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Figure 1: We present an automatic end-to-end pipeline for freeform shape fabrication by kerfing stiff materials. Given a target shape (a), we
first formulate the choice of optimal bending directions as an integer linear program on the edges of a coarse quadmesh generated from the
input (b). The resulting quad strips are further subdivided and the border connections are handled via box joints. To achieve the required
bending flexibility, we compute adaptive kerf cut densities (c). The kerf pattern is applied to the flattened 2D patches, which results in layouts
suitable for laser cutting and assembly into a 3D object (d). Squirrel model from the AIM@SHAPE Shape Repository.

Abstract
Fast, flexible, and cost efficient production of 3D models from 2D material sheets is a key component in digital fabrication
and prototyping. In order to achieve high quality approximations of freeform shapes, a common set of methods aim to produce
bendable 2D cutouts that are then assembled. So far bent surfaces are achieved automatically by computing developable patches
of the input surface, e.g. in the context of papercraft. For stiff materials such as medium-density fibreboard (MDF) or plywood,
the 2D cutouts require the application of additional cutting patterns (“kerfing”) to make them bendable. Such kerf patterns
are commonly constructed with considerable user input, e.g. in architectural design. We propose a fully automatic method
that produces kerfed cutouts suitable for the assembly of freeform shapes from stiff material sheets. By exploring the degrees
of freedom emerging from the choice of bending directions, the creation of box joints at the patch boundaries as well as the
application of kerf cuts with adaptive density, our method is able to achieve a high quality approximation of the input.

CCS Concepts
• Computing methodologies → Shape modeling; • Applied computing → Engineering;

1. Introduction

The fabrication of mid-sized 3D models has use in the context
of prototyping, display and exhibition. For cost-efficiency and to
allow for manual assembly, bulk 2D material is used, common
choices for rigid structures are plywood or medium density fibre-
board (MDF), while cardboard and paper are popular for curved

surfaces. Developable parts are cut from 2D sheets and afterwards
assembled into an approximation of the 3D target shape.

For rigid objects created from stiff materials like MDF, box joints
have emerged as a popular way of handling the connection between
different planar parts. They provide guidance for the part placement
relative to each other, rigidity in one direction, as well as an over-
lapping surface area to aid in the application of adhesives. As such,
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the resulting objects are often quite sturdy and easy to assemble.
The planarity of the pieces is, however, a limitation when it comes
to freeform shapes, because faithful approximations can only be
achieved with excessively small pieces.

Papercraft on the other hand is able to utilize the flexibility of
paper to allow for bent (developable) surfaces in the resulting ob-
jects. Although papercraft is highly accessible to private users, its
main drawback is the fragile result.

To achieve high curvatures using stiff
materials, kerf cuts can be applied to the
material. These internal cuts provide ad-
ditional flexibility in directions related
to their own orientation and are mostly
used in architectural design and as de-
sign elements in smaller projects like
beveled boxes. The interest in kerfing
stiff materials has risen in recent years, triggered by the accessi-
bility of laser cutting devices, although its use is still mostly ex-
perimental due to the difficulty of manually applying suitable kerf
cuts.

Our method aims to combine the high curvature surface approx-
imation of papercraft and the rigidity that stiffer materials pro-
vide, by proposing an automatic pipeline for the creation of kerfed
cutouts. While doing so, we take material limitations as well as the
creation of box joints at the patch borders into consideration.

We present a full end-to-end pipeline that takes a 3D mesh as
input and produces a set of kerfed 2D patches suitable for laser
cutting. The main contributions contain:

• The formulation of the choice of local bending directions as a
global integer linear program.

• The creation of box joints along bent borders.
• An adaptive kerf cut density to minimize cutting time while re-

taining the required flexibility.

2. Related Work

Since our work touches on different domains, we show related work
from the areas of papercraft and developabilty methods, as well as
architectural approaches to surface approximation and works re-
garding the topic of kerf cutting.

A popular area of research is the automatic cutout generation for
building papercraft models. [MS04] propose to use triangle strips,
which are inherently developable, to approximate a target surface.
They first segment the mesh into parts, adopting the least squares
conformal map texture atlas generation by [LPRM02]. After further
splitting these parts into zones, they create smooth cut-lines to use
as the borders of newly generated triangle strips. A related method
to subdivide a user-guided coarse mesh parametrization after split-
ting it into strips was later proposed by [Mit06]. [STL06] provide
another method for creating paper craft models by approximating
parts of the mesh via conic planes and resolving their boundaries
analytically. The work of [MGE07] uses an approach closer to gen-
eral developability methods, by approximating an input mesh with
generalized cylinders, including error control.

Although not all works towards developable approximations

specifically focus on papercraft, many still validate their results
by building objects from paper. Examples for these are D-Charts
by [JKS05], a method to segment a mesh into quasi-developable
charts in an iterative manner, and in recent years methods based on
local gauss image thinning [SGC18, BVHSH21, ZFO∗22] and de-
velopable wrapping [IRHSH20]. [VVHSH22] discuss quadrilateral
strip remeshing of already developable surfaces. For an extensive
overview over a multitude of methods regarding developable ap-
proximation we refer to [YCS23].

There exist a significant amount of methods working on the de-
velopability of quad meshes in the architectural domain. [LPW∗06]
show the optimization of quad meshes towards quad planarity
and [PSB∗08] approximate large-scale freeform surfaces using pla-
nar quad strips and semi-discrete surface representations. A lot
of further work towards architectural paneling using individual
quadrilateral parts has been done to optimize the developability
and approximation quality of the surface while minimizing costs
[EKS∗10, GSP19, PKW∗20, JWR∗20, WJW∗22, IRWP22].

Relevant techniques that target the fabrication of medium to
large sized objects are CofiFab [SDW∗16], a method that creates
a low resolution frame onto which higher detail panels are attached
and WireWarping [Wan08, ZW11], a flattening method with ap-
plications in clothing manufacturing, due to its length preserving
properties.

Using box joints with stiff material sheets for personal fab-
rication is explored by the creators of easy-to-use tools like
Platener [BGM∗15] and kyub [BSK∗19], which creates shapes
from voxel-like cells. Their follow-up works address topics like
reinforcement of weak structures (fastForce [ATK∗21]), intu-
itive layouts of the flattened pieces for easier assembly (Road-
kill [ASS∗21]) and automatic adjustments corresponding to the
width of the kerf cuts [RAS∗20, KTA∗23].

Most of the works regarding kerfing stiffer materials stem from
recent years and [LS21] provide a review of many different bend-
ing techniques, including kerf cuts. One of the first applicants of
two dimensional kerf patterns, which provide smaller but bidirec-
tional flexibility, were [Iva15], who use interlocking spirals. Iterat-
ing on this approach, [ZEK∗17] present a method to generate such
interlocking spirals from 2D meshes and show how the spirals can
be modified to achieve varying levels of stiffness. [CL18] develop
kerfed design elements by flattening simple 3D structures and ap-
plying a warped version of the kerf pattern to the 2D material. In
a follow up work [CL19] they show different approaches to cre-
ating surfaces by kerfing in different ways, to, among other things
achieve different types of curvature. Note these methods do not dis-
cuss the fabrication of entire objects, but the creation or bending
behavior of single surfaces.

In the same context of working with plywood or MDF, [CTJ∗20]
perform stress tests on bidirectionally kerfed MDF planes via uni-
axial and biaxial stretching and out of plane bending, while [LS22]
analyze the accuracy of arcs created by one-directionally kerfed
rectangular MDF strips of different dimensions.
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3. Pipeline

The fabrication of 3D models from bent 2D panels is, of course,
primarily a geometric problem of approximating a given freeform
shape by a piecewise representation. However, the physical real-
ization of the object also implies physical requirements such as
static integrity of the structure or the bendability of the stiff ma-
terial within patches. Last but not least, there are aesthetic criteria
to be taken into account since the decomposition of the input shape
into patches is a gestalt abstraction process and should hence reflect
the underlying „semantic“ structure, like symmetries or constitut-
ing parts (primitives).

The idea of our method relies on taking a quad mesh represen-
tation of the input target shape and defining the patches of the de-
composition by merging quads, which effectively turns the contin-
uous segmentation problem of the surface into a discrete labelling
problem of the quads (or edges). For this quad mesh open bound-
aries and any genus are allowed. There are very powerful quad
mesh generation methods available [BLP∗13] that can take a mul-
titude of other requirements like a target edgelength and curvature-
alignment into account. For our method we assume that the aes-
thetic (e.g., orientation and alignment) criteria have already been
taken into account in the quad mesh generation step and hence are
automatically satisfied when merging quads to form patches. Ge-
ometric objectives and physical constraints are then considered by
our method.

In the following sections, we will walk through the entire
pipeline, starting with the choice of bending directions per quad
via the formulation as an integer linear program in Section 3.1.
The result of this optimization can be used to segment the quad
mesh into quad-strips, which are subdivided further corresponding
to their their bending directions. This step is followed by the flat-
tening of the strips in Section 3.2, for which we extend the method
of angle based flattening [ZLS07]. On the flattened patches, we af-
terwards compute the dimensions and application areas of the box
joints to generate the 2D contours, which is shown in Section 3.3.
The last step of the pipeline in Section 3.4 details how these cutouts
are made flexible using adaptive kerf cuts that consider the material
stiffness. Finally, we show where user guidance can be applied to
modify the output of the pipeline in Section 3.5.

3.1. Choosing Bending Directions

The individual quads of the input mesh serve as a basis for further
computation. For simplicity we make the restriction that each quad
is kerfed in one of its two principal directions, with the two result-
ing bendable edges acting analogously to generatrices of a ruled
surface. This simplification is justifiable, since the quads are often
curvature aligned and remaining Gauss curvature can be achieved
by twisting the surface. The selection of the direction in which
quads are kerfed also depends on their neighborhood. Stiff edges
of quads prohibit the bending of both adjacent quads in their di-
rection, even if the bending direction of an individual quad would
allow it, see Figure 2. These situations restrict the flexibility of the
result, with a perfectly alternating grid resulting in a stiff structure
with no bent edges.

For this reason it is often beneficial to bend quads in directions

Figure 2: Bendable edges of quads marked red. Edges between
neighboring quads with different bending directions have to be re-
stricted in their bending behavior to avoid the creation of geometric
holes.

that allow neighboring quads to be bent together. We formulate this
optimal edge selection problem as an integer linear program:

min
X ∑

E
−we · xe s.t. xe1 + xe2 ≤ 1 ∀e1,e2 ∈ Eadjacency. (1)

The benefit of choosing an edge to be bendable is formulated as a
positive weight we ∈ R0+. We choose this weight to be the variance
of the distance to the target shape along the edge, as it is a good
indicator whether the target shape has curvature along this edge
and is also oblivious to constant offsets. If a (u,v) map between
the quad mesh and the input surface is known, the distance of the
points on the edge to their mapped image can be chosen instead
of the closest distance to the input mesh. Binary decision variables
xe ∈ {0,1} describe whether edge e is selected to be bendable or
not. The constraint that only opposite edges of quads can be bent
is equivalent to the constraint that no adjacent edges within a quad
face can be bent and is formulated as xe1 + xe2 ≤ 1, for all adjacent
edges e1,e2.

The results can be used to determine the bending direction of the
quad, with two stiff opposing edges dictating the stiff direction, the
other one is flexible. If only one of the other two edges is bendable,
the quad relies on twisting to support curvature at that edge, while
having otherwise stiff edges. To emulate the bending, we subdi-
vide the quads equally in their bending direction. The number of
subdivisions can be chosen freely, although a higher subdivision
count improves the quality of the approximation. The result of this
subdivision step is a closed but non-conforming quad mesh with
T-junctions at unaligned patch borders, the vertices of which are
projected onto the target shape. In general this is done via normal
projection onto the target surface, but similarly to the edge weight
computation, if a (u,v) map between quad mesh and target surface
exists, it can be used instead. During this step, the vertices at T-
junctions are fixed such that they form a straight line identical to
their opposite halfedge. This avoids the creation of geometric holes
and corresponds to the constraint shown in Figure 2.

To preserve sharp features during
the projection without a map, one
can enforce that vertices which lie on
feature edges in the refined mesh are
projected onto features in the target
shape. This is beneficial for mechan-
ical or geometric shapes like cylin-
ders, where simple normal projection fails to reproduce the cur-
vature at the circular face borders, but often results in undesirable
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deformations when used on organic shapes. Thus, this step is op-
tional.

After determining how individual quads should be bent, this in-
formation can be used to infer strips of neighboring quads, which
are bent and kerfed in the same direction. The bent edges and their
opposites act as boundaries of these strips, as seen in Figure 3. To
make this strip creation more effective, we enforce that strips are
formed even in flat regions with we → 0, by adding a small con-
stant bias w0 to all edge weights. Increasing this constant can also
make the individual edge weights more uniform by reducing their
relative differences. The larger the constant, the higher the incen-
tive to align the bending direction of adjacent quads, as this avoids
the restricting scenario from Figure 2 and the total number of bend-
able edges increases. In contrast to setting all edge weights to the
same constant value, our formulation maintains the secondary ob-
jective of following the curvature as well as possible, should the
total number of bent edges stay the same. Figure 4 shows the effect
of the patch alignment bias w0. We can see that the number of patch
borders across which the chosen curvature direction is aligned rises
with an increase in w0, at the cost of approximation quality. This
effect is evaluated in Section 4.

In addition to the quad strip borders which stem from the chosen
bending directions, further ones can be inserted between quads that
are bent in the same direction. Their purpose is to retain sharp fea-
tures or avoid very high curvatures whithin a strip, as they are easier
to deal with using box joints at their borders. To automatically in-
sert these borders, we threshold the angle between the opposing
sector normals at the ends of the edges. If one of the ends exceeds
the chosen angle threshold, the border is created. Additionally, we
ensure disk topology for all strips by splitting those that form loops.

Merging quad strips sideways to form wider patches is possible,
but since this decreases the approximation quality significantly, we
only perform this step in a user-guided manner, which we will later
discuss in Section 3.5.

3.2. Patch Flattening

The flattening of the quad strips could be done naively by trian-
gulating the quads and unfolding the strip along the creases. This
approach, however, only ever allows the use of one quad wide
patches and is prone to propagating the distortion induced by the

Figure 3: Left: A possible result of the optimization, the selected
bent edges are highlighted in red. Right: The black boundaries cor-
respond to bent edges and their opposites, the hereby defined quad
strips have been further subdivided in their bending direction.

Figure 4: Adding a constant scalar w0 to all edge weights we aligns
the bending directions more consistently, at the cost of a small de-
crease in approximation quality. The borders of the quad strips re-
sulting from the optimization are highlighted in red. For w0 = ∞
almost all patches are aligned and wrap wround the entire model,
disregarding local bending behavior.

artificial diagonals in the triangulation. We instead use an adapted
version of angle based flattening (ABF) [ZLS07], by initializing
with a temporary triangulation of the patch and afterwards opti-
mizing the parametrization using only the flattened quads. Vertices
at the patch borders are duplicated during flattening, such that they
have one 2D counterpart per patch. During the initial flattening, one
arbitrary edge is fixed for every patch, since their parametrizations
are independent and the linear system would otherwise be underde-
termined. Afterwards, the modified ABF objective consists of two
terms, the squared difference in edge lengths le to their original 3D
lengths l⋆e along the patch borders and the squared change of the
interior angles of the quads:

min λ · ∑
Eborder

(l⋆e − le)2 +(1−λ) ·∑
i
(α⋆

i −αi)
2. (2)

The αi are the 2D angles from the original ABF formulation, with
α
⋆
i denoting the original angle. The new term, which similarly pe-

nalizes the change in edge lengths at the patch borders ensures con-
sistent lengths of the borders of adjacent patches. This is especially
important since the box joints along opposite patch borders need
to fit together. The weighting parameter λ ∈ [0,1] only has a minor
impact on the solution, since the energies do not have strictly con-
tradicting goals, and the border term vanishes in most cases. Our
implementation with TinyAD [SBB∗22], which uses the projected
Newton solver with the Newton decrement as the termination cri-
terion, usually terminates after few iterations, since the initial solu-
tion for one quad wide patches is already very close to the optimum.

We optimize the vertex positions of the 3D representation to
mimic the distortion introduced by the flattening step, which im-
proves the accuracy of our evaluations. Since the subdivided strips
are close to developable, the flattening distortion and thus the re-
quired deformations are very small, with the Haussdorff distance
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Figure 5: Left: Crosssection of the boundary between two patches,
where the box joint offsets oa and ob depend on the normal angle
ψ. Right: This normal angle can change along a patchborder when
patches are twisted, with ψ1 > ψ2 in this example.

between the original and deformed 3D strips staying below 0.1%
in all our test cases.

3.3. Box Joints

In the following we discuss the creation of box joints along the
patch border, which serve two purposes. First, the box joints help
with the assembly of the object by prohibiting tangential sliding
along the touching patches, which implies that they do not leave
empty space if possible. Secondly, they should provide guidance
for the normal angle between the patches through their depth. This
can be achieved by adjusting the depth of the box joints such that
they end in one exact line, beyond which they would also pierce
the hull obtained by offsetting the surface by half of the material
thickness outwards and inwards.

Since the computation of the regions in which box joints are ap-
plied depends on their depth, we first show how to compute their
depth in Section 3.3.1 and afterwards discuss the calculation of the
box joint regions in Section 3.3.2.

3.3.1. Box Joint Depths

The box joint depths that fulfill the previously stated purposes are
shown in Figure 5. Here, the inner and outer tooth offsets oa and
ob make the teeth end in one line and create as much overlap as
possible. These optimal offsets only depend on the normal angle ψ

at which two patches meet and are computed differently, depending
on whether the angle is obtuse or acute:

if ψ >
π

2
: oa =

−h
2tan(0.5(π−ψ))

ob = oa +
h

sin(ψ)
(3)

else ob =
h

2tan(0.5ψ)
oa = ob −h · sin(ψ) (4)

Since the mesh lies at the middle of the material thickness, no
distinction between convex and concave angles is necessary. The
angle computation is done via sector vertex normals and to compute
the offsets at T-junctions the normals on the side of the continuous
patch borders are spherically interpolated.

3.3.2. Box Joint Regions

If box joints are applied along the entire length of the patch bound-
ary edges, their cutins and teeth overlap, depending on their inner
and outer offsets. The overlaps can happen between different box
joints within a patch, but also globally between box joints and other

nearby surfaces. To avoid these collisions, we compute safe box
joint regions. These are defined as a set of disjoint segments for
each of the border edges and describe the regions of the patch bor-
der that should be filled with box joints, and regions in which they
might overlap. Finding and resolving all these intersections glob-
ally via simultaneous restriction of the box joint regions is very
difficult, and would require mesh offsetting and mesh booleans.

We instead approximate the feasible box joint regions by work-
ing with the flattened patches individually. Their boundary edges
are offset outwards and inwards, using the previously computed
box joint offsets oa and ob from Section 3.3.1. The area between
the two offsets represents the entire area the box joints could fill,
while intersections between multiple of these areas show poten-
tial overlaps. To determine where teeth must be avoided along the
edges, we project these intersections onto the edges and subtract
them from the valid box joint regions. Including linear transitions
between the offset areas into the intersection calculation addition-
ally adds collision to the linear transitions between box joints for
adjacent edges. Figure 6 shows an example for how the box joint
regions are restricted for two adjacent edges of a patch, based on
the overlap of their inner offsets oa.

Figure 6: Top view of a patch boundary. Left: The potential over-
lap between box joints restricts their application regions. The in-
tersection area shaded red is projected onto the boundary edges, to
prohibit the creation of box joints. Right: Possible box joint config-
uration. Note that the teeth stop before the critical region.

Note that by using this approach instead of only considering the
angle at which successive border edges meet, all edges of a patch
can affect each others box joint regions. This method can detect the
most relevant self-intersections between box joints and is robust to-
wards some degeneracies, such as patches with very thin regions or
vanishing surface areas, as the resulting valid box joint regions are
empty as well, see Figure 7. Since inputs that contain global self-
intersections, or for which adding the material thickness leads to
surface penetration, have no well defined solution, detecting these
situations is not necessary.

3.4. Adaptive Kerf Cuts

Applying kerf cuts to a material makes it more flexible and adapt-
ing the density of these cuts generally yields control over the pos-
sible bending radius. The pattern in which these cuts are applied
greatly impacts the result, with many kerf patterns inducing one-
directional flexibility, while some patterns like interlocking spirals
[Iva15, ZEK∗17] allow bidirectional bending at the cost of lower
one-directional flexibility. Since our goal is to achieve high curva-
tures, we rely on the simple kerf pattern of alternating parallel cuts.

© 2024 The Authors.
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Figure 7: Even if faces of the quad mesh become very small (left),
the box region computation allows us to avoid the critical areas
marked in red, where the thickness of the material would otherwise
lead to self-intersections. The result (right) has no cutout for the
degenerate front face.

We are restricted to ruled surfaces, but negative Gauss curvature
can be obtained by twisting the resulting strips.

While the maximum density of cuts is only restricted by the fab-
rication method, an incentive to use the minimum number of kerf
cuts is the production time, which can be lowered drastically by
reducing the cut density based on the locally required flexibility.
Additionally, using too many cuts may result in a very unstable re-
sult, while the opposite can lead to the material breaking under the
bending stresses, as shown by [LS22]. Since we are working with a
laser cutter, the fabrication constraint translates to a minimum dis-
tance between cuts, which stems from the risk of material being
burnt away entirely. To save cutting time and increase stability, we
use an adaptive pattern density based on the material properties.

The alternating kerf cuts trans-
form the strip into a series of
concatenated beams, the twist of
which creates the curvature of the
strip. As the basis for our further
computations we thus use the tor-
sion formula from beam theory:

T =
JT · τmax

r
=

JT ·G ·φ
l

(5)

The torque T applied at the end of
a beam with length l is directly proportional to the twisting angle φ,
as well as the maximum resulting shear stress τmax, which appears
at the maximum distance of the crosssection from the axis r. G
and JT are the shear modulus, a material constant, and the torsion
constant, which is related to the shape of the crosssection of the
beam. Reordering the terms of Equation 5 lets us eliminate JT and
gives us direct relations between the remaining values:

1 =
φ · r

l
· G

τmax
(6)

Inserting the yield strength τyield for τmax lets us estimate which
angle can be reached at most for any given r and l. Here we implic-
itly assume that the material behaves isotropically. For high qual-
ity MDF this assumption is reasonable, while some types of MDF
show significant differences in behavior depending on the direction
of the applied forces due to anisotropic fibre orientations. MDF
is very brittle which lets us assume that its yield strength is very

similar to its ultimate strength, the stress at which it breaks. As ref-
erence for these values we refer to [CTJ∗20], who perform stress
tests on kerfed MDF panels. They also assume isotropic behavior
and provide the values τyield = 18MPa and G = 1.6GPa. We use

G
τyield

= 100 from now on, which incorporates a safety margin to al-
low for easier assembly without accidentally breaking the material.

Applying kerf cuts splits the patch into
multiple beams, essentially multiplying the
total length over which the torsion is dis-
tributed. Additionally, increasing the number
of cuts also decreases the width of the cross-
section of these rectangular beams, see inset.
Thus, both l and r are affected by the number of kerf cuts. Since our
goal is to vary the cut density along the patches, we split each patch
into short segments and compute the needed number of beams
ne ∈ R+ for each segment around a patch-internal edge e individu-
ally. The total width of the segment we around edge e is measured
conservatively as half of the minimal width of both adjacent faces.
Per segment, the individual beams now have width w = we/ne and
the constant height h that is given by the material thickness. To sim-
plify computations, we assume that the length of the beams, i.e. the
width of the strip is constant in the area around the edge. This leads
to the total beam length le = l ·ne. The target twisting angle φe per
segment is given by the maximum normal angle between the two
ends of the segment. Inserting all these quantities into Equation 6
and solving for ne (Appendix A) yields

ne =

√
Ah2

8
+

√
−A2h4

64
+

Aw2
e

4
(7)

with A =

(
φ ·G

l · τyield

)2

. (8)

To use this local information about how many beams are needed
in the regions around each edge along the strip, the ne need to be
converted into a discrete set of cut positions. We do this by using
the crossection widths we to define a 1D coordinate for each edge
e, similarly to unrolling the patch. Each ne can be interpreted as
an integral value over the 1D domain around e, such that the total
integral over the entire strip indicates the total number of beams
the strip needs. We scale the total integral to the next integer value
and split the area into even sections of size 1, see Figure 8. This
implicitly weights the position of the cuts by ne and is equivalent to
the equilibrium of a 1D mass-spring system (or Tutte embedding)
where the ne act as edge weights and the cut positions as vertices.
After the per edge computation of the ne, we smooth them in a
small neighborhood using a linear, 1cm wide kernel, which avoids
rapid changes in ne. Smoothing helps in distributing the cuts more
evenly to avoid spikes in cut density and improves the visual ap-
pearance, while the small kernel size keeps the result accurate.

An example for the resulting ne can be seen in Figure 9. The
distance between the computed cut positions can be used to eas-
ily identify where the cuts are placed closer to each other than a
threshold allows. The top part of Figure 9 shows an example for
such critical regions, where in thin areas with high curvature cuts
have to be placed closer than a custom limit of 0.9mm.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



N. Speetzen, L. Kobbelt / Freeform Shape Fabrication by Kerfing Stiff Materials 7 of 12

Figure 8: Computation of the cut positions ci depending on the lo-
cally required number of beams ne. The distance between the black
dots representing the edges depends on the width we of the seg-
ments assigned to the edges. The integral of ne over all intervals
[ci,ci+1] is equal to one.

Figure 9: Top: Cut density based on the locally required number
of beams per edge ne, high densities are shown in brighter col-
ors (viridis colormap). Areas where the necessary cut density is
too high are highlighted red on the right. Bottom: Increasing the
patch alignment constant and merging two thin strips on top re-
solves these issues.

3.5. User Guidance

Although the described method works without any user interaction,
some automatic decisions can optionally be overridden by the user.
This is helpful if a solution which yields suboptimal energy values
is more aesthetically pleasing. During the bending direction opti-
mization, one can override the fully automatic choices by enforc-
ing the behavior of specific edges. This only adds one additional
constraint per selected edge in the optimization.

The other step in which user guidance can be applied is the
merging of quads into patches. Introducing additional borders to
split patches helps highlight specific creases, while the merging of
patches is appropriate in planar regions to reduce the number of
resulting patches.

We can specifically allow the user to merge aligned patches

"sideways", i.e. perpendicular to the bending direction, which
increases the achievable curvature due to longer kerf cuts.
Doing so has the side-effect of forcing
all interior vertices onto the new rul-
ing lines of the patch and thus losing
approximation quality (see inset). The
creation of new T-junctions poses no
problem, since we already work with
a non-conforming layout. An impor-
tant restriction for the creation of wider
patches is that no singularity of the quad
mesh can lie within a patch. This scenario would lead to a change in
bending and kerfing direction within a strip, which would severely
affect the flexibility of the patch and is better handled by multiple
patches of different bending directions.

4. Discussion and Results

To show the feasibility of our method, we apply the pipeline to
different inputs.

A target shape with an open boundary is the Face [car19], for
which the quad mesh was generated using integer-grid maps (IGM)
[BCE∗13]. It features rapid changes in curvature, noticeable in the
high changes in cut density around the eyes, as seen in Figure 10.
To test the effectivity of the adaptive kerf cut densities, we com-
pare to a version of the face for which we instead apply a constant
cut density to the faces of the generated quad mesh. While this
version naturally looks quite uniform, its surplus in flexibility only
marginally simplifies the assembly. More notably, laser cutting the
constant version takes 4h instead of 1h40 for the version with adap-
tive cut density, although both of the versions have the same size.
This is due to the constant cut density being chosen high enough to
support the necessary bending in all areas of the model. The con-
stant cut density also leads to material burn around the eyes and
at the lower boundary of the model, since the quads there are both
distorted and small.

For our adaptive cut density we leave out the safety margin men-
tioned in Section 3.4, to try approaching the material limits as close
as possible. When computing the cut density, we see that only the
eyes are critical regions, while the quads at the boundary pose no
problem, due to their lower bending radius, even if they remain
distorted. After detecting the issue at the eyes, we simply adapt the
quad mesh manually and obtain a feasible solution.

The model Bob [Cra] shown in Figure 11 is an example of
a genus 1 object with very intuitive optimal bending directions
in the torus region. Additionally, a catmull-clark control mesh is
given besides the target triangle mesh, which allows us to test our
method with a different quad mesh initialization, for which we sim-
ply project the control mesh onto the target shape. To reduce the
number of patches and avoid too thin regions inside the torus, we
manually merge pairs of strips around the torus, which results in
a uniform looking and easy to assemble output. The oval cutouts
that form the torus region show the seamless change in cut density,
depending on the width of the strip.

As a more complex test case we use the Squirrel model from
the AIM@SHAPE Shape Repository, see Figure 1, which features

© 2024 The Authors.
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Figure 10: Fabrication of the Face model: Input (top left) and
the refined quad mesh with colorcoded adaptive cut densities (top
right). The two variants shown at the bottom are produced using a
constant number of kerf cuts per quad (bottom left) and our adap-
tive density without safety margin (bottom right). The constant cut
density leads to material burn around the eyes and face border,
while we can detect the critical region around the eyes beforehand
and modify the quad mesh accordingly, even before fabricating the
model.

regions with significant curvature and high detail. We generated
the initial quad mesh using IGM [BCE∗13], for which a fully au-
tomatic run of our method predicted cut density issues in the re-
gion around the ears of the Squirrel, shown in Figure 9. We re-
solved these by increasing the patch alignment constant from Sec-
tion 3.1 to w0 = 0.3wmax (Section 3.1, Figure 4) and merging two
thin patches between the ears. Afterwards we were able to suc-
cessfully laser cut and assemble the 3D object. Table 1 shows the
effect of the patch alignment on the average Haussdorff distance
between the target shape and the subdivided quad mesh, as well
as the number of resulting quad strips. Since this distance is only
marginally affected, we simply increase the patch alignment to re-
duce the number of strips as desired. To note is that some patches
were split, such that the cutouts fit into the bed of our laser cutter.

Further objects we used for our evaluation are the Stanford
Bunny (Figure 12) and the top of the Lilium tower (Figure 13) as
an architectural model. The fabrication of the Lilium model did not
require any user guidance, for the Bunny model we changed the
bending direction for the right ear, to avoid too high curvatures.

During our testing we found the limiting factor for the speed of
assembly to be the rate at which the used adhesive hardens enough
to withstand the torque it is subjected to at the borders between

Figure 11: Fabrication of the Bob model using our method: Input
(top left), the refined quad mesh with colorcoded adaptive cut den-
sities (top right), resulting cutouts (bottom left) and the assembled
object (bottom right). The chosen bending directions capture the
roundness of the torus and the result has a uniform appearance.

w0/wmax dAHD(input,sub QM) naligned/|E| nstrips
0.0 0.310% 75.5% 53
0.1 0.310% 81.6% 44
0.2 0.323% 85.8% 34
0.3 - 0.4 0.326% 86.8% 32
0.5 0.328% 87.7% 26
0.6 - 0.8 0.333% 89.4% 23
≥ 0.9 0.336% 92.2% 17

Table 1: For the Squirrel model: Relation between the relative
patch alignment constant and the resulting average Haussdorff dis-
tance between the target shape and the subdivided quad mesh, the
number of aligned quad borders and the resulting number of quad
strips. (see Figure 4).

highly bent patches. We used an Epilog Helix Mini 24 laser cutter
for the cutout fabrication and a simple hot glue gun for assembly.
Further information and parameters for the shown test cases are
given in Table 2.

Beyond its intended use case, our method can emulate simple
papercraft behavior by setting the material thickness h = 0 and its
yield strength τyield = ∞. Since we are constrained to ruled sur-
faces by design, the solution space that is extended due to the flex-
ibility of paper cannot be fully explored. The papercraft method
by [MS04] also produces ruled surfaces and is based on creating
and unfolding triangle strips. The qualitative comparison in Fig-
ure 14 shows that our results on the Bunny [Sta] are generally com-
parable to theirs, while our method produces strips with straighter

© 2024 The Authors.
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Squirrel Face Bob Lilium Bunny
Alignment Constant c 0.3 0.01 0.01 0.3 0.3
Patch Split Angle α 60° 60° 60° 60° 60°
Tooth Width 3mm 3mm 3mm 3mm 3mm
Material Thickness h 3mm 3mm 3mm 3mm 3mm
N Patches 38 28 22 11 32
Size (AABB in cm) 15*25*22 20*25*14 29*15*23 40*10*40 15*25*19
Cutting Time 5h10 1h40 4h00 1h20 2h30
Assembly Time 4h30 0h40 2h00 2h00 4h20
dH(sub QM ↔ target) 2.1% 2.1% 3.3% 1.1% 1.9%
dH(scan → target) 6.9% 11.9% 4.5% 5.7% 7.5%

Table 2: Parameters and information for the shown test cases.

Figure 12: Fabrication of the Bunny model using our method: In-
put (top left), the refined quad mesh with colorcoded adaptive cut
densities (top right), assembled object (bottom left) and the result
of [IRHSH20] with 26 patches (bottom right).

borders, which is a side effect of using quad instead of triangle
strips.

A more recent method to create developable patches that are
suitable for papercraft stems from [IRHSH20]. We included their
results for the Bunny (26 patches) and Lilium model (11 patches)
in the corresponding Figures 12 and 13. We can again see the dif-
ference in patch structure, where our method strongly reflects the
underlying quad mesh and thus yields more uniform patches. Mea-
suring the Haussdorff distance shows that it is slightly lower for
our quad strips (Bunny: 1.9% in comparison to 2.8%, Lilium: 1.1%
in comparison to 2.1%), although our method does not eliminate
negative Gauss curvature.

As a brief experimental verification to our kerf cut density com-
putation, we used a simple cylindrical shape. This ring unfolds into
a single strip with constant curvature, which makes the effect of the
cut density easy to observe. Using our default values, we created

Figure 13: For the Lilium model: Input (top left), the refined quad
mesh with colorcoded adaptive cut densities (top right), assembled
object (bottom left) and the result of [IRHSH20] which also has 11
patches (bottom right).

rings of different diameters with ease. Reducing the number cuts
further is possible, although a reduction by more than 25% often
leads to material failure. The remaining flexibility stems from the
connecting points of the twist beams, and a slightly higher stress
tolerance of our material than the MDF evaluated by [CTJ∗20].
For a more in-depth material analysis, we refer to [CTJ∗20] and
[LS22].

Lastly, we laser scanned the built objects and compared them to
their digital counterparts. They approximate the target shapes very
well locally, although the accumulated inaccuracies made during
assembly without supporting structures can lead to slight global de-
formations, which are less prevalent in objects without open bound-
aries. The resulting Haussdorff distances to the targets lie in the
range of 5-10% for the raw scan data of our test objects, which
are measured without noise filtering or mitigation of the outwards
offset from only scanning the surface of the object, see Table 2.

© 2024 The Authors.
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Figure 14: Left: Papercraft bunny by [MS04], consisting of 27
patches. Right: Papercraft emulated using our method, consisting
of 40 patches. The use of quad instead of triangle strips affects the
overall shape of the patches.

4.1. Limitations

While our methods minimizes the approximation error between the
input freeform shape and the bent output panels, the achievable ap-
proximation tolerance is bounded by the structure and resolution
of the input quad mesh. If the a posteriory approximation error is
above a desired threshold, we generate a finer input quad mesh and
re-run the procedure. Since quad mesh generation has become a
commodity in recent years it is very easy to adapt them to user-
specified requirements.

Since we take the stiffness and thickness of the materials into ac-
count, we can predict where the required kerf cut density is higher
than a certain limit. This limit is usually fixed and given by the fab-
rication method. Our method is currently not able to resolve these
situations automatically without user guidance or an improvement
of the input quality.

5. Conclusion

We propose an automatic pipeline for the fabrication of 3D shapes
using bent 2D cutouts from stiff material planes. By choosing op-
timal bending directions on a quad mesh generated from the input
via the formulation as an integer linear program, quad patches are
formed. At the boundaries of these patches box joints are applied,
to allow for easy assembly into a 3D object. To ensure sufficient
flexibility of the patches when considering material properties and

to reduce fabrication times as much as possible, an adaptive kerf
pattern is applied. We show the feasibility of our method by ap-
plying it to different inputs using medium-density fibreboard and
its flexibility by emulating simple papercraft by only adapting two
parameters.

Our method significantly reduces the required time investment to
create suitable cutouts and makes freeform shape fabrication much
more accessible. The previously significant user involvement is re-
duced to making optional aesthetic choices or resolving predicted
bending issues for the given input.

During the automatic merging of the quads, we only allow the
creation of quad strips, although wider patches can be beneficial in,
e.g. flat regions. A possible direction for future research is the op-
timization of optimal non-conforming quad patch layouts without
internal singularities, which could automate the creation of wider
patches and as such also help decouple the output from the input
resolution.
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Appendix A: Adaptive Kerf Cuts

Calculation of the locally required number of beams ne from:

1 =
φ · r
l ·ne

· G
τyield

. (9)

Given constants are G, τyield, l and the target angle φ. With rectan-
gular beam crossections:

r =
1
2
·
√

h2 +w2
b (10)

wb = we/ne (11)

We solve for ne by squaring and substituting:

A =

(
φ ·G

l · τyield

)2

(12)

z = n2
e (13)

z = A ·

(
h2

4
+

w2
e

4 · z

)
(14)

0 = z2 −A · h2

4
· z−A

w2
e

4
(15)

z = A · h2

8
+

√
(A · h2

8
)2 −A

w2
e

4
(16)

ne =
√

z (17)
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