon-
strated in Fig.4b. Upon pressing the yellow button, the dropping
disk begins free-falling, and concurrently, the entire unsupported
area of the specimen also free-falls (see Fig.4c). The entire device is
constructed from anti-static plastic, and we drilled densely spaced
small holes in the dropping disk to minimize the effect of air pres-
sure during the drop (see Fig.4a).

Fig. 5 presents a comparative analysis captured using a high-
speed camera, contrasting the utilization of a solid dropping disk
(non perforated) and a perforated dropping disk. We conducted the
experiment using the same fabric for both disks. To ensure the pre-
cise positioning of the specimen on the supporting disk, we mag-
netically affixed it to the top of the supporting disk. This method
effectively immobilizes the fabric between the supporting disk and
the magnet, preventing any displacement during repeated experi-
mental runs, even when using replacement disks. Observations at
70 milliseconds from the start of the experiment reveal notable dif-
ferences. With the solid disk, air pockets formed between the spec-
imen and the disk, as indicated by green arrows. The rest of the
fabric clung to the disk due to air pressure, as highlighted by red
arrows. Consequently, this led to unwanted wrinkling (not indica-
tive of free fall) as air injection concentrated through these air pock-
ets, which is evident in the area circled at the 90 milliseconds mark.
The location of these air pockets varied with each trial, affecting the
consistency of the experiment. In contrast, the use of a perforated
disk allowed air to enter beneath the specimen right from the on-
set of the experiment. This resulted in a uniform detachment of the
entire fabric from the disk, allowing it to undergo independent free
fall right from the moment the disk commenced its drop. This sig-
nificant difference was also evident in the final draping outcomes,
as observed in the final states, showcasing a notable disparity in the
end results of the draping process with different disks.

To confirm the consistency of drape test results, we requested
multiple participants to perform the drape test for the same fab-
ric. In each test, participants completed the entire process indepen-
dently, from cutting the fabric into a circular shape to placing and
dropping the specimen. Although the specimen shapes may have
slightly varied, the results remained relatively consistent.

5.3. Drape Test Simulation

The focus of our simulations was on accuracy rather than speed,
and we employed a non-adaptive triangular mesh to represent the
fabric specimen. This mesh consisted of 30,306 vertices, with a
maximum spacing of less than 5mm between them, forming 10,102
triangles. During the simulation, the timestep was consistently
maintained at 0.03 seconds. The initial setup involved the circular
specimen mesh being fully spread out, parallel to the supporting
disk, and elevated 2 cm above it. The simulation concluded when
all vertices came to a stop, indicated by their speed dropping below
a predefined threshold. Any simulation where the specimen fell to
the ground was deemed unstable and excluded from our data.

6. Method

Based on these findings, we developed a cascaded model for esti-
mating the stretching and bending parameters of a target fabric. The
overview of the model is presented in Figure 6. Our model takes
tag information and results of the Cusick drape test as input. First,
the stretching parameters are estimated using k-nearest neighbor
(kNN) regression based on the type and fiber composition infor-
mation in the tag data (pink area in Figure 6). Next, the bending
parameters are estimated using the estimated stretching parameters
and the 2D silhouette image of the Cusick drape test results (green
area in Figure 6). To reduce the number of parameters involved
in the model, we normalized the stiffness values of the training
data by dividing them by the density. This method was proposed
in [FHXW22] and has the advantage of not having to consider the
diversity of density in the training data collection. As a result, the
required amount of training data can be reduced. Therefore, the
original stiffness is restored by multiplying the density to the stiff-
ness of the estimated result.

6.1. Stretching Regression Model

In our study, we employed regression analysis to determine the re-
lationship between the stretching parameters and the tag informa-
tion of various fabrics. This approach was grounded on several key
assumptions:

1. Fabric types exhibit consistent patterns and structures, imply-
ing that the type of fabric significantly influences its anisotropic
properties.

2. In the case of woven fabrics, the strength of the fibers plays a
crucial role in defining their tensile properties. Hence, there is
a strong correlation between the stretching parameters and the
composition of the fabric.

3. For nonwoven fabrics, the pattern or structure of the fabric
markedly impacts its tensile characteristics. Thus, the type of
fabric is also a critical factor in determining the stretching pa-
rameters.
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(a) Solid dropping disk.

(b) Perforated dropping disk.

Figure 5: Comparison of draping tests using solid (a) and perforated (b) disks. With the solid disk, the specimen adheres to the disk due
to air pressure (red arrows) and forms air pockets (green arrows), evident at 70 ms. This results in unexpected wrinkles as seen at 90 ms.
Conversely, the perforated disk promotes uniform air flow from the outset, ensuring consistent fabric detachment and free fall.

4. Variations in fiber strength, even within the same type, can be
distinguished by considering the density of the fabric.

The stress-strain response curves for different fabric orientations
(weft, warp, and bias) are presented in Fig. 7. These curves were de-
rived from an analysis of four fabric groups having identical types
and compositions from the 5K–DATA dataset. The observed pat-
terns confirm our hypotheses regarding the anisotropic properties
of fabrics. Fabrics sharing the same type and composition exhib-
ited similar anisotropic behaviors.

For the regression analysis, we utilized a k-Nearest Neighbors
(kNN) model to fit the stretching parameters based on fabric type
and composition. The number of neighbors, k, was set to 50. Fab-
ric types were represented using one-hot encoding with 64 dimen-
sions, while the composition ratios were encoded as a vector rep-
resenting the ratio values for each fiber type, encompassing 37 di-
mensions. To normalize the stretching parameters, we first adjusted
them based on fabric density and then applied log-normalization.

6.2. Bending Estimation Model

For bending estimation, we train a neural network model. The in-
puts consist of the target fabric’s stretching parameters, which are
estimated by the regression model in Section 6.1, and the encoded
latent vector of the silhouette image of the drape test result. The
output is the bending parameters of the target fabric, normalized by
dividing them by the density followed by log-normalization. The
neural network is a MLP (multi-layer perceptron) model with two
hidden layers with 512 nodes and ReLU activation layers follow-
ing each layer. In our experiments, we trained for 100 epochs with
a batch size of 64 and a learning rate of 0.01 using the Adam opti-
mizer [KA*15]. The mean squared error loss function was used as
the loss function.

6.2.1. Stretching Parameter Input

To confirm the impact of stretching parameters on the drape test,
we compared the actual drape test results for two fabrics with sim-

ilar bending properties and different stretching parameters. Conse-
quently, we could easily identify cases with significant differences
in drape shapes. Fig. 8 presents two pairs of examples. The differ-
ence of the bending parameters between each pair is less than 3%,
whereas the difference of the stretching parameters is more than
10% after applying log min-max normalization. Based on these
observations, we use the stretching parameters as inputs for the
bending parameter estimation model to account for the influence
of stretching parameters on the drape shape.

6.2.2. Drape Input

We use the silhouette 256 by 256 image captured from the top view
of the drape test result as the input data. To align the weft and warp
directions of the fabric with the edges of the image accurately, we
placed an ArUco marker [GMMM14] on the fabric specimen be-
fore taking the photo (see Fig. 9). The marker was used to correct
the direction, scale and distortion of the image caused by the cam-
era lens and position. To make it easier to distinguish the fabric
from the background, we used a green or red background for the
drape test.

User convenience was the main reason for using 2D silhouette
images instead of 3D drape shapes. The original Cusick device was
designed to obtain the silhouette image of the drape shape from the
top view. Therefore, any data obtained from the device can be used
as input data for our model. Furthermore, silhouette images can
be easily obtained from general RGB photos, making them more
efficient in cost and time than 3D scans or depth images. In addi-
tion, using 3D drapes does not significantly improve the accuracy
of bending parameter estimation in our experiments. In Section 7,
we compare the estimation performance of cases using 3D drape
and silhouette images.

We encode the silhouette image into a 512-dimensional latent
vector using an autoencoder. The encoder and decoder comprise
six convolutional layers and one fully connected layer. A pooling
layer and a ReLU activation layer follow each convolutional layer.
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Figure 6: Simulation Parameter Estimation Model. The model consists of two parts: the stretching regression model and the bending esti-
mation model. The stretching regression model estimates the stretching parameters using the tag information. The bending estimation model
estimates the bending parameters using the stretching parameters and the 2D silhouette image of the drape test result.

For all the convolutional layers, the kernel size is three by three,
and the stride is one. Each layer’s detailed channel and pooling size
is shown at the bottom of Fig. 6. We trained the autoencoder for 100
epochs with a batch size of 64 and a learning rate of 0.001 using the
Adam optimizer [KA*15]. The loss function was the mean squared
error between the input and output images.

6.3. Generating Training Data

We generate training data by sampling simulation parameters and
simulating the drape test. The parameter space should include
bending parameters for outputs and the corresponding stretching
parameters for inputs. To ensure the validity of the sampled pa-
rameter set, we first fit a Gaussian mixture model (GMM) with the
clustering number of 5 for the simulation parameters of 5K–DATA
and then sample according to the probability distribution of the
GMM [JC20]. For our experiments, 300,000 simulation parameter
sets were sampled equally for each cluster using the GMM model
to generate training data. The Cusick drape test was simulated with
each parameter set. Each drape simulation result was projected onto

a horizontal plane, converted into a silhouette picture, and used for
the training of the autoencoder, and the encoded latent vector was
used for the training of the bending parameter estimation model.

7. Experimental Results

To evaluate the performance of our model, we conducted a series
of experiments using 5K–DATA. We first evaluated the accuracy
of the stretching parameter estimation model, which is a k-nearest
neighbor regression model. We split the 5K-DATA randomly into
10 folds and conducted a 10-fold evaluation. Table 1 shows the
scores (the coefficient of determination, R2 [CWJ21]) of the 10-
fold evaluation.

The accuracy for the validation data was lower than that for
the training data. However, as described in the following exper-
iments, the estimated stretching parameters played a role in im-
proving the accuracy of the bending parameter estimation, and ul-
timately, we obtained results that generated virtual clothes similar
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Figure 7: Stress strain curves graphs for four group fabrics with the same type and composition. The red, green, and blue lines represent the
graphs for weft, warp, and bias directions, respectively. The bold lines indicate the average graphs for each direction. The graphs of each
direction for the same group are generally centered around the average graph.

∼ (a) Left (a) Right (b) Left (b) Right
αu 1.000 0.653 0.411 0.722
αu 1.000 0.774 0.575 1.000
αh 1.000 0.643 0.488 0.786
βu 0.812 0.091 0.288 0.000
βv 1.000 0.489 0.455 0.740
βh 0.463 0.336 0.385 0.197
k0

bu 0.089 0.081 0.043 0.057
k0

bv 0.450 0.422 0.359 0.389
k0

bh 0.353 0.327 0.150 0.120
k1

bu 0.088 0.079 0.042 0.056
k1

bv 0.448 0.420 0.357 0.387
k1

bh 0.351 0.325 0.149 0.119

(a) DEWSPO & JERSEY (b) PLAIN WOVEN & MESH/TULLE

Figure 8: Two pairs of examples with similar bending stiffness and
different stretching stiffness. This demonstrates that the change in
stretching stiffness has a significant impact on the drape shape.

to real clothes. This is because the stretching parameters have little
effect on the drape results when they change within a narrow range.

For the training of bending estimation model, we used the gener-
ated data from the simulations (refer to Section 6.3). We allocated
10% of the total data for use as validation data. We conducted a
series of training with different input methods to validate the su-
periority of our proposed method. Table 2 summarizes the training
scores. We compared four types of drape encoding methods: the
first is the auto-encoded 2D silhouette (2DS); the second is the 3D
boundary curve of the drape (3DC), as used in [JC20]; the third is
the set of depth images taken form four different directions (3DI),
as used in [FHXW22]; and the final is the auto-encoded 3D drape
into a 512-dimensional latent space (3DD). For each drape encod-

Fold Train
(R2)

Val. (R2) Fold Train
(R2)

Val. (R2)

1 0.820 0.599 2 0.820 0.607
3 0.818 0.651 4 0.821 0.629
5 0.824 0.590 6 0.816 0.606
7 0.819 0.583 8 0.819 0.630
9 0.820 0.636 10 0.820 0.604

Table 1: (R2) scores of 10-folds evaluations for the stretching pa-
rameter estimation

Input method Train
(R2)

Val.
(R2)

Train
(RMSE)

Val.
(RMSE)

2DS+S (Ours) 0.936 0.937 0.055 0.055
2DS 0.825 0.823 0.090 0.091
3DC+S 0.911 0.913 0.065 0.065
3DC ([JC20]) 0.809 0.808 0.094 0.095
3DI+S 0.942 0.939 0.051 0.053
3DI ([FHXW22]) 0.824 0.817 0.089 0.091
3DD+S 0.907 0.908 0.066 0.066
3DD 0.755 0.755 0.106 0.107

Table 2: Comparison accuracies between different input methods

ing method, we tested with (+S) and without the stretching parame-
ters as input. 2DS+S represents our method. As shown in the scores,
the accuracy of bending estimation was significantly reduced with-
out the stretching parameters as input in all drape encoding cases.
Moreover, using 3D data of the drape (3DD or 3DC) as input did
not improve the accuracy of the estimation. 3DI+S shows similar
performance to our method. However, 3DI+S uses depth images of
the drape taken from multiple directions, whereas we use a single
silhouette image. This demonstrates the practicality of our method.
Figure 9 shows the comparisons of the three pairs of the actual fab-
ric’s Cusick drape result and the simulated result by the parameters
estimated from our model. More examples are shown in the Sup-
plementary Material.

We benchmarked the performance of our proposed learning
model against the model suggested by Ju et al. [JC20], chosen
for its similarity to our approach in estimating both stretching and
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bending parameters concurrently from a Cusick-like drape test re-
sult. Ju et al.’s model utilizes two separate MLPs for estimating
stretch and bending parameters, each MLP featuring three hid-
den layers with dimensions of 4096, 8192, and 512 neurons, re-
spectively. The input layer processes a 3D boundary curve (3DC)
scanned from a square specimen draping result. To adapt this model
to our dataset, we modified the input layer to accommodate a 3DC
from circular specimen draping and aligned the output layer with
our defined parameters. Maintaining other conditions identical to
the original experiment, we trained the model and assessed its ac-
curacy. The results, presented in Table 3, demonstrate that while
Ju et al.’s neural network model was initially tested only on lin-
ear parameter models, it significantly underperforms in estimating
non-linear parameters compared to our method.

Stretching Bending
Model Train (R2) Val. (R2) Train (R2) Val. (R2)
Ours 0.820 0.614 0.936 0.937
[JC20] 0.611 0.373 0.851 0.747

Table 3: Comparison of the accuracy between our model and the
model proposed by [JC20]. The stretching accuracy values of our
model are the averages of the values in Table 1.

To validate the utility and fidelity of our methods, we estimated
the simulation parameters for various actual fabrics. Then, we cre-
ated pairs of the same garment, one using the actual fabrics in the
real world and the other using the estimated parameters in the vir-
tual world. We created two types of garments: a one-piece dress
(see Fig.1) and a flared skirt (see Fig.10). As shown in the figures,
the drape property of each actual garment is reproduced very sim-
ilarly in the virtual garment with the simulation parameters esti-
mated by our method. Please refer to the Supplementary Material
for more examples.

8. Conclusion and Limitation

In this study, we presented a practical model for estimating stretch-
ing and bending parameters to simulate target fabrics. We proposed
a cascade learning approach that uses fabric tag information in ad-
dition to the original Cusick drape test to improve the limitations of
previous studies relying solely on the drape test while maintaining
practicality. To obtain reliable training data, we acquired tag infor-
mation and optimized simulation parameter data for 5,000 real fab-
rics. We demonstrated that the accuracy of bending parameter es-
timation is improved when considering stretching parameters. We
also demonstrated that bending parameters can be estimated using
2D silhouette images without using 3D drape shapes. To demon-
strate the utility of our method, we created a real garment using ac-
tual fabrics and a virtual garment using estimated parameters. We
showed that the drape shape of the virtual garment simulated with
the estimated parameters is very similar to that of the real garment.

8.1. Limited Fabric Tag Information

We utilized over 5,000 actual fabrics in our dataset, a number con-
siderably larger than previous studies. However, this number still

does not encompass the full diversity of fabrics found in the real
world. For simulation parameter data and simulated drape data, we
generated synthetic data through simulation. Yet, we faced chal-
lenges in finding a feasible method to produce synthetic data for
fabric tag information. As a result, we had to rely on the given tag
information. For estimating the stretching parameter, we employed
a relatively simple kNN regression model, which inevitably had its
limitations in terms of estimation accuracy.

Moreover, the distribution of our fabric dataset is skewed, fa-
voring more commonly available samples. Some fabric types are
underrepresented with only a handful of data points. For in-
stance, we only have four samples of DOBBY MESH and two for
ITV/MATTE JERSEY. This lack of representation hampers the ef-
ficiency of the estimation model, leading to lower parameter esti-
mation accuracy for these categories.

To further understand the relationship between the size of the
dataset and the accuracy of stretch parameter estimation, we con-
ducted a series of experiments by systematically reducing the size
of the 5K–DATA dataset. We randomly selected subsets of the data
using a uniform distribution to create smaller datasets of 1/2, 1/4,
and 1/6 of the original size. For each reduced dataset, we applied
the same 10-fold cross-validation method to evaluate the average
accuracy of our model. The results of these experiments are sum-
marized in Table 4.

Data Size Train (R2) Validation (R2)
1/2 0.834 0.562
1/4 0.850 0.507
1/6 0.861 0.427

Table 4: Average accuracy of the stretching parameter estimation
model for different data sizes

These results indicate a trend where the accuracy on validation
data significantly increases with the increase in data size. This find-
ing underscores the importance of having a larger dataset for more
precise and reliable predictive modeling in fabric behavior analysis.

With the ongoing expansion of the digital fashion industry, or-
ganizations like VMOD, which gather data on actual fabric types,
are on the rise. As these entities amass more data in the future, we
anticipate being able to leverage it to collect a broader range of
fabric tag information. Once we have ample data, we hope to use
more intricate models for estimating the stretching parameter. Ad-
ditionally, researching methods to generate reliable synthetic tag
information could also be an intriguing avenue for future study.

8.2. Limited Cloth Simulation Model

The other notable limitation in our research is our sole focus on a
specific cloth simulation model. Even though our used cloth simu-
lator is grounded on Baraff and Witkin’s widely recognized mass-
spring model [BW98], it remains an assumption that our method-
ology would generalize efficiently across other similar cloth simu-
lators. Direct empirical validation would be more conclusive.

Especially for fabric types that demand an entirely distinct cloth
model for accurate draping representation, our approach may face
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Category Sub Category Type Composition Density
(gsm)

A Animal alternatives Vegan leather Vegan leather Spandex / Elastane (100%) 340
B Cut & Sew knit Double Ponte Polyester (68%), Spandex / Elastane (2%), Viscose rayon (30%) 276
C Woven Plain Crepe / CDC Polyester (100%) 84

Figure 9: Cusick drape examples. The left image in each pair is an actual fabric, and the right image is the simulated with simulation
parameters estimated by our model. The table below shows the tag information of each fabric.

challenges. Through various drape tests, we identified two drape
shapes that are particularly hard to emulate owing to the simula-
tor’s inherent expressive constraints. The first pertains to the edge
curling phenomenon observed in some knit fabrics. The left image
in Fig.11a illustrates this phenomenon in a real fabric drape test.
Conventional cloth simulators based on the mass-spring model find
this phenomenon difficult to mimic. The right image in Fig.11a dis-
plays the results of our simulation using parameters determined by
our methodology. While the overall shape bears resemblance, the
edge curling phenomenon is not effectively replicated. Current re-
search efforts, aimed at simulating the intricate dynamics occurring
in knit patterns to replicate such phenomena, have been highlighted
in [MPR18].

The other challenging case arises when there’s a marked differ-
ence in the physical attributes between the left and right bias direc-
tions, as depicted in Fig.11b. This drape shape is hard to simulate,
primarily because the majority of cloth simulators, ours included,
presuppose identical properties in both bias directions. To asym-
metrically define the bias direction, one would need to introduce
multiple new parameters. This would lead to a drastic expansion
in the dataset size necessary for both generation and training. This,
indeed, presents an intriguing topic for future research

To validate and compare our method for a cloth simulator with
an entirely new parameter model, an additional dataset of 5,000 en-
tries optimized for that parameter model is required. We anticipate
that by collaborating with institutions that digitize fabrics, such as
VMOD, we can verify and enhance the effectiveness of our ap-
proach for future cloth simulation models.
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