
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

Unfolding via Mesh Approximation using Surface Flows

Lars Zawallich
University of Zurich, Department of Informatics,

Switzerland
LarsZawallich@gmail.com

Renato Pajarola
University of Zurich, Department of Informatics,

Switzerland
pajarola@ifi.uzh.ch

Abstract
Manufacturing a 3D object by folding from a 2D material is typically done in four steps: 3D surface approximation, unfolding
the surface into a plane, printing and cutting the outline of the unfolded shape, and refolding it to a 3D object. Usually, these
steps are treated separately from each other. In this work we jointly address the first two pipeline steps by allowing the 3D
representation to smoothly change while unfolding. This way, we increase the chances to overcome possible ununfoldability
issues. To join the two pipeline steps, our work proposes and combines different surface flows with a Tabu Unfolder. We em-
pirically investigate the effects that different surface flows have on the performance as well as on the quality of the unfoldings.
Additionally, we demonstrate the ability to solve cases by approximation which comparable algorithms either have to segment
or can not solve at all.

CCS Concepts
• Computing methodologies → Mesh geometry models; • Applied computing → Computer-aided manufacturing;

1. Introduction

Unfolding and folding polyhedra is an alternative manufacturing
process to create a physical object from piecewise planar elements.
A typical manufacturing pipeline based on this principle can be
described by the following steps [GBKK98]:

1. Approximate a 3D object with a discrete surface.
2. Unfold the approximation.
3. Cut out the unfolding.
4. Refold it (possibly automated).

It is important to note, that the planar unfolded object needs to be
overlap-free to cut it from a 2D material, and it is of great efficiency
advantage, if it is also a single-patched unfolding [DO07, Section
22.1.1].

Typically, the steps of the above-mentioned pipeline have been
treated independently. To the best of our knowledge, there exists
no holistic approach yet, which takes into account the effects of
one step onto the other. Our approach provides key insights and a
novel method towards treating these steps in an integrated way.

A commonly used technique to unfold polyhedra is edge unfold-
ing (see Section 3). Even though some non-convex polyhedra can
not be unfolded using edge unfolding, see also Table 1, the tech-
nique still works for many such polyhedra. In fact, there is yet no
known general way to check if a polyhedron is edge-unfoldable or
not. The only known measures determine local unfoldability (e.g.
around a vertex), but cannot be generalized to a global unfoldabil-
ity statement. Therefore, it is impossible to approximate a given 3D

shape with unfoldability as a constraint. Thus, there is no guaran-
tee, that the approximation of the first pipeline step is unfoldable.
Approaches treating each pipeline step individually, either ignore
this issue, or try to solve it solely within the unfolding step. A com-
mon solution for the issue is to segment the unfolding into parts,
which are individually unfoldable. As mentioned above, however,
a single-patched unfolding is highly desirable.

The main contribution of our work is to explore one possibil-
ity of joining the first two steps of the above mentioned pipeline.
To prevent confusion, we will call the result of the approximation
in Step 1 representation and approximations of this representation
created by our method approximation.

In this paper we want to take a different approach than previ-
ous works did. Instead of fixing the representation and then trying
to solve the unfoldability issue only within the unfolding step, we
allow changes to the representation while unfolding. This is done
by transforming the input mesh into an “easier to unfold” mesh,
then unfolding this mesh and transforming it back into the origi-
nal shape, while maintaining the unfolding overlap-free. If the ini-
tial representation can not be unfolded, our approach will stop the
back-transformation at some stage and return the last intermediate
transformed mesh which it found an unfolding for with its corre-
sponding unfolding. This intermediate mesh can then be seen as
an unfoldable approximation of the initial input mesh. We argue
that since the initial representation is already an approximation, a
slightly different approximation can be acceptable within most ap-
plications.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1111/cgf.15031

CGF 43-2 | e15031

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-5730-4361
LarsZawallich@gmail.com
https://orcid.org/0000-0002-6724-526X
pajarola@ifi.uzh.ch
https://doi.org/10.1111/cgf.15031

2 of 16 L. Zawallich & R. Pajarola / Surface Flows in Unfolding

2. Related Work

Within the papercraft community, there are more approaches than
just (un)folding polyhedra, to create a 3D shape. Classical origami
only allows creasing and forbids any sort of cuts (e.g. [HHL19]).
Results typically do not have an interior by design. In contrast, our
approach aims to create 2D surfaces in 3D space, which have a
hollow interior.

A variation of classical origami are the so-called tucking
molecules [Tac09,DT17]. They also work with creases and without
cuts, but aim to recreate a given discrete surface with hollow inte-
rior space. The faces of the surface are laid out in a 2D space and
then filled with tucking molecules. These molecules are designed
such that they disappear into the interior of the shape when folded.
This approach needs a lot of extra material and the folding is a very
challenging task. Compared to tucking molecules, our work does
not need any filling material and the folds are less complex.

A different way of creating papercraft models are developable
surfaces (e.g. [MS04, STL06, SGC18]). The core idea is to create
patches which have a Gaussian curvature of zero at every point, but
still approximate the input surface. This technique can be consid-
ered approximative, while having the “unfolding” in mind. Here,
the unfolding is a set of disconnected planar patches, which each
needs to be bent in a certain way. The bent patches are then con-
nected together, to approximate the original surface. In contrast to
developable surfaces, we are aiming to unfold a given shape using
creases instead of bends and without segmentation.

The foundation for the field of parameterization has been laid by
Fáry [F4́8], with his proof that if a finite graph can be represented in
a plane, it can also be represented with straight lines. In later works,
different aspects of parameterization have been studied. E.g., the
approach by Hormann and Greiner [HG00] allowed for a non-
fixed boundary. Sheffer et al. [SLMB05] work in angle space and
only in the very end produce a 2D representation of a given mesh.
Kharevych et al. [KSS06] use cone singularities to allow parame-
terizing meshes of arbitrary topology. An overview of the field of
parameterization has been given by Hormann et. al [HLS07]. While
parameterization approaches try to minimize distortion, unfoldings
do not allow any. Thus, the unfolding of a mesh can also be seen as
a distortionless parameterization with non-convex boundary.

All approaches described below are using edge unfolding as an
underlying technique, similar to our approach.

Straub et al. [SP11] explored different heuristics to create cut-
trees. These heuristics aim to calculate a weight for each edge in
the mesh to then apply classical minimal-spanning-tree algorithms.
Similar in spirit, Haenselmann et al. [HE12] explored different
heuristics to create unfold-trees. Here, the heuristics aim to cal-
culate a weight for each dual-edge. However, both approaches use
segmentation to overcome remaining overlaps in their unfoldings.

Xi et al. [XKKL16] proposed a way to use overlaps to segment
their mesh. By repeatedly unfolding a mesh, they are able to seg-
ment different parts, which internally rarely overlap. On top of that,
they also considered continuous foldability – the question if the un-
folding self-intersects while folding it.

Kim et al. [KXL17] approximate a given mesh by so-called dis-
joint convex shells. These shells are designed to be easy-to-unfold,

while still approximating the initial mesh very well. Especially,
since these shells are only approximating a part of the mesh each,
they are a better approximation, than a convex hull.

In another work, Xi et al. [XL17] developed an approach to make
polyhedra easier to unfold. The core idea is to reduce local con-
cavities by inflating the mesh. Afterwards, the inflated mesh gets
segmented, to reduce global concavities. From all the related work,
this approach can be considered closest to ours, since our approach
works with a deformation to make the unfolding easier as well. A
major difference is the transformation technique and our goal to
return a single-patched unfolding.

An approach aiming to create a net was presented by Takahashi
et al. [TWS∗11]. Their idea was to lay out a highly segmented mesh
into the 2D plane and to iteratively merge them based on a genetic
algorithm, to eventually obtain a single-patched unfolding. If their
approach fails to find such an unfolding, it will return a segmented
result, which our method avoids.

Another approach aiming to create a net was designed by Kor-
pitsch et al. [KTGW20]. They applied simulated annealing to find
an overlap-free unfolding, while also considering glue tabs, which
makes reassembly easier. However, their approach is unable to han-
dle not-unfoldable polyhedra and scales poorly.

A third approach aiming to create a net is the Tabu Unfold-
ing method, which applies tabu search to the topic of unfold-
ing [Zaw23] (see Section 3.2). The resulting algorithm performs
fast and is reliable, however, still can not handle not-unfoldable
polyhedra.

Our presented approach tries to overcome the ununfoldability
problem, by transforming the input first, then unfolding the trans-
formed version and to reverse the transformation afterwards, while
keeping the unfolding overlap-free. In contrast to all other previ-
ous work, our approach is able to work with not-unfoldable input,
while keeping the unfolding single-patched.

3. Background and Definitions

In this section we review the most important definitions and con-
cepts. Many definitions and explanations can also be found in the
book Geometric Folding Algorithms: Linkages, Origami, Polyhe-
dra [DO07].

3.1. Unfolding

Unfolding a polyhedron means to cut it open and then unfold it
along its given edges, such that all faces end up in a common plane.
When unfolding, all faces must keep their shape and size, that is,
no distortions are allowed. Oftentimes, the term unfoldable is used
synonymous to “unfoldable without self-overlap”.

There are two main ways to unfold a polyhedron, one is called
edge unfolding, and the other one general unfolding. Edge unfold-
ing only allows cuts along existing edges of the polyhedron, while
general unfolding allows arbitrary cuts through the polyhedron’s
faces. Exemplary cases of both methods for unfolding a cube are
given in Figure 1. An overlap-free single-patched unfolding cre-
ated via edge unfolding is called a net. If a polyhedron does not

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Zawallich & R. Pajarola / Surface Flows in Unfolding 3 of 16

have a net, it is called not-unfoldable, or ununfoldable. In Table 1,
an overview of the capabilities of the two unfolding-techniques ap-
plied to (non-)convex polyhedra is given.

In contrast to edge unfolding, general unfolding has no theoret-
ical upper limit of how many folds have to be done. Also, general
unfolding can result in arbitrarily small faces, which may be too
small to fold in the real world. Therefore, we chose to base our
work specifically on edge unfolding.

(a) An unfolding of a cube, gener-
ated via edge unfolding.

(b) An unfolding of a cube, gen-
erated via general unfolding.

Figure 1: Two different unfoldings of a cube.

Edge unfolding General unfolding
Convex open always possible
Non-convex not always possible open

Table 1: Status of main questions concerning non-overlapping un-
foldings. [DO07, Table 22.1]

An (edge) unfolding can be defined via the cuts done along the
edges of the mesh. These cuts form a spanning-tree over the edges
of the mesh if the mesh is of genus zero. For higher genii, the cut-
structure needs to be a graph with as many loops as the genus of the
mesh. This cut-structure is referred to as a cut-tree for genus zero
meshes, and for higher genii the structure is called a cut-graph.
Unfortunately, the literature is not consistent and sometimes uses
the term cut-tree also for non-genus zero objects. An example un-
folding including the cut-tree highlighted on the mesh is shown in
Figure 2a.

Alternatively, an unfolding can be defined as a spanning-tree
over the dual-graph of the mesh. We call such a spanning-tree an
unfold-tree. Such an unfold-tree is a tree, regardless of the genus
of the mesh. In theory, flat regions of a mesh do not need to be cut
open and thus would allow for a loop in the tree. We chose to still
do the cut, to increase flexibility while solving overlaps. Within the
unfold-tree each node represents a face, and also an entire subtree.
Each node only needs to hold a transformation rotating the face it
represents into the plane of the parent face along their shared edge.
Obtaining this transformation for a given unfold-tree is straightfor-
ward. Unfolding the whole mesh can then be done by traversing
the tree once, while accumulating transformations. In Figure 2 the
unfold-tree is shown on the original as well as the unfolded mesh.

We call the interior angles of a face the face angles. Given a
vertex v in a mesh, we call the sum of all face angles incident to v

(a) A folded icosphere. (b) The corresponding unfolding.

Figure 2: A folded and overlap-free single-patched unfolded ico-
sphere with 80 faces. The unfold-tree is indicated in blue. The cut-
tree over the edges of the mesh is visualized in dark red. In the
unfolding, the cut-tree is the boundary and is not colored.

the total face angle of v. While all face angles of a planar polygon
add up to a constant (e.g. π for triangles), the total face angle of a
vertex is a positive floating number. In most practical cases the total
face angle is smaller than 4π, but in theory there is no upper limit.

The angle deficit of a vertex is equal to 2π minus the total face
angle of the vertex. If the angle deficit of a vertex is positive, only
one cut is needed to unfold the faces around it into a plane. Only if
the angle deficit of a vertex is zero, no cut is needed to unfold the
faces around it into a plane.

3.2. Tabu Unfolding

A central building block of our approach is the Tabu Unfold-
ing [Zaw23] algorithm, which we want to recap here. The algorithm
uses tabu search [Glo86] to iteratively resolve overlaps in an un-
folding, represented as an unfold-tree, until none are left. An initial
unfolding is generated using the Steepest Edge unfolder [Sch97].
In each iteration one node – possibly representing a whole subtree
– in the unfold-tree is re-attached to a new parent. This action is
called a move.

In each iteration, a random overlapping node is selected as a can-
didate to be moved. If the node can be moved in a way that reduces
the number of overlaps the move is performed. Else, the algorithm
recursively selects the parent node and does the same test, until a
move is found which reduces the number of overlaps, or until the
root node is reached. In the latter case the algorithm performs the
best move it found while climbing the tree. This move may worsen
the number of overlaps, but is still the best move available for the
sequence of nodes from the selected one to the root node.

To overcome local minima, the algorithm remembers the last m
moves and prevents these from being undone. If the algorithm de-
tects all possible moves are on the tabu list, the tabu list is cleared.
As in the original work, we use m = val · logval(|F|), with val being
the average valence of the dual graph of the mesh and |F| being the
number of faces in the mesh.

While providing a lot of benefits, a tree-structure poses some
problems when it comes to resolving overlaps in an unfold-
ing [Zaw23, Section 4.5]. These problems include inefficiency, but

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 16 L. Zawallich & R. Pajarola / Surface Flows in Unfolding

Transformation

U
nfolding

Reverse Transformation

Figure 3: A visualization of our pipeline applied to a screwdriver mesh with 2000 faces. In the first phase, the transformation (top row, green
arrows) is applied. Then, the transformed mesh is initially unfolded (right column, blue arrow). In the third phase, the transformation is
reversed while the unfolding is kept overlap-free (bottom row backwards, orange arrows).

also deadlocks, where the algorithm can not perform any more
moves. To prevent and resolve such situations Tabu Unfolding uses
a rerooting method. This method selects a new node to be the root
node of the unfold-tree. Please note that the unfold-pattern does not
change by rerooting. By rerooting in every iteration, the algorithm
can mimic the behavior of a flexible unfold-pattern, while main-
taining the benefits of a tree-structure. Within this work, we will
refer to this method as TU.

4. Methods

A common technique to overcome a difficult problem is to trans-
form it, solve the transformed problem and then reverse-transform
the result. Our approach follows this approach and consists of the
following three main parts, which are further explained in the fol-
lowing subsections:

1. Transform the mesh into an easier to unfold version
2. Unfold the transformed mesh
3. Reverse the transformation while keeping the unfolding

overlap-free

Our pipeline is illustrated in Figure 3. Since there is no clear
definition of what “easier to unfold” is, we investigate different
methods transforming a mesh. These methods are outlined in Sec-
tion 4.1. Please note that we are not just interested in the final result
of such a transformation, but also in every intermediate step.

As an input, we restrict our meshes to be orientable, triangu-
lar manifold meshes of genus zero. The orientability and manifold
constraints are necessary conditions for a mesh to be unfoldable. In

theory, it would be possible to use a transformation which can pro-
cess arbitrary faces. However, such a transformation would need
to yield intermediate and final results with planar faces, which is a
necessary constraint to be unfoldable. Thus in this work, we restrict
the input to be triangular. Since we aim to compare the effect of
different transformation methods, all methods need to be applied
to the same input. Some methods presented below in Section 4.1
can only process an input of genus zero. Therefore, we restrict our
input to be of genus zero as well.

4.1. Different Transformation Methods

In this work, we want to investigate the effect of different transfor-
mation methods on the aforementioned unfolding pipeline. When
reverse transforming the mesh (Step 3), introducing as little new
overlaps as possible during the process is desirable. Due to the
transformation (Step 1), faces will change their shape and size and
“grow” (or shrink) back to their original size during reverse trans-
formation. Besides growing/shrinking uniformly and rotating, each
face may also distort, e.g. by shearing or growing non-uniformly,
during the (reverse) transformation.

Looking at faces in the unfolding as nodes within the unfold-
tree, a deformation of a face will have an effect on the whole sub-
tree it is the root of. The effect which causes most problems is a
change in the folding axis, i.e. the direction of an edge between two
neighboring faces in the unfold-tree. Such a change in the folding
direction will cause all faces in the unfolding, represented by the
subtree, to rotate. See Figure 4 for an example. Any deformation
which changes the quasi-conformal error, defined as the ratio of

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Zawallich & R. Pajarola / Surface Flows in Unfolding 5 of 16

maximum (Γ) and minimum singular value (γ) of the unique affine
mapping S [SSGH01, Section 3], of a triangle, will also change at
least one axis of the triangle. In contrast, isometric transformations
will not change the axis at all. Unfortunately, isometric transfor-
mations are too rigid, to change the shape of a mesh into a more
convex form.

Figure 4: The effect of a small change in a vertex on an en-
tire unfold-tree. The solid lines represent the initial unfolding. The
dashed lines represent the unfolding after a vertex has been shifted
by a bit, with the red line showing the shift of the vertex. This vertex
shift causes a deformation effect in some of the surrounding faces.
Please note the enormous difference on the far left of the unfolding,
caused by the deformation that a small vertex move introduces.

Thus, in our work, we chose mostly conformal transformation
methods, which minimize the quasi-conformal error. While three
methods are conformal in every iteration, two are only conformal
in the result, but have conformal distortions in intermediate itera-
tions and two are not conformal at all. The different methods are
explained below. Figure 5 illustrates the effect of the transforma-
tion methods on an example mesh.

Conformal Curvature Flow

Presented by Crane et al. [CPS13], this method works directly on
curvature and restores vertex positions from the modified curvature.
To mimic the behavior of different curvature flows, this method al-
lows to filter curvature, before working with it [CPS13, Section 4]:

v← v− (I−σ∆
k)−1v,

with v being the flow direction (in our case the negative curva-
ture of the mesh), I the identity matrix, σ some step size and ∆

the Laplace-Beltrami operator. The value k determines the applied
type of flow. For k = 0 no filter is applied at all, k = 1 resembles
mean curvature flow and k = 2 corresponds to Willmore flow. This
flow is by nature conformal in every step (up to a discretization er-
ror), which makes the differences between this method with k = 1
and the cMCF method interesting. Our implementation follows the
original method without modifications. We will refer to these meth-
ods as CCFk with k ∈ {0,1,2}.

Conformalized Mean Curvature Flow

The deformation method was presented by Kazhdan et
al. [KSBC12] and aimed to remove singularities from ordi-
nary mean curvature flow. While yielding conformal results,
intermediate steps of this method may have conformal distortions.
Moreover, this method can only be applied to meshes of genus
zero, which is the reason for restricting our input to this class of
meshes as indicated above. The core concept is to repeatedly solve
the following equation:

MnVn = (Mn− tL)Vn+1,

with V being the vertex positions of the mesh, M the mass matrix,
L the stiffness matrix, and t some step factor. The subscript denotes
the iteration the respective variable belongs to. Our implementation
follows the original method without modifications. We will refer to
this method as cMCF.

Inflating-Inspired Flow

Inspired by the idea to treat the input mesh like a balloon, we imple-
mented a flow based on a mass-spring model. This flow repeatedly
solves the following equation:

Vn+1 =Vn−L−1(tMnNn)

with V being vertex positions, L the cotan-Laplace matrix, t some
step size, M the mass matrix, and N the vertex normals of the mesh.
The subscript denotes the iteration the respective variable belongs
to. This flow resembles Hooke’s law, with (tMnNn) serving as the
outward force and the cotan weights of L as the spring-constants.
Just like the cMCF method, this flow also can only process meshes
of genus zero. We will refer to this method as IIF.

Edge Normal Alignment Flow

Unfolding a triangle fan around a vertex is trivial as long as the an-
gle deficit around it is greater or equal to zero, i.e. the sum of angles
around that vertex is ∑i θi ≤ 2π. In such cases, one cut along any
edge of the vertex is sufficient to flatten the triangle-fan into a plane.
Even though there is no guarantee a mesh fulfilling this criterion in
every vertex is unfoldable, the angle deficit is still a measure worth
investigating in terms of unfolding. Since the sum over all angle
deficits is a topological constant, we decided to minimize the sum
of squared angle deficits, i.e. the distribution of angle deficits over
all vertices:

argmin
V

∑
V
(2π−∑

i
θi)

2

Instead of minimizing this sum directly, we chose a different route.
We align two different edge-normals. One is calculated as the area-
weighted mean of adjacent face normals and the other one is cal-
culated as the mass-normalized mean of adjacent vertex normals.
We will refer to these two variants as face-based edge normal and
vertex-based edge normal respectively. These two types of normals
define a rotation per edge, which we then use to recover the mesh in
an As-Rigid-As-Possible [SA07] sense. To incorporate the concept
of step sizes to this method, we use spherical linear interpolation
between the identity rotation and the one given by the two edge-
normals. In our work, we always rotate the face-based edge nor-
mal into the vertex-based edge normal: By doing so, the face-based

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 16 L. Zawallich & R. Pajarola / Surface Flows in Unfolding

(a) Input (b) CCF0 (c) CCF1 (d) CCF2 (e) cMCF (f) IIF (g) ENAF (h) AEF

Figure 5: Results of the flows used in this paper applied to a Squirrel model with 10.000 faces. Top row: After one iteration with maximal
step size. Bottom row: Final results.

edge normals are smoothly aligned between the vertex-based edge
normals. This results in the face-based edge normals around a ver-
tex to be as aligned as possible to the respective vertex normal. By
aligning the face-based edge normals (as much as possible) of a tri-
angle fan, the angle deficit of the center vertex is minimized. Since
this flow aligns the face-based edge normals towards the neighbor-
ing vertex normals, the angle deficit of all vertices is distributed as
evenly as possible. We will refer to this method as ENAF.

Angle-Equalizing Flow

The original flow was presented by Zhou et al. [ZS00] and aims to
equalize angles in a 2D domain. The core idea is to measure two
neighboring angles at a vertex and then to rotate the enclosed edge
such that the angles are considered optimal. In case of a homoge-
nous domain (e.g. triangles), the optimum would be equal angles.
The final vertex positions are the vertex-wise means of all rotated
results. In its original form, this flow only works in a purely 2D
domain. Our implementation extends the approach to also work on
a 2D surface in 3D. Instead of rotating edges in a fixed plane, we
rotate edges around the vertex normal of its end-vertex:

v j = vi +R(tθi, j)ei, j,

with v j being vertex at index j, ei, j the edge from vi to v j, θi, j
the angle the edge ei, j needs to be rotated, R(θi, j) the 3D rotation
around the vertex normal of v j by the angle θi, j, and t some step
size. In contrast to all other flows discussed in this section, this one
aims to preserve the appearance of the mesh, while only changing
the quality of its triangles. We will refer to this method as AEF.

Step Sizes

Each of the aforementioned methods has a step size t as a param-
eter, which only makes sense if it falls within a certain range. The
CCFk variants are using an explicit euler scheme, which limits the
step size by t < 1 from above [CPS13, Section 4]. For the cMCF
we follow the von Neumann stability analysis [MG80] and set the

maximal step size to t < 1
2λmax

, with λmax being the largest eigen-
value of the respective stiffness matrix. The IIF uses an explicit
euler scheme as well, which limits the step size to t < 1. Finally,
the AEF and ENAF both rotate edges by a certain angle and use the
step size to scale the rotation angle. Therefore, for these two flows,
t ≤ 1 is the limit. All step sizes are bound by t > 0 from below.

4.2. Applying a Transformation Method

In the first stage of our algorithm, the transformation method is
applied to the mesh. The method also defines the approximation in
case our pipeline stops before finishing the reverse-transformation
back to the input mesh. Therefore, it is advisable to use different
transformation methods depending on the application. In this work,
we investigate seven different methods, but our pipeline is designed
to work with any iterative transformation method.

Our pipeline aims to produce very few new overlaps in each
reverse-transformation step. This can be achieved by only chang-
ing the shape of the object gradually, respectively performing small
steps while transforming. In particular, we pick an initial step size
and increase it by x% per iteration, up to the maximal step size of
the respective method. The increasing step size counterweights the
well-known decreasing geometric change with constant step size
yielded by most surface flows. The smaller x, the finer the change in
each transformation step, resulting in less newly introduced over-
laps per reverse-step. Choosing x too small will result in a lot of
calculation overhead, though. In our work, we chose x = 100%, i.e.
we double the step size in every transformation iteration.

Similarly, the initial step size also has a direct effect on the ap-
proximation quality, as well as the amount of newly introduced
overlaps per reverse-transformation iteration. While there exist
hard upper bounds for the initial step size, the lower bound is ϵ> 0.
Again, a small initial step size will result in finer transformation
steps, which will also result in more computational work. In our
work we chose the initial step size depending on the transforma-
tion method slightly larger than zero (between 10−7 and 10−1).

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Zawallich & R. Pajarola / Surface Flows in Unfolding 7 of 16

4.3. Unfolding

In the second stage, the transformed mesh is unfolded. When un-
folding the transformed mesh, it is important to keep the reverse
transformation in mind. During the transformation, some faces
change more than others. The faces which have changed more dur-
ing the forward transformation will also change a lot back during
the back transformation. If those faces are high up in the unfold
tree, the branches attached to them will move a lot, as illustrated
in Figure 4, which can cause a lot of avoidable overlap resolution
work. Therefore, we aim to place the faces which changed the most
as far down in the initial unfold tree as possible.

The initial unfolding of the transformed mesh is created, using
Tabu-Unfolding [Zaw23], but instead of using the steepest edge un-
folder, we use a minimal spanning tree heuristic. For this heuris-
tic, we assign a value to each face which represents how much it
changed during the transformation, i.e. the change in size of the
face. Then, the weights for directed edges of dual-graph are the
ratios of weights of neighboring faces:

wi, j =
w j

wi

with wi, j being the weight of the edge from face i to face j and wi
being the weight of face i. Afterwards, we grow a spanning-tree in
the fashion of Prim’s algorithm, with the face having the smallest
weight as a root node. With these weights, Prim’s algorithm will
always add the node next, which is the locally relative best regard-
ing the node-weights, i.e. faces which have changed the least bad
relative to their neighbor will be added first. This way, within each
branch of the tree, node-weights will increase as gradually as pos-
sible. Please note that this tree is not a minimal spanning tree, since
Prim’s algorithm is designed for undirected graphs.

4.4. Reverse Transformation

In the last stage, the transformation of the first stage is undone in
reverse order while keeping the unfolding overlap-free. While re-
versing the transformations, we again use Tabu-Unfolding [Zaw23]
as a basis. In each step, we use the unfolding computed in the pre-
vious step as a starting point.

If eventually no overlap-free unfolding can be found, the process
stops and returns the last intermediate overlap-free unfolding as the
best possible approximation.

5. Results

Example unfoldings of a triangular mesh as well as a refolded ex-
ample are shown in Figures 6 and 7.

To determine the effect of the different transformers introduced
above in Section 4.1, we evaluated six different metrics, which are
all relevant to unfolding:

• Coverages: The coverage of an unfolding is defined as its
summed triangle areas divided by the area of its oriented bound-
ing box.

• Aspect ratios: The aspect ratio of an unfolding is defined as the
ratio of the oriented bounding box sides, such that the result is
greater or equal to one.

Figure 6: The unfolding of a Bunny with 2000 faces.

(a) The unfolded Elephant. (b) The refolded Elephant.

Figure 7: An Elephant model with 300 faces unfolded and folded.

• Branching: We define the average branching factor of a tree as
the sum of children of all internal nodes divided by the number
of internal nodes.

• Success rates: A success was given, when a method was able
to unfold the original model without approximation. In our
pipeline, this is equivalent to finishing the reverse transforma-
tion completely.

• Success rates approx: Success rate including approximative re-
sults.

• Timings: Timings of successful unfoldings.

Coverages determine how much material is wasted when cut-
ting, and aspect ratios are important to fit standard paper sizes. In
our evaluation, we focused on the success rate including approxi-
mative results. The success rates without approximation are shown
in Figure 23 in Appendix B. The differences within all aspects are
evaluated in the following subsections. Besides these metrics, we
also investigate the approximative effect of our algorithm on spe-
cific and general input. Lastly, we also discuss limitations.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 16 L. Zawallich & R. Pajarola / Surface Flows in Unfolding

We chose a subset of the Thingi10k dataset [ZJ16] for our eval-
uation. To match our constraints, we only kept meshes which were
manifold, consisted of a single component, and were of genus zero.
Our subset consisted of 1,339 meshes, which we represented in ten
different resolutions (100, 200, 400, 600, 800, 1000, 1250, 1500,
1750, and 2000 faces).

5.1. Coverage, Aspect Ratios, Branching, and Success Rates

Besides a few exceptions, the coverages (see Figure 8), aspect ratios
(see Figure 9), and success rates (see Figures 11 and 23), of our
algorithm in all variants and the Tabu Unfolder are very similar. In
contrast, the branching factors (see Figure 10) of the unfold-trees
show significant differences.

In the coverage curve (see Figure 8) all variants and the Tabu Un-
folder look very similar. Except for the AEF one, all variants stay
above 20% coverage. Since our method as well as the Tabu Un-
folder aim for single-patched unfoldings, coverages are naturally
lower compared to segmenting approaches.

0 500 1,000 1,500 2,000
15

20

25

30

Number of Faces

C
ov

er
ag

e
(%

)

CCF0 CCF1 CCF2 cMCF
IIF ENAF AEF TU

Figure 8: The mean coverages of our algorithm in all variants com-
pared to Tabu Unfolding.

Furthermore, the aspect ratios (see Figure 9) of all variants are
within a narrow range between 1.5 and 1.8. In the current evalua-
tion, our algorithm seems to result in slightly higher aspect ratios
than the basic Tabu Unfolder.

0 500 1,000 1,500 2,000
1.4

1.5

1.6

1.7

1.8

Number of Faces

A
sp

ec
tR

at
io

CCF0 CCF1 CCF2 cMCF
IIF ENAF AEF TU

Figure 9: The mean aspect ratios of our algorithm in all variants
compared to Tabu Unfolding.

We also investigated the mean average branching factors (see
Figure 10) of the underlying trees. All variants of our algorithm
show similar behavior. In contrast, the Tabu Unfolder has a clear
downward trend. Please note that this is a topological measure and
does not allow any inference about the geometric layout of the un-
folding. We also evaluated other topological measures, like tree
heights, but did not find any difference.

0 500 1,000 1,500 2,000

1.26

1.28

1.3

1.32

Number of Faces

B
ra

nc
hi

ng
Fa

ct
or

CCF0 CCF1 CCF2 cMCF
IIF ENAF AEF TU

Figure 10: The mean average branching factors of our algorithm
in all variants compared to Tabu Unfolding.

0 500 1,000 1,500 2,000
97

98

99

100

Number of Faces

Su
cc

es
s

R
at

e
A

pp
ro

x
(%

)

CCF0 CCF1 CCF2 cMCF
IIF ENAF AEF TU

Figure 11: The success rates of our algorithm in all variants com-
pared to Tabu Unfolding including approximative results.

Finally, within the success rates including approximative results
(see Figure 11), the worst reliabilities were all above 97%. More-
over, the best variants of our algorithm show even better reliability
scores than the Tabu Unfolder. Please note that our variants and the
Tabu Unfolder succeed on different inputs. E.g., even though their
reliability values are very close, the IIF method yielded an approxi-
mation or a solution for 50% of the cases, where the Tabu Unfolder
failed. Unfortunately, our algorithm still fails to produce approx-
imative results for some inputs, see Section 5.4 for a discussion
about limitations. The success rates of our algorithm excluding ap-
proximative results are shown in Figure 23 in Appendix B. Even
without considering approximative results, some variants of our al-
gorithm show similar reliability values as the Tabu Unfolder does.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Zawallich & R. Pajarola / Surface Flows in Unfolding 9 of 16

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

100

200

300

400

Number of Faces

Ti
m

e
(s

)

CCF0 CCF1 CCF2 cMCF IIF ENAF AEF TU

Figure 12: Median unfold timings of our method in all variants (see Section 4.1) compared to Tabu Unfolding.

5.2. Timings

All timings have been measured on a machine with an i7-10700K
CPU (3.8GHz) and 128GB RAM running Linux. All implementa-
tions were written in C++ and were executed without paralleliza-
tion. We executed each variant of our algorithm, as well as Tabu
Unfolding, on each mesh in the test set in each resolution once.
Even though the test set is large, each model has only been un-
folded once and thus average times are still too much affected by
outliers. Therefore, we chose to analyze the timings via the me-
dian, which is much less sensitive to outliers. The median timings
of all runs are shown in Figure 12. In Figure 22 a side-by-side com-
parison of the timings including distribution-indicators are shown.
Detailed results are shown in Tables 2 in Appendix C.

To analyze the performance difference, we also measured the
accumulated number of overlaps that each method had to solve over
the whole reverse-transformation phase. The medians of these sums
are shown in Figure 13.

0 500 1,000 1,500 2,000

1,500
3,000
4,500
6,000
7,500
9,000

Number of Faces

Su
m

of
O

ve
rl

ap
s

CCF0 CCF1 CCF2 cMCF
IIF ENAF AEF TU

Figure 13: Median accumulated overlaps each variant of our al-
gorithm had to solve during the reverse-transformation.

Interestingly, the number of overlaps does not always correlate
with the timings. For example, the IIF variant had the least overlaps
to solve, but performed among the slowest. Within the CCF vari-
ants, a clear correlation between k and the performance, in both the
overlaps as well as the timings is visible. Looking only at the tim-
ings, the cMCF variant performed just a bit worse than the CCF1
one. When taking into account the number of overlaps as well,
the CCF1 variant showed a way better time-per-overlap ratio than
the cMCF one. Of all variants we tested our algorithm with, the
ENAF one performed the best. Unfortunately, this variant showed
the worst reliability values.

When taking a combination of success rate and runtime into
account, the CCF2 method showed the best overall performance.
Additionally, as shown in Figure 22 the timing distribution of the
CCF2 variant is also the narrowest among all variants of our algo-
rithm.

To investigate why some variants had to solve less overlaps,
but took considerably longer to do so, a closer look at different
cases where overlaps can occur during the reverse transformation
is needed.

Angle Deficit And Overlaps

One crucial value to look at within an unfolding is the angle deficit
at each vertex. In unfoldings, every vertex has an adjacent gap be-
tween two faces, which was created by cutting the mesh open. If
the angle deficit at a vertex decreases, the angle of the gap also de-
creases. Such a decrease of angle will rotate the two branches the
two adjacent faces are the root nodes of, which may result in the
two branches to overlap with other branches. If the angle deficit
becomes negative, the two faces adjacent to the gap will overlap.
Typically, these two faces are also neighbors in the mesh. Within an
unfolding, especially of convex (parts of) polyhedra, neighboring
faces of the mesh tend to be close within the unfolding as well. E.g.,
in Figure 2b every neighbor of a face has no other face between

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 16 L. Zawallich & R. Pajarola / Surface Flows in Unfolding

them, except for the tips of the triangle-strips. Overlaps between
neighboring faces oftentimes do not have a trivial solution, espe-
cially for triangles. If two neighboring triangles overlap, moving
one overlapping triangle to the other will just result in the moved
triangle to overlap with its current parent. Thus, there is at maxi-
mum only one triangle left to move to. This last triangle will often-
times be located too close to the other two to resolve the overlap by
moving a face to it. If both overlapping neighbors are inner nodes
of the unfold-tree, there is no move left which will make both faces
overlap-free. Such an example is illustrated in Figure 14b. There-
fore, avoiding negative angle deficits within the reverse transforma-
tion will have a beneficial effect on the resulting performance.

The issue of overlapping neighbors becomes even more prob-
lematic if the overlapping faces are located on the inside of the
unfolding. In such a situation, many faces need to be moved af-
ter another to resolve the overlap. This is a very tedious task. The
problem of rotating branches, as described in Section 4.3, can be
mitigated by constructing the unfold-tree such that faces which are
expected to change most are placed close to the leaves. Unfortu-
nately, there is no guarantee this construction also results in unfold-
trees having their leaves on the outside of the unfolding. Therefore,
overlaps on the inside of the unfolding regularly occur during the
reverse-transformation. These overlaps are the main reason all vari-
ants of our algorithm perform slower than Tabu Unfolding, even
though they have to solve comparably many overlaps.

Conformal Willmore Flow

Most transformation methods used within this work converge to-
wards a sphere for genus zero objects, as shown for an example
in Figure 5. Thus, for these variants of our algorithm the reverse
transformation starts with a sphere, which grows into the original
object. To have a closer look at the effect, we investigated how this
growing out affects the unfolding on an icosphere with 80 faces.
The effects are shown in Figure 14.

Just shifting a vertex without considering its neighbors will result
in a drastic decrease of angle deficit at the neighboring vertices.
This is illustrated in Figure 14b. Please note, this example is just
an illustration, none of the transforming methods used in this work
follow such a strategy.

If the vertex is not just shifted, but the neighbors are consid-
ered as well, the angle deficit of a vertex may still decrease. E.g.,
the cMCF transformer does consider the neighboring faces as well,
but introduces conformal distortions in intermediate steps. Trans-
forming the neighbors according to the same vertex shift as before
does not result in overlaps in the case of the IcoSphere. Still, angle
deficits at some vertices decreased significantly (see Figure 14c).

Lastly, if the shift is done in a conformal way (up to discretiza-
tion error), by using a CCFk transformer, the angle deficits decrease
less. Many angle deficits are increasing, as e.g. the one at the center
vertex, while the ones which decrease only do so by a bit and not
as much as with the cMCF method. This is shown in Figure 14d.

Conformal transformations, which only apply local scale and ro-
tation, change the shape of triangles as little as possible. If all tri-
angles around a vertex keep their shape as much as possible, their
face angles will also change very little, which results in the angle

(a) An unfolding of an IcoSphere
with 80 faces.

(b) The same unfolding after a
vertex has been shifted without
considering its neighbors.

(c) The same unfolding after a
vertex has been shifted by the
cMCF method.

(d) The same unfolding after a
vertex has been shifted by the
CCFk method.

Figure 14: Transforming the surface of an IcoSphere with 80 faces
has different effects on the unfolding. In all transformations the
same vertex has been shifted in the same direction. Other vertices
have been shifted as well according to the respective method. De-
pending on the transformation method, the angle deficit of neigh-
boring vertices may decrease or increase. Subfigure 14b also illus-
trates the issue of overlaps close to the center of the unfolding as
well as rotating branches (see Section 4.1).

deficit to change proportionally little. This would result in no an-
gle deficits of a vertex to change. In the IcoSphere with 80 faces
example the three CCFk methods resulted in almost identical re-
sults, because of the low face count as well as the round shape and
identical curvatures at each vertex.

To investigate the differences between the CCF1, CCF2 and
cMCF methods, we applied these three variants of our method to
a teddy bear with 1200 faces and recorded every step of the re-
verse transformation. The effect each method has on the unfold-
ing in the reverse transformation is exemplarily shown in Fig-
ures 15, 16, and 17.

In accordance with the argument from the IcoSphere example,
the cMCF method suffers from conformal distortions, which re-
sult in angle deficits to decrease. The overlaps shown in Figure 15b
meet both criteria of difficult overlaps discussed above. Most over-
laps are created between neighboring branches in the unfolding,
some even additionally on the inside of the unfolding. Resolv-
ing such overlaps is very time-consuming and explains why the
cMCF variant of our algorithm performed slower than other meth-
ods, which had to resolve more overlaps.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Zawallich & R. Pajarola / Surface Flows in Unfolding 11 of 16

(a) The unfolding before undoing a
transformation step.

(b) The unfolding after undoing a
transformation step.

Figure 15: Intermediate steps of the reverse transformation while
unfolding a Teddy with 1200 faces using our algorithm in the cMCF
variant. Bottom: Zoom in on the marked area.

(a) The unfolding before undoing a
transformation step.

(b) The unfolding after undoing a
transformation step.

Figure 16: Intermediate steps of the reverse transformation while
unfolding a Teddy with 1200 faces using our algorithm in the CCF1
variant. Bottom: Zoom in on the marked area.

The CCF1 example meets the argument about conformality from
above. Branches of the unfolding grow out without noticeably
changing directions. While this is an improvement in comparison
to the cMCF method, there are still problems left. While the ob-
served behavior prevents neighboring branches from overlapping
each other, it is still not suited well for unfolding. In the result-
ing sphere of conformally transformed meshes, there are dense ar-

(a) The unfolding before undoing a
transformation step.

(b) The unfolding after undoing a
transformation step.

Figure 17: Intermediate steps of the reverse transformation while
unfolding a Teddy with 1200 faces using our algorithm in the CCF2
variant. Bottom: Zoom in on the marked area.

eas with many small triangles in them (see e.g. Figure 5b bottom).
By construction (see Section 4.3), these triangles will be very far
down in the unfold-tree. Within the unfolding, they will at first be
located at neighboring positions, or at the outside of the unfold-
ing. See Figure 18 for an example. In this configuration, if two
branches are growing towards each other, they will overlap at some
point. To worsen the situation, after resolving the overlaps in one
reverse iteration, the same two branches will overlap later on again.
These overlaps are easier to resolve than neighboring overlapping
branches, as the ones in Figure 15b. This explains why the CCF1
variant of our algorithm had to resolve many more overlaps than
the cMCF variant, but still performed equally fast, i.e. had a better
time per overlap ratio.

Figure 18: The initial unfolding of a conformally transformed
Teddy with 1200 faces.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

12 of 16 L. Zawallich & R. Pajarola / Surface Flows in Unfolding

The CCF2 example shows the same “opening” behavior as
shown in Figure 14d. Willmore flow is known to create rounder
shapes [Cra13, Page 87, bottom]. The IcoSphere example with very
few faces from above was not transformable in a conformal way
without keeping the roundness within the transformation. It is ex-
actly this roundness, which results in the “opening” behavior seen
in Figures 14d and 17. This opening behavior avoids branches on
opposing sides to grow into each other, avoiding the overlaps the
CCF1 transformer encounters. With only “nice” overlaps left, the
CCF2 variant had one of the best time per overlap ratios and the
least overlaps among all variants of our algorithm.

Edge Normal Alignment Flow

The ENAF variant of our algorithm had an almost equal time per
overlap ratio than the CCF2 method. Since it works on the angle
deficits directly, a similar argumentation about the opening behav-
ior in the unfolding holds as above. The main difference between
the CCF2 and ENAF method is, the ENAF method does not con-
verge to a sphere (see Figure 5). Therefore, in the reverse transfor-
mation, the ENAF variant needed to undo less geometric change
than the CCF2 variant needed to. This naturally results in less over-
laps to resolve as well (see Figure 13), but also in a higher failure
rate (see Figure 11).

5.3. Approximative Results

One very well known polyhedron, which is not-unfoldable, is the
spiked tetrahedron [DO07, Chapter 22.4]. To create it, we replaced
all triangles of a tetrahedron with spiked triangle hats. The result
is visualized in Figure 19a. A tetrahedron only has four faces (a
spiked tetrahedron has 36 faces), which is too few to work on curva-
ture directly. Therefore, we used the cMCF variant for this model.

Our method first transforms the spiked tetrahedron back into
the shape of a tetrahedron with slightly curved faces. Then, while
reverse-transforming, the spikes grow out again, until they reach a
height, which is not unfoldable anymore. In Figure 19b the result is
visualized. We measured the angle deficit of each vertex at the base
of each spike and found that they were just slightly above zero. An
angle deficit below zero makes the shape not-unfoldable.

(a) (b)

Figure 19: A not-unfoldable spiked tetrahedron (left) and its clos-
est unfoldable approximation (right) created by our algorithm in
the cMCF variant.

While the result visually does not match the initial input very
well, it is still the closest unfoldable approximation. If the spikes
are an important feature, which has to be preserved, an approxi-
mative method like ours may not be the correct choice in the first
place. We explicitly chose an example resulting in a significantly
different approximation, to show the limits of our approach.

Another example is half an icosahedron, which is filled with a
half-sphere and has some carvings on the outside triangles. Espe-
cially the carvings pose a similar issue for unfolding as the spikes
from the tetrahedron above. In total, the mesh has 600 faces. Please
note, we do not know if this example has a net. The original as well
as an unfoldable approximation are shown in Figure 20. While the
carvings on the outside are only slightly visible anymore in our ap-
proximation, the half-sphere is fully recovered.

(a) The original mesh. (b) Our approximation.

Figure 20: A mesh which we were not able to unfold and its closest
unfoldable approximation.

We investigated the approximation quality of our algorithm by
measuring the Hausdorff distance between approximative results
and their originals relative to the respective bounding box diago-
nal. In this evaluation, we scaled both bounding box diagonals to
the same length and placed both bounding box centers at the same
location. The results are shown in Figure 21. Please note that we
only had very few approximative results. Interestingly, almost all
approximations were just one or two steps away from finishing the
reverse-transformation.

0 500 1,000 1,500 2,000

10

20

30

40

50

Number of Faces

H
au

sd
or

ff
D

is
ta

nc
e

(%
)

CCF0 CCF1 CCF2 cMCF
IIF ENAF AEF

Figure 21: Mean relative Hausdorff distances over all approxima-
tive results for each variant of our algorithm.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Zawallich & R. Pajarola / Surface Flows in Unfolding 13 of 16

5.4. Limitations

Naturally, our approach “inherits” all limitations and drawbacks of
the transformation method used. Some methods are only applica-
ble to genus zero or triangular input (see Section 4.1). Moreover,
it is well known that numerical problems can occur when triangles
shrink too much during the transformation. This problem typically
arises with high resolution input and would prevent our method
from scaling arbitrarily. Additionally, coarse triangulations of geo-
metric features are difficult to transform reasonably, especially for
conformal flows. E.g., the spikes shown in Figure 19a or the dents
shown in Figure 20a prevent a reasonable conformal transforma-
tion. Generally, some input resulted in the transformers to not work
at all, or in extreme deformations. The latter case is also the main
reason for failures in our tests, where Tabu Unfolding succeeded.

Finally, there is no guarantee on the approximation quality to
be optimal. This limitation applies in two different ways. On one
hand, a different transformation method may yield a better approx-
imation. On the other hand, there is also no guarantee that if a
given approximation is not-unfoldable, a closer approximation of
the same transformation method is also not-unfoldable.

6. Conclusion and Future Work

In this work, we presented an algorithm, which unfolds a given
triangular mesh, by first transforming it into an “easier to unfold”
shape, unfolds this shape and then undoes the transformation, while
keeping the unfolding overlap-free. We showed that this approach
performs reasonably well. In contrast to other methods, our ap-
proach keeps the unfolding in one part, rather than segmenting it
into pieces. Instead, our method allows approximative results. Even
though all flavors of our method performed slower than Tabu Un-
folding, we are now able to process input which is not-unfoldable
and yield an approximative result. From our experiments, we rec-
ommend using the CCF2 transformer, since it performs reasonably
fast, while having a good reliability. If time is not an issue, but
rather approximation quality, we recommend using our AEF vari-
ant. It also showed the best approximation quality among all vari-
ants (see Figure 21), while also having one of the highest success
rates (see Figure 11).

Currently, we only investigated triangle meshes as well as genus
zero meshes. In the future we would like to extend our research
to higher genuses as well as higher order polygonal meshes. Also,
exploring the effect and performance of different transformers, like
other conformal Willmore transformers or even higher order flows
(e.g., CCF3+), or combinations of different transformers (e.g. the
ENAF and AEF one), is up for future work.

Moreover, in our current approach the reverse transformation is
only rewinding the forward transformation. Investigating the ef-
fect of different reverse strategies, like using another transformer
in combination with an energy minimizing term, is still open for
future research.

Finally, our current approach is limited to triangular input. One
major task for future works is to find a way to also process non-
triangular input. In particular, it is up for research, how to maintain
the properties of a transformation method, while keeping the faces
flat in every transformation step.

References
[CPS13] CRANE K., PINKALL U., SCHRÖDER P.: Robust fairing via

conformal curvature flow. ACM Transactions Graphics 32, 4 (July 2013),
61:1–10. doi:10.1145/2461912.2461986. 5, 6

[Cra13] CRANE K.: Conformal Geometry Processing. Phd thesis, Cal-
tech, June 2013. 12

[DO07] DEMAINE E. D., O’ROURKE J.: Geometric Folding Algorithms:
Linkages, Origami, Polyhedra. Cambridge University Press, 2007. doi:
10.1017/CBO9780511735172. 1, 2, 3, 12

[DT17] DEMAINE E. D., TACHI T.: Origamizer: A practical algorithm
for folding any polyhedron. In International Symposium on Computa-
tional Geometry (2017), vol. 77, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, pp. 34:1–16. doi:10.4230/LIPIcs.SoCG.2017.34.
2

[F4́8] FÁRY I.: On straight line representation of planar graphs. Acta Uni-
versitatis Szegediensis Sectio Scientarium Mathematicarum 11, 4 (1948),
229–233. 2

[GBKK98] GUPTA S. K., BOURNE D. A., KIM K. H., KRISHNAN S.:
Automated process planning for sheet metal bending operations. Jour-
nal of Manufacturing Systems 17, 5 (1998), 338–360. doi:10.1016/
S0278-6125(98)80002-2. 1

[Glo86] GLOVER F.: Future paths for integer programming and links to
artificial intelligence. Computers & Operations Research 13, 5 (1986),
533–549. doi:10.1016/0305-0548(86)90048-1. 3

[HE12] HAENSELMANN T., EFFELSBERG W.: Optimal strate-
gies for creating paper models from 3d objects. Multimedia
Systems 18, 6 (November 2012), 519–532. doi:10.1007/
s00530-012-0273-1. 2

[HG00] HORMANN K., GREINER G.: MIPS: An efficient global
parametrization method. In Curve and Surface Design: Saint-Malo 1999,
Innovations in Applied Mathematics. Vanderbilt University Press, 2000,
pp. 153–162. 2

[HHL19] HERNANDEZ E. A. P., HARTL D. J., LAGOUDAS
D. C.: Active Origami. Springer, 2019. doi:10.1007/
978-3-319-91866-2. 2

[HLS07] HORMANN K., LÉVY B., SHEFFER A.: Mesh parameteriza-
tion: Theory and practice. In ACM SIGGRAPH 2007 Courses (2007),
Association for Computing Machinery, p. 1–es. doi:10.1145/
1281500.1281510. 2

[KSBC12] KAZHDAN M., SOLOMON J., BEN-CHEN M.: Can mean-
curvature flow be modified to be non-singular? Computer Graph-
ics Forum 31, 5 (August 2012), 1745–1754. doi:10.1111/j.
1467-8659.2012.03179.x. 5

[KSS06] KHAREVYCH L., SPRINGBORN B., SCHRÖDER P.: Discrete
conformal mappings via circle patterns. ACM Transactions on Graphics
25, 2 (April 2006), 412–438. doi:10.1145/1138450.1138461.
2

[KTGW20] KORPITSCH T., TAKAHASHI S., GRÖLLER E., WU H.-Y.:
Simulated annealing to unfold 3d meshes and assign glue tabs. Journal of
WSCG 28, 1-2 (2020), 47–56. doi:10.24132/JWSCG.2020.28.
6. 2

[KXL17] KIM Y., XI Z., LIEN J.: Disjoint convex shell and its applica-
tions in mesh unfolding. Computer-Aided Design 90 (September 2017),
180–190. doi:10.1016/j.cad.2017.05.014. 2

[MG80] MITCHELL A. R., GRIFFITHS D. F.: The Finite Difference
Method in Partial Differential Equations. Wiley, 1980. 6

[MS04] MITANI J., SUZUKI H.: Making papercraft toys from meshes us-
ing strip-based approximate unfolding. ACM Transactions on Graphics
23, 3 (August 2004), 259–263. doi:10.1145/1015706.1015711.
2

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium
on Geometry Processing (2007), pp. 109–116. doi:10.2312/SGP/
SGP07/109-116. 5

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1145/2461912.2461986
https://doi.org/10.1017/CBO9780511735172
https://doi.org/10.1017/CBO9780511735172
https://doi.org/10.4230/LIPIcs.SoCG.2017.34
https://doi.org/10.1016/S0278-6125(98)80002-2
https://doi.org/10.1016/S0278-6125(98)80002-2
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1007/s00530-012-0273-1
https://doi.org/10.1007/s00530-012-0273-1
https://doi.org/10.1007/978-3-319-91866-2
https://doi.org/10.1007/978-3-319-91866-2
https://doi.org/10.1145/1281500.1281510
https://doi.org/10.1145/1281500.1281510
https://doi.org/10.1111/j.1467-8659.2012.03179.x
https://doi.org/10.1111/j.1467-8659.2012.03179.x
https://doi.org/10.1145/1138450.1138461
https://doi.org/10.24132/JWSCG.2020.28.6
https://doi.org/10.24132/JWSCG.2020.28.6
https://doi.org/10.1016/j.cad.2017.05.014
https://doi.org/10.1145/1015706.1015711
https://doi.org/10.2312/SGP/SGP07/109-116
https://doi.org/10.2312/SGP/SGP07/109-116

14 of 16 L. Zawallich & R. Pajarola / Surface Flows in Unfolding

500 1,000 1,500 2,000

200

400

600

800

Number of Faces

T
im

e
(s
)

(a) CCF0

500 1,000 1,500 2,000

200

400

600

800

Number of Faces

T
im

e
(s
)

(b) CCF1

500 1,000 1,500 2,000

200

400

600

800

Number of Faces

T
im

e
(s
)

(c) CCF2

500 1,000 1,500 2,000

200

400

600

800

Number of Faces
T
im

e
(s
)

(d) cMCF

500 1,000 1,500 2,000

200

400

600

800

Number of Faces

T
im

e
(s
)

(e) IIF

500 1,000 1,500 2,000

200

400

600

800

Number of Faces

T
im

e
(s
)

(f) ENAF

500 1,000 1,500 2,000

200

400

600

800

Number of Faces

T
im

e
(s
)

(g) AEF

500 1,000 1,500 2,000

200

400

600

800

Number of Faces

T
im

e
(s
)

(h) TU

Figure 22: A side-by-side comparison of the timings for all flavors of our algorithm, and Tabu Unfolding, including distribution-indicators.
The line for each graph is the median time, the area around the line marks the value at 25% and 75% of the recorded timings.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Zawallich & R. Pajarola / Surface Flows in Unfolding 15 of 16

[Sch97] SCHLICKENRIEDER W.: Nets of Polyhedra. Diploma thesis,
Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin,
1997. 3

[SGC18] STEIN O., GRINSPUN E., CRANE K.: Developability of trian-
gle meshes. ACM Transactions on Graphics 37, 4 (July 2018), 77:1–14.
doi:10.1145/3197517.3201303. 2

[SLMB05] SHEFFER A., LÉVY B., MOGILNITSKY M., BOGOMYAKOV
A.: Abf++: Fast and robust angle based flattening. ACM Transactions
on Graphics 24, 2 (April 2005), 311–330. doi:10.1145/1061347.
1061354. 2

[SP11] STRAUB R., PRAUTZSCH H.: Creating optimized cut-out sheets
for paper models from meshes. Karlsruhe Reports in Informatics 36
(2011), 1–15. doi:10.5445/IR/1000025577. 2

[SSGH01] SANDER P. V., SNYDER J., GORTLER S. J., HOPPE H.:
Texture mapping progressive meshes. In Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive Techniques (Au-
gust 2001), Association for Computing Machinery, pp. 409–416. doi:
10.1145/383259.383307. 5

[STL06] SHATZ I., TAL A., LEIFMAN G.: Paper craft models from
meshes. The Visual Computer 22, 9 (September 2006), 825–834. doi:
10.1007/s00371-006-0067-6. 2

[Tac09] TACHI T.: Origamizing polyhedral surfaces. IEEE Transactions
on Visualization and Computer Graphics 16, 2 (2009), 298–311. doi:
10.1109/TVCG.2009.67. 2

[TWS∗11] TAKAHASHI S., WU H.-Y., SAW S. H., LIN C.-C., YEN
H.-C.: Optimized topological surgery for unfolding 3d meshes. Com-
puter Graphics Forum 30, 7 (2011), 2077–2086. doi:10.1111/j.
1467-8659.2011.02053.x. 2

[XKKL16] XI Z., KIM Y.-H., KIM Y. J., LIEN J.-M.: Learning to seg-
ment and unfold polyhedral mesh from failures. Computers & Graphics
58, C (August 2016), 139–149. doi:10.1016/j.cag.2016.05.
022. 2

[XL17] XI Z., LIEN J.-M.: Polyhedra fabrication through mesh con-
vexification: A study of foldability of nearly convex shapes. In Vol-
ume 5B: 41st Mechanisms and Robotics Conference (August 2017).
doi:10.1115/DETC2017-67212. 2

[Zaw23] ZAWALLICH L.: Unfolding Polyhedra via Tabu Search. Tech.
rep., University of Zurich, 2023. 2, 3, 7, 15

[ZJ16] ZHOU Q., JACOBSON A.: Thingi10k: A dataset of 10,000 3d-
printing models. arXiv preprint arXiv:1605.04797 (July 2016). doi:
10.48550/arXiv.1605.04797. 8

[ZS00] ZHOU T., SHIMADA K.: An angle-based approach to two-
dimensional mesh smoothing. In Proceedings of the 9th International
Meshing Roundtable (October 2000), pp. 373–384. 6

Appendix A: Pseudo-Code

Algorithm 1 Tabu Search for Unfolding Polyhedra
Require: T ▷ T is the transformer, applying a flow
Require: S ▷ S is the 2D overlap solver, i.e. the Tabu Unfolder
Require: U ▷ U is some unfolding

function SURFACEFLOWUNFOLDING(T,S,U)
H← stack()
t← T.getMinimalStepSize()
while !T.isConverged() do ▷ Section 4.2

T.per f ormStep(t)
H.push(T.currentVertices())
t←min(2t,T.getMaximalStepSize())

end while
U ← createInitialUn f olding(H.pop()) ▷ Section 4.3
if !S.resolveOverlaps(U) then ▷ [Zaw23]

return −1 ▷ Failed case
end if
while !H.isEmpty() do ▷ Section 4.4

U ′←U
U.setVertices(H.pop())
if !S.resolveOverlaps(U) then ▷ [Zaw23]

U ←U ′ ▷ Restore last valid state
return 1 ▷ Approximative result

end if
end while
return 0 ▷ Success

end function

Appendix B: Success Rates

0 500 1,000 1,500 2,000
96

97

98

99

100

Number of Faces

Su
cc

es
s

R
at

e
(%

)

CCF0 CCF1 CCF2 cMCF
IIF ENAF AEF TU

Figure 23: The success rates of our algorithm in all variants com-
pared to Tabu Unfolding excluding approximative results.

Appendix C: Detailed Results

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1145/3197517.3201303
https://doi.org/10.1145/1061347.1061354
https://doi.org/10.1145/1061347.1061354
https://doi.org/10.5445/IR/1000025577
https://doi.org/10.1145/383259.383307
https://doi.org/10.1145/383259.383307
https://doi.org/10.1007/s00371-006-0067-6
https://doi.org/10.1007/s00371-006-0067-6
https://doi.org/10.1109/TVCG.2009.67
https://doi.org/10.1109/TVCG.2009.67
https://doi.org/10.1111/j.1467-8659.2011.02053.x
https://doi.org/10.1111/j.1467-8659.2011.02053.x
https://doi.org/10.1016/j.cag.2016.05.022
https://doi.org/10.1016/j.cag.2016.05.022
https://doi.org/10.1115/DETC2017-67212
https://doi.org/10.48550/arXiv.1605.04797
https://doi.org/10.48550/arXiv.1605.04797

16 of 16 L. Zawallich & R. Pajarola / Surface Flows in Unfolding

Value |F| CCF0 CCF1 CCF2 cMCF IIF ENAF AEF TU
Min Time (s) all 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Median Time (s)

100 0.084 0.023 0.033 0.026 0.021 0.025 0.031 0.011
200 0.658 0.183 0.224 0.218 0.205 0.173 0.223 0.110
400 4.021 1.637 1.610 2.037 1.943 1.265 1.992 0.874
600 10.894 5.518 4.994 6.678 7.250 3.823 6.841 2.959
800 23.362 13.118 11.232 15.523 17.623 8.338 17.844 6.578

1000 44.314 25.879 21.207 30.417 36.217 15.605 35.331 12.586
1250 78.464 54.462 39.680 62.847 75.035 29.738 71.136 25.345
1500 146.800 93.135 71.005 111.389 139.063 51.772 133.746 44.485
1750 236.749 162.307 119.841 176.871 247.880 85.581 224.284 73.079
2000 357.827 264.432 177.698 270.761 389.460 132.324 354.654 112.325

Mean Time (s)

100 0.271 0.083 0.083 0.058 0.050 0.050 0.056 0.022
200 2.419 0.720 0.557 0.690 0.615 0.527 0.738 0.252
400 17.641 6.335 4.181 6.557 5.913 3.717 5.848 2.029
600 39.680 24.011 11.435 18.355 19.417 12.259 18.345 4.918
800 101.832 65.042 33.623 51.343 43.395 20.572 42.791 12.210

1000 207.592 110.041 49.602 102.792 87.162 42.770 90.118 24.838
1250 377.937 254.690 91.107 185.970 188.924 73.979 169.916 51.944
1500 690.486 442.203 186.203 313.842 340.770 138.707 306.974 83.320
1750 1052.158 821.936 293.300 557.080 651.608 237.562 508.521 149.971
2000 1619.280 1462.094 392.168 859.284 916.174 349.601 808.549 216.275

Max Time (s)

100 9.343 7.597 4.298 3.919 3.758 1.694 3.442 0.847
200 79.252 47.120 32.263 79.282 56.387 13.023 64.868 23.238
400 597.214 402.811 447.347 517.408 333.222 126.505 591.949 189.075
600 1673.838 2079.016 1064.863 1078.352 1890.658 403.559 2321.188 325.489
800 5110.841 4927.781 4397.848 5020.113 3183.697 935.753 4266.497 838.617

1000 8605.563 7648.411 8071.711 8054.064 8731.906 1881.454 9524.942 2064.167
1250 18270.135 15895.157 10796.006 11891.373 10738.786 3397.558 17670.767 6974.261
1500 31437.614 23212.025 29255.130 28491.302 31639.702 6196.127 27684.283 5967.156
1750 50000.308 51725.592 37344.659 51444.273 38839.597 9984.051 28138.796 9237.242
2000 69236.818 78211.479 30525.573 58148.552 43429.453 15665.376 45195.883 10896.299

Success Rate (%)

100 99.925 99.776 99.925 99.851 100.000 99.552 100.000 100.000
200 98.880 99.104 99.403 99.104 99.477 98.208 99.701 99.627
400 98.730 98.657 99.253 99.104 99.253 97.162 99.403 99.552
600 98.506 98.880 99.627 98.880 99.253 97.760 99.552 99.403
800 98.656 98.134 99.477 98.730 99.253 96.938 99.328 99.477

1000 98.282 98.506 99.627 99.029 99.178 97.461 99.403 99.403
1250 97.984 98.432 99.627 98.954 99.178 97.087 99.627 99.701
1500 97.984 97.834 99.552 98.880 98.954 97.908 99.627 99.552
1750 97.685 98.432 99.552 98.880 99.178 98.357 99.552 99.627
2000 97.685 98.208 99.552 99.104 99.328 98.656 99.701 99.627

Success Rate
Approx (%)

100 99.925 99.851 99.925 99.925 100.000 99.925 100.000 100.000
200 99.104 99.403 99.403 99.328 99.701 98.730 99.776 99.627
400 99.178 99.029 99.253 99.178 99.627 97.984 99.701 99.552
600 98.954 99.104 99.627 99.253 99.851 98.282 99.627 99.403
800 98.880 98.656 99.477 99.029 99.776 97.909 99.627 99.477

1000 98.581 98.581 99.627 99.253 99.851 98.432 99.627 99.403
1250 98.357 98.805 99.627 99.178 99.552 97.386 99.776 99.701
1500 98.208 98.133 99.552 99.178 99.552 97.984 99.851 99.552
1750 98.357 98.880 99.552 99.104 99.447 98.581 99.925 99.627
2000 98.282 98.581 99.552 99.328 99.447 98.880 99.925 99.627

Table 2: Detailed timings and success rates for all flavors of our algorithm, as well as Tabu Unfolding.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

