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Abstract
Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving
high fidelity from only a sparse set of captured images. This success has led to many variants of the techniques, each evaluated
on a set of test views typically using image quality metrics such as PSNR, SSIM, or LPIPS. There has been a lack of research
on how NVS methods perform with respect to perceived video quality. We present the first study on perceptual evaluation of
NVS and NeRF variants. For this study, we collected two datasets of scenes captured in a controlled lab environment as well as
in-the-wild. In contrast to existing datasets, these scenes come with reference video sequences, allowing us to test for temporal
artifacts and subtle distortions that are easily overlooked when viewing only static images. We measured the quality of videos
synthesized by several NVS methods in a well-controlled perceptual quality assessment experiment as well as with many existing
state-of-the-art image/video quality metrics. We present a detailed analysis of the results and recommendations for dataset and
metric selection for NVS evaluation.

CCS Concepts
• Computing methodologies → Image-based rendering; Image and video acquisition; Perception;

1. Introduction

Synthesizing photorealistic novel views of a complex scene from
a sparse set of RGB images is a fundamental challenge in
image-based rendering. Various representations and methods have
been developed to accurately model the image formation process
and handle complex geometry, materials, and lighting conditions
[CW93; SGHS98; SK00; YKM*20; VSJ22; WBF*17; KLR*22;
KKLD23]. More recently, Neural View Synthesis (NVS) via im-
plicit representations has shown promising results. In particular,
methods such as Neural Radiance Field (NeRF) [MST*20] and its
successors [BMV*22b; BMV*22a; FYT*22; SSC22; WWG*21;
WPYS21] have attracted great interest due to their outstanding fi-
delity and robustness. However, assessing the performance of con-
temporary NVS methods is not straightforward as it is closely tied
to the final applications. Specifically, NVS methods are increas-
ingly developed in immersive and realistic AR/VR applications,
it is thus crucial for the methods to synthesize high-quality free-
viewpoint videos with unnoticeable artifacts to human users.

The current protocol for comparing NVS methods involves com-
puting image quality metrics, such as PSNR, SSIM [WBSS04b]
and LPIPS [ZIE*18], on a subset of hold-out views for a few
scenes. Even dedicated benchmarks [DBD*23; WWL*23] follow
the same evaluation protocol. Since the main objective of NVS
methods is to offer interactive exploration of novel views, we ar-

gue that those methods should be evaluated on video sequences
rather than individual sparse views, ideally in a subjective qual-
ity evaluation experiment. Thus, we identify two key limitations
in existing evaluation protocols. ➊ They rely exclusively on im-
age quality metrics, which can be problematic because these met-
rics may not correlate well with subjective judgments, especially
when used for a task they are not designed for [ČHM*12; HME*22;
PJI*15]. Since most of the image quality metrics have not been cal-
ibrated or validated on the distortions specific to novel view syn-
thesis, their predictions could be too noisy to quantify perceived
quality. ➋ The evaluation protocol lacks assessment on video se-
quences, which can reveal temporal artifacts and subtle distortions,
such as flickering or floating ghost images, that are easily notice-
able in video but difficult to spot in static images [CAD19; DM20;
LAK*16; MDC*21a]. This issue is compounded by the limited na-
ture of commonly used NVS datasets, which do not have reference
videos for evaluating NVS methods.

To address these problems, we first collect two new datasets with
front-facing views: a Lab dataset captured using 2D gantry in well-
controlled laboratory conditions, and a Fieldwork dataset, captured
in-the-wild with the help of either a gimbal or a camera slider (Sec-
tion 3). We mainly focus on the front-facing setup because this is
applicable to more NVS methods (e.g., NeX [WPYS21]) and has
significant applications in free-viewpoint video capture for AR/VR
applications. Each captured scene contains several sparse training
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Figure 1: A subset of scenes from our collected Lab (first row) and Fieldwork (second row) datasets. Our datasets include both controlled
laboratory and in-the-wild scenes, each with reference video sequences. We selected a diverse range of objects composed of various materials
such as wood, marble, metal, and glass etc.

views and a reference test video intended to evaluate NVS methods.
We use the two new datasets together with the popular LLFF dataset
[MSO*19] to reconstruct the video sequences by 8 NVS methods
and 2 variants of generalizable NVS methods. The output videos of
these methods are then evaluated by human participants in a subjec-
tive quality assessment experiment (Section 4). The results of that
experiment serve as ground-truth scores for testing how well the
existing image and video quality metrics can predict the perceptual
performance of NVS methods (Section 6).

In summary, the main contributions of this work are:

• Two new datasets with front-facing views and video references
for full-reference evaluation of synthesized videos,

• A subjective quality assessment of videos synthesized by 8 NVS
methods (and two generalizable NeRF variants) measured via a
perceptual quality assessment experiment,

• An objective evaluation of existing image/video quality metrics
on synthesized videos to assess how well these metrics correlate
with subjective quality.

• A thorough analysis of metrics that elucidates the limitation in
the current NVS evaluation protocol and reveals the crucial need
for video assessment and video metrics. In light of this, we pro-
vide practical recommendations to enhance the efficacy of eval-
uation processes.

Experimental results and the dataset can be found at the project web
page†.

2. Related Work

2.1. Quality assessment of NVS methods

Most works on NVS methods and NVS benchmarks [MST*20;
DBD*23; MSO*19; WPYS21; FBD*19; LGZ*20; AAB23] evalu-
ate on sparse hold-out views using image quality metrics [FTS*23;

† Project web page: https://www.cl.cam.ac.uk/research/
rainbow/projects/perceptualnerf/

ANA*20; MDC*21b; SB13; LAK*16]. An exception is the Light
Field Benchmark [YKB*20], where light field interpolation meth-
ods were evaluated on video sequences. On the contrary, our fo-
cus is on assessing the perceptual quality of NVS methods and
evaluating how well current objective metrics can predict subjec-
tive quality. Such subjective benchmarks have previously moti-
vated and advanced other areas such as tone mapping [LCTS05;
EWMU13], image compression [AMR*16], and single-image
HDR [HME*22]. To the best of our knowledge, we present the
first study on perceptual assessment of NVS methods and hope that
our study will similarly inspire improvements that better meet the
needs of human users.

2.2. NVS Datasets

NVS methods are typically evaluated using synthetic and real-
world datasets with sparse views [MSO*19; WPYS21; FBD*19;
LGZ*20; YLL*20; JDV*14; MRAQ23]. The NeRF synthetic
dataset [MST*20] consists of 8 inwards facing scenes rendered
with blender [Com18], each containing 200 test images rendered
at viewpoints located spirally at the upper hemisphere around the
object. The LLFF dataset [MSO*19] is a forward-facing dataset of
real scenes, but with very sparse test views. The DTU [JDV*14]
Stereo dataset is also widely used to evaluate novel view synthe-
sis performance, but its captured views are too sparse to create
a continuous video. Recently, De Luigi et al. [DBD*23] set up a
resource-efficient system to capture 360-degree dense views of var-
ious objects, but only for simple objects in a controlled lab environ-
ment and without video references. RealEstate10K [ZTF*18] only
contains a fly-through style video per scene, where objects are only
visible in a few frames and from limited angles, making it inacces-
sible to split into distinct train and test frames. Tanks and Temples
[KPZK17] is designed for large-scale scenes and can introduce un-
fairness in comparison. The presence of moving people/objects in
these datasets also makes them unsuitable for many NVS meth-
ods. In contrast, our dataset is the first forward-facing dataset that
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Figure 2: The camera rig (a) and camera poses (b) that are used to
capture scenes for the Lab (top) and Fieldwork (bottom) datasets.
On the right, the green dots represent training camera poses and
the red dots represent the poses of the reference video frames used
for testing.

captures scenes with reference videos in both laboratory and field-
work environments, with accurately calibrated poses for each video
frame.

3. Forward-Facing Video Dataset

To evaluate NVS methods on video rather than individual views,
we collected two new datasets: Lab, captured using a 2D gantry in
a laboratory with controlled lighting and background; and Field-
work, captured in-the-wild, consisting of both indoor and outdoor
scenes. Both datasets were captured with Sony A7RIII. Images of
selected scenes from both datasets are shown in Figure 1.

3.1. Lab Dataset

Capture Setup The Lab dataset was captured in our laboratory
using a 2D gantry (upper-left of Figure 2), which allowed horizon-
tal and vertical movement of a camera. To minimize the amount
of noise and avoid saturated pixels, we captured each view with a
RAW image stack consisting of 2 exposures at constant ISO. The
RAW image stacks were merged into an HDR image using an es-
timator that accounts for the photon noise [HZM20]. All images
were color-corrected using a reference white point and cropped to
4032 × 3024 px. To map linear images to display-referred units,
gamma was applied (γ = 2.2).

A sparse set of training views were taken on a uniform grid,
shown as green dots in upper-right of Figure 2. The training views
cover a horizontal range of 100 mm and a vertical range of 80 mm.
The reference videos consisted of 300 to 500 frames, captured in a

rectangular camera motion, as shown by red dots in the figure. The
camera traveled about 0.6 mm between each frame. Since we only
consider a view interpolation task (no extrapolation), the reference
frames were positioned within the range of the training views.

Scenes The lab scenes were placed inside a box of 30cm ×
41.5cm×38cm for capturing. As illustrated in the first row of Fig-
ure 1, they were designed to cover a wide range of objects with
various materials, including glass, metal, wood, ceramic, and plas-
tics. The layout of the objects was selected to introduce occlu-
sions and to offer a good range of depth, which would fit within
the depth-of-field of the camera. The dataset contains challenging
view-dependent effects, such as diffraction on the surface of a CD-
ROM, specular reflections from metallic and ceramic surfaces, and
transparency of the glass. Six scenes were captured in this dataset.

Pose Estimation For accurate pose estimation, 4 sets of 4 April-
Tag markers were placed in each corner of the scene. The camera
positions were selected to ensure that all markers were visible in
each view and the images were later cropped to remove the mark-
ers. By detecting the position of AprilTags [Ols11], we obtained
camera poses with standard camera calibration methods [Zha00].
According to our pose estimation results, we got an acceptable
mean re-projection error of 0.2174 px across all scenes.

3.2. Fieldwork Dataset

Our in-the-wild Fieldwork dataset was captured in both outdoor
city areas and indoor rooms of a public museum‡. Typically, such
scenes are challenging due to complex backgrounds, occlusions,
and uncontrolled illuminations.

Capture Setup Different from the Lab dataset, we captured
video sequences instead of individual images for the Field-
work scenes. The video sequences were captured with resolution
1920×1080 px and framerate 30 fps. To reduce camera shake, we
used either a DJI RS3 gimbal or a 90 cm manual slider, which was
fixed on two tripods, see lower-left of Figure 2. For each scene, we
captured several video sequences with different trajectories. One
of these sequences, whose trajectory is well within the bounds of
the scene, is selected as the test sequence. The bottom-right of Fig-
ure 2 shows the test sequence of one scene from the Fieldwork
dataset (red dots). Images for training are sampled from the remain-
ing videos (green dots). We also moved the first and last 15 frames
from the test video sequence to the training set to ensure that the
test views can always be interpolated from training views. In total,
we have around 120 frames reserved as test views.

Scenes The second row of Figure 1 shows selected examples
of the captured scenes, which cover both indoor and outdoor sce-
narios with a high variability of materials including wood, mar-
ble, window glasses, metals, etc. and complex geometries such as
a whale skeleton, posing challenging scenarios for NVS methods.
Nine scenes were captured in this dataset.

Pose Estimation We employed COLMAP [SF16] to perform
joint calibration of camera poses for both the training and testing
frames, so that all the calibrated poses share the same scale with

‡ Natural History Museum of the University of Pisa
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Figure 3: Examples of reconstructions by various NVS methods on selected scenes from Fieldwork dataset (first two rows) and Lab dataset
(third row). We only show three scenes due to limited space, please refer to the supplementary for more visual results.

a consistent coordinate system. We used the “OPENCV" camera
model, which supports separate x and y focal lengths as well as ra-
dial and tangential distortions. We also used COLMAP to undistort
the captured images after pose estimation. Our reconstructed cam-
era parameters have a mean reprojection error of 0.5327 px across
all scenes.

3.3. Evaluated NVS Methods

We tested ten representative NVS methods (including two gener-
alizable NeRF variants) that encompass a diverse range of mod-
els, which feature both explicit and implicit geometric represen-
tations, distinct rendering modelings, as well as generalizable and
per-scene optimization strategies. NeRF [MST*20] is a neural vol-
umetric representation that excels in image-based scene recon-
struction and novel view synthesis. Mip-NeRF [BMV*22b] builds
upon NeRF and provides a multiscale representation for anti-
aliased view synthesis. DVGO [SSC22] and Plenoxels [FYT*22]
use hybrid representations to achieve fast training and rendering.
NeX [WPYS21] utilizes multi-plane images and trainable basis
functions, which is intended for rendering view-dependent effects
in forward-facing scenes. LFNR [SESM22] operates on a light
field representation and uses an epipolar constraint to guide the
rendering process. IBRNet [WWG*21] and GNT [WCC*22] are
both generalizable NeRF models. IBRNet aggregates nearby source
views to estimate radiance and density and GNT extends this idea
by proposing a unified transformer-based architecture that replaces
both multi-view feature aggregation and volume rendering. For

IBRNet and GNT, we tested both their published cross-scene mod-
els (labeled as GNT-C and IBRNet-C) and also models fine-tuned
on each scene (labeled as GNT-S and IBRNet-S).

We use these methods to reconstruct videos of scenes from both
our collected datasets, Lab and Fieldwork, as well as from the pop-
ular forward-facing LLFF [MSO*19] dataset. For a fair comparison
between methods, we downscaled images from the Lab dataset by a
factor of 4 and cropped images from the Fieldwork dataset, so that
they all have the same training image resolution of 1008× 756 px.
as that in LLFF scene. In this way, we were able to adopt the same
training setup (network architecture, training iterations, optimizer,
etc.) on LLFF scenes proposed by the respective authors. Please re-
fer to the supplementary materials for more details about the train-
ing setup.

4. Subjective Evaluation

To attain precise subjective quality scores of the videos synthesized
by the aforementioned NVS methods, we conducted a controlled
quality assessment experiment with human participants. We relied
on a pairwise comparison experiment, as it has been shown to be
more accurate and robust than direct rating methods [PMZ*20].

4.1. Experimental Procedure

We employed pairwise comparison experiments for subjective eval-
uation. Particularly, in each trial of our experiment, a participant
was shown a pair of videos side-by-side on the same display and

© 2024 The Authors.
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was instructed to pick the video of higher quality — “better resem-
bles a natural scene and contains fewer distortions" (exact wording
on the briefing form). To reduce the number of comparisons and
maximize the information gained from each trial, we used ASAP
[MWP*21], an active sampling method. Participants could press
the space bar to view the reference video of the displayed scene
(except for LLFF dataset as reference videos were not available).
The reference videos were included as one of the compared condi-
tions. Please refer to supplementary for more details about pairwise
comparison and ASAP sampling.

4.2. Display and Videos

Our videos were displayed on a 27" Eizo ColorEdge CS2740
4K monitor, which was colorimetrically calibrated to reproduce
BT.709 color space with a peak luminance of 200 cd/m2. The aver-
age viewing distance was 70 cm, restricted by a table in front of the
display.

We used 14 scenes from our two datasets and 8 scenes from the
LLFF dataset. For the scenes in our dataset, videos were synthesized
on the same views as in ground-truth video frames. As LLFF dataset
does not have reference videos, we combined 120 frames rendered
in a spiral trajectory around the mean pose (similar to other NVS
methods). All the video frames were cropped to a resolution of
960×756 px. and then up-scaled to 1920×1512 px. (bilinear filter)
so that two videos could be shown side by side on our 4K monitor.
The upscaling was necessary to obtain a more realistic and effec-
tive resolution of 40 pixels per degree with respect to the original
video resolution. Please note that when we evaluate image/video
metrics in Section 6, all the computation is also done on up-scaled
images/videos to ensure fairness. Each video was between 3 to 15
seconds long, with a framerate of 30 fps. In total, each participant
assessed the quality of 22 scenes reconstructed by 10 NVS methods
as well as 14 reference videos.

4.3. Participants

We invited 39 volunteers (20 males and 19 females) with normal
color vision (confirmed by running the Ishihara Test). Each par-
ticipant completed 4–5 full batches of comparisons scheduled by
ASAP [MWP*21]. The experiment was authorized by an external
institutional review board and the participants were rewarded for
their participation.

4.4. Subjective Score Scaling and Calculation

We scaled the results of the pairwise comparison and expressed the
subjective evaluation score in Just-Objectionable-Difference (JOD)
units using the Thurstone Case V observer model [PM17]. A dif-
ference of 1 JOD unit means that 75% participants preferred one
method over another. The model assumes that participants made
their selections by assigning a single quality value to each video
and approximates this quality by a normally distributed random
variable with the same inter- and intra-observer variance.

5. Perceptual Benchmark Results

Figure 4 shows the perceptual preference for different methods av-
eraged across our collected Lab and Fieldwork datasets, as well
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Figure 4: Perceptual preferences for NVS methods. The bars in-
dicate preference in JOD units, relative to the original NeRF
method [MST*20], which is at 0 JOD. Negative values indicate
that, on average, the method produced less preferable results than
NeRF. The error bars show 95% confidence intervals.

as the LLFF dataset. We report both per-dataset performance and
the overall performance across all three datasets. To view results
on the individual scenes, we refer to Figures 2–4 in the supplemen-
tary. The baseline (0 JOD line) in Figure 4 is the original NeRF
model [MST*20], so positive JOD values indicate improvement
and negative values indicate degradation in quality (on average)
with respect to NeRF.

The results on both of our datasets show that despite the impres-
sive performance of NVS methods, their results can still be easily
distinguished from the reference videos. There is about 0.85 JOD
difference between the best neural rendering methods and the refer-
ence; 0.94 vs. 0.14 for Lab, 1.9 vs. 1 for Fieldwork. This indicates
that the reference will be selected as better in 70% of the cases
across the population. On average, only five out of nine methods
produced better results than the original NeRF. It is evident that
existing generalizable models require further refinement, as an ad-
ditional per-scene optimization step is needed to achieve desirable
outcomes. It is noteworthy that the discrepancies among the meth-
ods are more noticeable in the more challenging Fieldwork dataset,
which implies that a challenging dataset is essential to distinguish
between methods.

Compared with other models, MipNeRF performs quite well in
most scenes, particularly those with high-frequency geometric de-
tails (Figure 3, statue’s face and hair in Naiad statue, bones
and background poster in Dinosaur, fence in CD-occlusions
etc.). In comparison, techniques that lack explicit volume rendering
(e.g., LFNR, and GNT) and those with coarse geometric model-
ing (e.g., NeX) exhibit suboptimal performance in these situations.
Nonetheless, LFNR and NeX do provide more natural outcomes

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



6 of 12 H. Liang et al. / Perceptual Quality Assessment of NeRF and Neural View Synthesis Methods for Front-Facing Views

Table 1: The list of evaluated objective metrics.

Metric Reference Video Detailsrequired metric

PSNR ✓ ✗
Widely used ratio to measure noise
relative to the signal in log units

PSNR-L ✓ ✗
PSNR computed on image luma values

SSIM
✓ ✗

Popular quality measure that perceives
[WBSS04a] structural similarity
MS-SSIM

✓ ✗ Multi-scale version of SSIM
[WSB03]

VIF
✓ ✗

Natural Scene Statistics (NSS) models
[SB06] on information-theoretic setting
FSIM

✓ ✗
Low-level image feature similarity

[ZZMZ11] based on the human visual system
LPIPS-VGG

✓ ✗
Perceptual similarity metric based on

[ZIE*18] deep network of VGG model
LPIPS-ALEX

✓ ✗
Perceptual similarity metric based on

[ZIE*18] deep network of AlexNet model
DISTS

✓ ✗
Unify texture and structure similarity

[DMWS20] with deep network
HDR-VDP-3

✓ ✗
Low-level vision model on

[MKRH11] HDR images
FLIP

✓ ✗
Metric that considers HVS, viewing

[ANA*20] distance and monitor conditions
FovVideoVDP

✓ ✓
Spatial-temporal metric that accounts

[MDC*21b] for foveation effect
STRRED

✓ ✓
Hybrid metric measures temporal

[SB13] motion and spatial difference
VMAF

✓ ✓
Support Vector Machine combination

[LAK*16] of multiple image and video metrics
HDR-VQM

✓ ✓
Spatial-temporal metric that considers

[NPL15] human eye fixation behavior
BRISQUE

✗ ✗
Support vector regression trained

[MMB12] on IQA dataset
NIQE

✗ ✗
Distance between NSS-based

[MSB13] features to those from a database
PIQE

✗ ✗
Averaged block-wise distortion

[VDB*15] estimation

for scenes with complex lighting and specular reflections such as
Metal and CD in CD-occlusions; see Figure 3. For certain
Fieldwork scenes, techniques founded on multi-view epipolar ge-
ometry constraints, such as IBRNet and GNT, tend to fail and ex-
hibit conspicuous artifacts (Dinosaur in Figure 3, Vespa and
Giraffe shown in supplementary). This is due to the consid-
erable distance between the test and source views, which renders
the epipolar features inaccurate. For a more in-depth examination,
we encourage the reader to review the quality results of individual
scenes provided in the supplementary.

6. Assessing Quality Metrics for Neural View Synthesis

Our collected datasets with video references, together with percep-
tual quality results of reconstructed videos, allow us to test how
well the existing image/video quality metrics can measure the per-
ceived quality. We test a range of existing objective metrics, full-
reference and non-reference, image and video metrics, as listed in
Table 1. We look into the widely used image similarity metrics such
as PSNR and SSIM [WBSS04b], and also deep-learning related
metrics, such as LPIPS [ZIE*18] and DISTS [DMWS20]. We test
LPIPS using two different backbone models, VGG and AlexNet, as
we noted they differ in their predictions. PSNR-L converts image
RGB values into luma values before computing PSNR similarity.
We include several video quality metrics, including FovVideoVDP

Figure 5: Selected metric correlations for our Lab (top row) and
Fieldwork (bottom row) datasets. The black lines are obtained
through fitting a logistic function which helps to detect outliers that
affect correlations. Glossy animals produced by DVGO and
GNT-S are denoted in red circles in the first row. Metal produced
by IBRNet-C and GNT-C are denoted in blue circles. Vespa pro-
duced by IBRNet-C, GNT-S, and GNT-S are denoted in orange cir-
cles in the second row.

(v1.2, labeled FVVDP) [MDC*21b], VMAF (v0.6.1)[LLWK14;
LAK*16; LBJ*18], STRRED and HDRVQM. Given that FVVDP
and VMAF are applicable to both videos and images, we assess
their performance in two distinct contexts: one is directly evalu-
ated on videos (denoted with a "video" suffix), while the other is
evaluated on each video frame and average among them (denoted
with an "image" suffix). The absence of a suffix implies the evalu-
ation is conducted on video content. In contrast to its image-based
counterpart, a direct evaluation of videos entails the consideration
of temporal distortions between successive video frames. For in-
stance, VMAF-video incorporates an additional measurement of
temporal differences within the luminance component when com-
pared to VMAF-image. We also evaluated on several blind or non-
reference image metrics (BRISQUE [MMB12], PIQE [VDB*15]
and NIQE [MSB13]), that directly compute scores without com-
paring to the reference images. For metrics that require display pa-
rameters (e.g., HDRVDP-3, and FovVideoVDP), we matched the
effective resolution of the videos in our experiment (40 ppd, see
Section 4.2).

For our collected Lab and Fieldwork datasets, which include
reference videos, we computed the quality scores on the captured
test video sequences. Since LLFF dataset lacks reference videos, we
computed the quality scores on the sparse test image set as done in
NVS papers. Thus, it is inherently unfeasible to consider the tem-
poral distortions within this dataset, which is likely to be inferior to
testing on videos.

To test the reliability of popular metrics, we followed the stan-
dard protocol used to evaluate quality metrics [HME*22; PJI*15],
and computed rank-order (Spearman) correlations between metric
predictions and perceptual JOD values. Figure 5 shows scatter plots

© 2024 The Authors.
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Figure 6: Bootstrapped distributions of correlation coefficients for all metrics computed on (a) Lab, (b) Fieldwork, and (c) LLFF. The “+"
in black denotes mean correlation, and “-" in red denotes the 5th percentile (an estimate of the bad-case performance). Full-reference video
metrics are missing for LLFF because this dataset has no ground-truth videos. The lines connect metrics where differences cannot be deemed
statistically significant in a non-parametric test, with a p-value of 0.05.

and correlations of popular quality metrics w.r.t. subjective scores
for the Lab (top row) and Fieldwork (bottom row) datasets. Please
refer to the supplementary for similar plots for other metrics. We
use least square optimization to fit a logistic function between met-
ric score and subjective JOD score, which helps us find the outliers
that affect the correlations. However, these point estimates of cor-
relations conceal measurement noise due to: (a) the selection of
scenes, (b) the subjective experiment results. Thus we cannot draw
conclusions solely based on these correlations.

6.1. Averaged Bootstrapped Correlations

For each dataset and each NVS method, we averaged subjective
scores and quality metric predictions across all scenes and then
computed a single correlation per dataset per metric. This serves
two purposes: (a) it mitigates the effects of measurement noise and
improves the predictions of quality metrics as shown in previous
works [HME*22], and (b) NVS methods are typically compared
on averaged scores across scenes that reduce per-scene bias, mak-
ing it more relevant for us.

When comparing quality metrics, it is essential to account for
the variance in our data (subjective score variance and scene selec-
tion). We estimate the distribution of correlation values using boot-
strapping [MR93]: we generated 2000 bootstrap samples for each
estimated correlation by randomizing (sampling with replacement)
both the participants and the selection of scenes. Within each boot-
strap sample, we independently scaled the JOD values (following
Section 4.4). In this way, our bootstrapping simulates 2000 out-
comes of the experiment to capture the variance we can expect due
to measurement noise. To determine whether the differences be-
tween the metrics are statistically significant, we performed a non-
parametric test at the α = 0.05 level by directly computing the dis-
tribution of the difference of bootstrapped samples. Please refer to
supplementary for more details about non-parametric test. The re-
sults of that test are visualized as horizontal green lines in Figure 6.

6.2. Quality Metrics Performance

The correlations between metrics scores and subjective scores are
shown in Figure 6. Below, we discuss the main observations that
can be made based on that data.

© 2024 The Authors.
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PSNR is more accurate than SSIM and LPIPS NVS meth-
ods are typically evaluated using image quality metrics such as
PSNR, SSIM, and LPIPS. The results in Figure 6 show that the
simplest metric, PSNR, performed significantly better than more
complex SSIM and LPIPS. NVS evaluation clearly does not benefit
from the statistics extracted by SSIM or deep features extracted by
LPIPS. Poor performance of SSIM has been noted before [PJI*15;
LHS19], but it is still a popular metric because of its simplicity.
The poor performance of LPIPS could be attributed to its train-
ing data consisting of small image patches with specific distortion
types (noise, blur, compression-related, etc.) that are unlike NVS
artifacts. We did not observe a statistically significant performance
difference between PSNR-L (computed on luma) and PSNR (com-
puted on RGB).

Importance of video reference dataset. In Figure 6, we observe
that per-metric correlations are the lowest for the LLFF dataset and
the highest for Fieldwork dataset. The low correlations for LLFF
could be partially explained by the fact that while the subjective
experiment measured video quality, the metrics could only be run
on individual test views due to the lack of reference videos in LLFF.

To further investigate the importance of video reference, we ex-
perimented with sequences in which the number of available frames
varied. We recomputed metric scores on progressively denser sub-
sets of the test video frames (ranging from 10% to 100% of frames).
Figure 7 illustrates the effect of increasing frames for representa-
tive image metrics. Note that the reported values are bootstrapped
correlations (see Section 6.1) between metric predictions and sub-
jective scores. The figure shows a gradual increase in correlation
as we use more video frames. This observation highlights the lim-
itations of using sparse image sets for assessing perceived quality,
which degrades the predictions of image metrics.

All the above results indicate that the current objective evalua-
tion protocol using a sparse image set is inadequate for assessing
the perceptual quality of NVS methods applied to video generation.
This underscores the rationale behind the development of our new
datasets, which incorporate reference videos for testing.

Video metrics outperform image metrics. For both datasets
with video reference (Lab and Fieldwork), video quality metrics
VMAF-video and FVVDP-video demonstrate the strongest corre-
lations with human perceptual assessments. As shown in Figure 7,
the predictions of video metrics (shown as star markers) were more
accurate than those of the same metrics run on video frames (shown
as square markers). This compelling evidence suggests that the sub-
jective assessment of NVS-generated video is significantly influ-
enced by temporal distortions and highlights again the importance
of video assessment for NVS evaluation. This also emphasizes the
significance of using video metrics that take temporal artifacts into
account.

Importance of challenging datasets. Similar to point estimates
of correlations (Figure 5), the bootstrapped correlations are the
highest for the Fieldwork dataset (Figure 6). The simple explana-
tion for this result is that the Fieldwork dataset was more challeng-
ing for NVS methods and resulted in larger, more objectionable ar-
tifacts, as can also be seen in the subjective results (Figure 4). Such
large differences make it much easier for the quality metrics to dif-
ferentiate between the methods. In fact, most full-reference qual-

Figure 7: The performance of selected image quality metrics (in
terms of SROCC) as the function of the number of frames used for
the quality prediction. The star symbols on the right denote the per-
formance of video metrics run on all frames. The performance of
image quality metrics improves as we supply more images. Still, the
highest performance is achieved by video metrics (FVVFP-video,
VMAF-video), which can detect temporal distortions.

ity metrics performed well on this dataset. The Lab dataset, with
its highly specular materials, was designed to pose a challenge to
NVS methods. However, as it has a denser and more regular set of
training views, most NVS methods performed well on those scenes,
making it harder for the metrics to differentiate between the meth-
ods.

In summary, we recommend testing NVS methods on video
sequences and using video quality metrics, such as VMAF and
FVVDP. We still recommend using PSNR because of its simplic-
ity, relatively good performance, and because it allows comparison
with existing studies. We further recommend conducting testing
of NVS methods on challenging datasets equipped with reference
videos, such as our Fieldwork dataset.

6.3. Failure Cases of PSNR

Although PSNR is an effective image metric for evaluating NVS
methods with respect to the perceived subjective quality, it is still
beneficial to investigate when PSNR can fail to reflect subjective
preferences. To do so, we compute per-scene correlations between
PSNR scores and bootstrapped perceptual JOD values, and find
scenes for which the metric results in poor correlations.

On the Lab dataset, we find that PSNR fails to accurately assess
perceived quality on Glossy animals and Metal scenes. Par-
ticularly, for Glossy animals, we observe that the NVS gen-

© 2024 The Authors.
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Figure 8: Representative scenes where PSNR fails to predict qual-
ity. (a) Scenes from Lab dataset: The values under the plot show
PSNR / subjective-JOD values. The images in the middle column
have higher PSNR values than those in the right column, but they
contain obvious artifacts and are less preferred (compare JOD val-
ues) — see the blurry artifact in Glossy animals and unnat-
ural local shading in Metal. We show the Spearman correlation
between PSNR and subjective score on the left of the GT image (i.e.
0.527 on Glossy animals and 0.588 on Metal). (b) Vespa
from Fieldwork dataset produced by GNT-C, GNT-S, and IBRNet-C
show a degradation in image quality from 1s to 4s with severe tem-
poral distortions between consecutive frames. These distortions are
markedly disfavored by study participants. However, PSNR fails to
capture the distortions adequately and yields relatively favorable
metric scores. Please note that all these artifacts are more notice-
able in videos.

erated by DVGO exhibits a higher PSNR score compared to that
produced by GNT-S, as depicted in Figure 5, however, the latter
is more preferred by participants. This discrepancy is exemplified
in Figure 8a, which presents a representative reconstruction of this
scene. Notably, PSNR appears to lack sensitivity to the blurry ar-
tifacts introduced by NVS methods, as observed in the top row’s
middle column, specifically between the rabbit’s ears. However,
this artifact is easily noticeable (especially when shown in video)

and significantly impacts human preferences, with a clear prefer-
ence for images without such distortions (top row, right column in
Figure 8a). The inadequacy of PSNR is also underscored when ex-
amining the Metal scene, notably in the NVS results produced
by IBRNet-C and GNT-C, as illustrated in the second row of Fig-
ure 8a. In this scene, participants are highly sensitive to localized
distortions, such as the unnatural local shading, as depicted in the
bottom row’s middle column in Figure 8a. These subtle yet cru-
cial artifacts may not be effectively captured by PSNR due to its
reliance on averaging pixel-level information across the entire im-
age.

On the Fieldwork dataset, although PSNR effectively evaluates
the perceived quality across most scenes, it exhibits limitations in
adequately assessing the scene Vespa, as can be regarded as an
outlier illustrated in the orange circles in Figure 5. Specifically, the
NVS results generated by GNT-C, GNT-S, and IBRNet-C, as de-
picted in Figure 8b, show a progressive degradation in image qual-
ity from 1s to 4s, accompanied by severe temporal distortions be-
tween consecutive frames. These observed distortions are markedly
disfavored by study participants with low perceptual JOD value
around -5. However, PSNR fails to capture the temporal distor-
tions adequately, continuing to yield relatively favorable metric
scores around 25. In contrast, both VMAF and FVVDP metrics
prove to be effective in detecting and quantifying the presence of
temporal artifacts (Vespa produced by IBRNet-C/GNT-C/GNT-
S has VMAF scores of 15.09/16.10/18.35, and FVVDP scores of
4.73/4.23/4.38), offering a better correlation with subjective scores.

7. Conclusions

The primary application of NVS methods is the interactive explo-
ration of 3D scenes. Yet, those methods are typically tested on
isolated views instead of videos, which could mimic such 3D ex-
ploration. In this work, we collected two new datasets with refer-
ence videos and used them to evaluate 8 representative NVS meth-
ods (and two variants) in a subjective quality assessment exper-
iment. The results helped us to identify the strengths and weak-
nesses of tested NVS methods, but also to evaluate 18 image/video
quality metrics. We found that (a) existing quality metrics strug-
gle to differentiate between the NVS methods when they are tested
on datasets with a dense set of training views; and (b) SSIM and
LPIPS, which are two commonly used quality metrics, perform
worse than PSNR when evaluating NVS methods; (c) our analy-
sis elucidates the limitation in the current NVS evaluation protocol
and reveals the crucial need for video assessment and video metric.
Our recommendation is to evaluate NVS methods on challenging
datasets with sparsely sampled views and to use both PSNR and
video metrics, such as VMAF and FovVideoVDP. Our work mainly
focuses on evaluating front-facing scenes because this is applicable
to more NVS methods (e.g., NeX). Moreover, this setup has sig-
nificant applications in free-viewpoint video capture, particularly
for AR/VR applications. While capturing 360◦ scenes is equally
important, we will investigate such a setup in the future.
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