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Video Doodle

Sketch Video Editing（Size, color and fill）

Video Sketching

Figure 1: Given an input video (with the foreground object), we introduce a novel method for sketching the video using Bézier Curves
so that the video can be represented by scalable vector graphics (SVG). The generated sketch video maintains semantic alignment
with the input and demonstrates temporal consistency. The flexibility of vector lines enables various rendering techniques, including
resizing, color filling, and overlaying doodles on the original background images, allowing for the creation of diverse artistic effects.

Abstract
Understanding semantic intricacies and high-level concepts is essential in image sketch generation, and this challenge becomes
even more formidable when applied to the domain of videos. To address this, we propose a novel optimization-based framework
for sketching videos represented by the frame-wise Bézier Curves. In detail, we first propose a cross-frame stroke initialization
approach to warm up the location and the width of each curve. Then, we optimize the locations of these curves by utilizing
a semantic loss based on CLIP features and a newly designed consistency loss using the self-decomposed 2D atlas network.
Built upon these design elements, the resulting sketch video showcases notable visual abstraction and temporal coherence.
Furthermore, by transforming a video into vector lines through the sketching process, our method unlocks applications in
sketch-based video editing and video doodling, enabled through video composition.
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1. Introduction

Freehand drawing is a widely adopted method for quickly proto-
typing ideas across various domains [GSH*19; XHY*20]. This ap-
proach embodies simplicity, abstraction, and adaptability, empow-
ering individuals to effectively express their concepts. Furthermore,
skilled artists can develop distinctive artistic styles through free-
hand drawing. While sketching is a common practice for images,
often using formats like scalable vector graphics (SVG), there has
been limited exploration of its application in the context of sketch-
ing videos. This uncharted territory makes the exploration of sketch
videos an intriguing and meaningful endeavor.

While traditional approaches, such as edge detection meth-
ods [XT15; Can86] excel in rendering realistic sketches, they strug-
gle to create more expressive and abstract representations due
to their reliance on mathematical and geometric operations. In
an attempt to incorporate semantic awareness, previous sketching
methods have attempted to learn human-like sketches from a col-
lected dataset in different levels of abstraction and styles [BSM*13;
LLM*19; KP20] at the pixel level. While these data-driven meth-
ods imitate human sketches, the requirements and quality of the
relevant datasets restrict the output. As introduced by recent image
sketching works [VPB*22; VACS22], line drawings are defined us-
ing the control points of Bézier Curves and are optimized to rep-
resent the scene. These methods employ multi-scale deep percep-
tual losses [RKH*21] to bridge the gap between generated sketches
and real scenes, bypassing the constraints of traditional datasets
and yielding diverse results. We follow these frameworks to rep-
resent video sketches in vector format. However, if we simply ap-
ply image-based sketching [VPB*22] in a frame-wise manner with-
out careful consideration, the strokes will converge into local min-
ima rapidly. Additionally, the flickering issue of generated video
is not easily resolved through conventional video deflickering al-
gorithms [LXC20; LRZC23], especially when dealing with vector
graphics.

To overcome the challenges mentioned above, we introduce an
optimization-based framework aimed at generating sketch videos
in vector format that exhibit both semantic alignment and temporal
consistency. To achieve this goal, we leverage Neural Layered At-
las (NLA) [KOWD21] to our tasks for multiple purposes. NLA is
first proposed for video editing, it maps each point in video to a uni-
form global UV map, so that it can guarantee the correspondences
across frames and help for temporal point consistency. In detail,
the process of generating a high-quality video sketch involves care-
ful initialization and continuous optimization of the sketch video.
We begin by carefully selecting the initial locations for candidate
points, where an effective initialization is crucial for avoiding un-
favorable local minima [VPB*22] and accurately conveying the
video’s semantics. To achieve this, our initialization approach uti-
lizes semantic-aware edges, derived from salient maps obtained
from the combination of CLIP features [RKH*21] and XDoG edge
detection [WKO12]. Subsequently, these selected points are prop-
agated to all frames and optimized to their initial positions using
a pre-trained NLA. Then, we optimize the location of these points
using several losses so that they can ensure both semantic align-
ment and temporal consistency. We transform the candidate points
to Bézier Curves and utilize a differentiable rasterizer [LLMR20]

to render them to the frame-wise images. For semantic abstraction,
we utilize the pre-trained CLIP image encoder as a feature extrac-
tor and compute losses between the rendered one and the real video
frame. For temporal consistency, we ensure consistency of vector
points via the pre-trained NLA [KOWD21] so that they can be con-
sistent from a global view. Based on these techniques, the proposed
method can successfully generate the abstraction sketches of the
specific given video.

In addition to streamlining the process of sketching videos, our
approach paves the way for various video applications. For in-
stance, it allows for the creation of colorful videos by applying
drawing techniques to a single frame. Furthermore, our method in-
troduces novel possibilities in video editing, such as substituting
the original content by integrating sketches into the scenes. Addi-
tionally, our approach enables the generation of video doodles to
enhance other video content.

The contribution of this paper can be summarized as:

• We first tackle the problem of generating scalable abstract videos
via several Bézier curves.

• By utilizing the consistency of pre-trained video implicit rep-
resentation [KOWD21], we propose a novel point initialization
method and a temporal consistency loss for video sketching syn-
thesis.

• Our method generates the animated vector sketch from the input
video, enabling multiple new applications of video editing and
doodles.

2. Related Work

2.1. Doodling and Abstraction

Doodling and abstraction are common forms of artistic expression
that use few and sparse curves to depict objects or scenes abstractly.
Early works in sketching, such as traditional edge detection meth-
ods [Can86; XT15], effectively describe the structure and seman-
tics of images. While these methods produce clear and coherent
sketch videos, they lean towards excessive realism, often neglect-
ing the artistic preferences of viewers. Combining edge detection
methods with line drawing video stylization [BBM*16] generates
abstract images, but it often overlooks the holistic aspect of video
frames and loses video consistency. This issue can be alleviated
to some degrees by incorporating temporal noise control meth-
ods [NSC*11]. Recent data-driven methods primarily focus on gen-
erating human-like sketches through domain adaptation using care-
fully curated datasets [HE17; AMFM10]. These methods offer the
ability to create various styles and levels of abstraction. However,
the resulting style is often closely tied to the specific dataset char-
acteristics, making it less suitable for unstructured and previously
unseen data. Extending these methods to handle videos, which are
typically supervised by image datasets, is also a challenging en-
deavor. Another method, such as video doodling [YBN*23], is used
in sketch addition on video, but it is not satisfied with a global level
of abstraction.

2.2. Vector Sketching Generation

There are some image-to-vectors methods [RGLM21; CDAT20;
DYH*20] that can typically produce pixel-aligned results. How-
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ever, sketching demands a higher level of abstraction and greater
continuity between lines. Recent advancements in differential gra-
dient algorithms, such as DiffVG [LLMR20], have made it feasible
to optimize images and even SVG representations within the pre-
trained CLIP [RKH*21] space. For example, CLIPDraw [FSW22]
explores the potential of optimizing SVG images to generate draw-
ings that closely align with text prompts, leveraging the guidance of
CLIP. Similarly, Tian and Ha[TH22] have designed an evolutionary
algorithm to abstract images using vector triangles.

Regarding closely related works, CLIPasso [VPB*22] specifi-
cally applies the technique of CLIPDraw [FSW22] to generate ob-
ject sketches, and CLIPascene [VACS22] extends the optimization
process to incorporate background elements. Furthermore, similar
optimization methods have been employed in the domain of artis-
tic fonts [IVH*23] with the diffusion model [RBL*21]. Text-based
vector generation has attracted research attention, as evidenced by
Wu et al. [WSML23], who propose a transformer-based method
for generating icons from text auto-regressively. Different from the
vectorization method for images, our approach focuses on generat-
ing sketch videos that need to keep temporal consistency, and di-
rectly using the image-based method will fall into local minimal
due to initialization.

2.3. Rotoscope and Animation

Rotoscoping [Sab97], as a traditional animation technique, creates
animated sequences by tracing over live-action footage frame by
frame. This method yields a stylized video while preserving the
motion trails and essential structure information from the source
video. In response to diverse demands, various methods have been
proposed, such as dealing with keyframes, preserving higher con-
trast regions, or tracking contours in the video sequence [WOG06;
AHSS04]. The quality of the generated video often relies on user
interaction [OH11; Aga02]. Traditional techniques serve as pre-
processing steps that filter out fine-grained information, handling
relatively simple effects and leaving more intricate work for the
artist. Similar principles are applied in animation. Through the
use of sparse tracking points, a sketch can be animated accord-
ingly [SBF*18; SZL*23]. However, this method is region-specific
and encounters challenges when dealing with complex videos and
general motion, primarily focusing on extracting and adapting cru-
cial motion curves. Recently, advancements in deep learning have
played a pivotal role in contributing to the refined animation of
sketches, enabling the creation of nuanced and high-quality out-
comes [YYF*22].

2.4. Video Editing and Temporal Consistency

Video editing and stylization have a long history within the com-
puter vision and graphics communities. Various attempts have been
made to achieve stylization [FJL*16; JST*19]. However, these
methods may face challenges in maintaining tracking consistency.
Since frame-wise techniques can generate high-quality stylized im-
ages [GEB16; JAF16], it has become a common practice to employ
neural networks for reducing temporal inconsistencies as a post-
processing step [LXC20; BTS*15; LHW*18; LXOC22]. Nonethe-
less, it is important to note that style transfer techniques primar-

ily rely on measuring perceptual distance [ZIE*18], which can re-
sult in imperfect stylization due to a lack of deep comprehension
at the semantic level. Some recent works have shown improved
consistency, but often within specific domains, such as portrait
videos[FJS*17; YJLL22]. For local video editing, layer-atlas-based
methods [KOWD21; BOF*22] present a promising approach by al-
lowing video editing on a flattened texture map and generating re-
sults through color-wise mapping.

More recent approaches have explored video editing using dif-
fusion models [RBL*21]. These models offer stronger priors for
editing using text. e.g., Gen1 [ECA*23a] trains a conditional model
for depth and text-guided video generation, allowing on-the-fly ap-
pearance editing of generated images. Several methods [WGW*22;
QCZ*23; KMT*23; LZL*23] leverage pre-trained text-to-image
diffusion models for zero-shot or one-shot video editing. Although
current methods have shown promising results for image pix-
els, there is still a lack of techniques for generating vector video
sketches.

3. Methods

Our approach primarily aims to generate the sketch representation
of the objects in video. The main focus is usually on the foreground,
presenting diverse motion trajectories. Despite our attempts at
background sketching, the generated results often appear disor-
derly due to the inclusion of a sketchy background. The sketchy
video is represented through multiple vector strokes. Each stroke
is represented as the four points Bézier Curves, where we focus on
maintaining both semantic accuracy and temporal consistency. To
achieve, this goal, as shown in Figure 2, we first decompose a video
into a 2D representation using layer atlas [KOWD21] (Sec. 3.1).
Then, we introduce a new framework to optimize the location of
these points in Sec. 3.2. Finally, we give some potential applica-
tions in Sec. 3.3.

3.1. Preliminary: Video Decomposition via Layer Atlas

Unlike previous video synthesis and editing tasks [WLZ*18;
ECA*23a], our method focuses on optimizing the positions
of discrete points within curves to ensure consistent behavior
across frames. Therefore, using image-based frame deflickering
methods [LXC20; LRZC23] directly becomes challenging. To
address this, we leverage the trained representation of previ-
ous consistent video editing method, i.e., Neural Layered Atlas
(NLA [KOWD21]), to maintain point consistency.

As shown in the left part of Figure 2, the Neural Layered At-
las (NLA) treats the video as a spatial-temporal 3D volume, where
each 3D coordinate within the video is mapped onto the fore-
ground (or background) 2D UV -maps through a Multi-Layer Per-
ceptron (MLP). Additionally, an extra MLP is employed to assign
color values to a given 2D UV location. To formalize this, let’s
consider a video pixel as p = (x,y, t), where x and y are the coor-
dinates of the pixel within the t-th frame. NLA generates the 2D
UV maps for foreground and background individually as shown in
Figure 2. It uses M f and Mb to map 3D coordinate p to a 2D loca-
tion in foreground UV-map as (u f ,v f ), and in background UV-map
as (ub,vb) separately. The MLP Mα indicates the ownership of the
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Figure 2: Pipeline. Firstly, we train a layer atlas to decompose the video into the trained layer atlas. Then, we optimize the location of the
generated frames via the proposed novel initialization methods and consistency loss.

points (foreground or background) according to the motion prior
and the pre-defined mask losses. Subsequently, a shared MLP A is
trained to map the (u,v) to the corresponding color in RGB space,
ensuring that the same pixel in the real world should have the same
color.

This comprehensive process facilitates the video reconstruction.
After training, the mapping MLPs M f and Mb indicate the corre-
spondence between points in the video and specific points within
the holistic UV -map, aligning with our requirements for curve
mapping consistency. Our method adheres to the original video de-
composition approach of the layer atlas. For more specific informa-
tion regarding training and loss functions, detailed insights can be
found in [KOWD21].

3.2. Differentiable Optimization for Video Sketch

In this section, we give the details on how to generate a sketch
video in our framework. Formally, given a real video {I1, ...,IT }
contains T frames, we define the sketching video {S1, ...,ST } as a
set of N strokes St = {s1, ...,sN} for each frame. Each stroke si is
defined as the two dimensional Bézier curves, where each curve is
built via 4 control points si = {(xi,yi)

k}4
k=1. We empirically use the

same index i of stroke si across different sketches St to represent
the same curve across frames and only optimize their positions.
All other curve-related attributes are following the previous image
sketching method [VPB*22]. We then use a differentiable raster-
izer R from DiffVG [LLMR20] to transform the control points and
attributes of Bézier Curves into SVG to represent the final sketch
video. So the loss functions L can be optimized between the real

video and the sketches representation. The overall process can be
represented as:

arg min
(X ,Y )

T

∑
t=1

L(R(St),It), (1)

where (X ,Y ) are all the coordinates of the control points⋃N
i=1

⋃4
k=1(xi,yi)

k in the whole sketch video.

Subsequently, we first introduce our method on how to obtain
the initial stroke settings on video (Sec. 3.2.1). Then, we elaborate
on the particulars of rendering points into curves and optimize the
entire video (sec. 3.2.2).

3.2.1. Strokes Initialization

The objective function of our abstraction is highly non-
convex [VPB*22] since the optimization loss is based on rendered
views in pixel differences [LLMR20]. Thus, attempting to opti-
mize the location directly from random initialization often leads
to the process getting trapped in local extrema, both in the im-
age and video abstraction (as in Figure 3). To overcome this
challenge, CLIPasso [VPB*22] employs a saliency-guided initial-
ization process, where strokes are sampled from the probability
map. This map is generated by multiplying the saliency map via
CLIP [RKH*21] feature with the image’s edge map extracted using
XDoG [WKO12], and then subjecting the result to softmax normal-
ization. We argue this kind of initialization is hard to work in pro-
cessing video since each frame has a variant attention map, where
these varying initial points increase the difficulties of the point op-
timizations. Below, we give our solution step by step.
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Random + Propagation Attention + Propagation

Attention on Atlas + Propagation Attention + Propagation + warmup

Figure 3: The influence of different initialization methods.

Point Sampling. We first need to generate sparse key points across
frames, which are then used to represent the entire video. These
points should have higher semantic correlations. As shown in Fig-
ure 4, to build a sketch video with T frames, where each frame
contains N strokes, we first apply salience-guided initialization pro-
cess [VPB*22] to sample N candidate points in each frame based
on their normalized attention maps individually. Then, in order to
obtain the initial points on video, we consider temporal sampling,
where we resample (randomly pick) N′ points (N′ equals N) from
the set of all N×T candidate points to build a cross-frame point set
P = {p1, ..., pN}. Here, pn are 3D coordinates (xn,yn, tn), where
n indicates the index of control points. Considering both individ-
ual frames and the entire video, the more important parts are more
likely to be sampled across the entire video.

Point Propagation. We assume that the points at the same in-
dex should be initialized at a similar position in different frames,
which is very helpful in avoiding local minima (as in Figure 3).
To achieve this, as shown in Figure 4, we paste sampled points
into each frame with the corresponding index. So each point index
has the same spatial 2D initialization as p̂t

n = (xn,yn, t) in all video
frames (the same x, y with different t). After the process of point
propagation, the total number of points is represented as N×T and
is denoted as P .

Position Warmup. Since there can be offsets between the sampled
points in different frames (e.g., the same color markings in various
frames in Figure 4), we employ an optimization-based approach
to alleviate the differences between the propagated locations and
the previously sampled positions on the UV maps by adjusting the
propagated points only. This alignment is achieved through the use
of the pretrained atlas mapping network M f to optimize the control
points across frames on the atlas:

Lwarmup =
T

∑
t=1

N

∑
n=1

||M f (p̂t
n)−M f (pn)||1, (2)

In this situation, t represents the frame index, n signifies the con-
trol point index, p denotes the sampled points, and p̂ signifies the
propagated points.

In practice, we warm up 300 iterations. This strategy helps us to
find the most suitable initialization points. As shown in Figure 3,
random initialization (or solely attention-based methods [VPB*22]

Sampling Points

Frame 1 Frame 2 Frame T

Propagation

𝑀!

𝑀!

Atlas Visualization

Frame 1 Frame 2 Frame T

Figure 4: Point Position Warmup. The initialized points are
warmed up by optimizing the propagated points in different frames
{ △, △, ×, ×, ♢,♢ } closer to the sampling points { •, •, • } on
the atlas (by mapping MLP M f ).

with similar results) yields poor performance due to the lack of
correspondence between the same index points across the video.
While propagating the points across different frames helps establish
correspondence, it can still lead to a loss of focus on the object.
Different attention strategies yield varying results, with frame-wise
attention outperforming the attention map based on the atlas. This is
because the atlas tend to exhibit distortions compared to the more
realistic frames. Ultimately, the performance is further enhanced
and becomes more accurate with the inclusion of a warm-up phase
in the entire initialization process.

Curve Width Initialization. We also initiate the curve widths, con-
sidering that generated videos can involve significant motions and
varying scales. We only consider the situation where there is only
a single foreground object in the processed video. Since more ac-
curate stroke thickness enhances the representation of contours, in-
stead of solely relying on the mask’s scale, we leverage the object’s
distortion to estimate the appropriate scale. In detail, as depicted in
Figure 5, we randomly pair points in each frame to calculate the
differences between points (here, we use all warmed-up points to
create pairs). By computing the γ root of the weighted pair-wise
differences on frame t (with γ equals to 3 as a measure of distortion
in the 3D world), we derive a scale factor sct and curve width wt :

sct = γ

√√√√ ∑
N
n=1 Dt

n

max
1≤i≤T

(∑N
n=1 Di

n)
, (3)

wt = sct ×w, (4)

where w is the default width. Consequently, more distant objects
are depicted with finer lines to capture intricate details and scale,
while closer objects are outlined with thicker lines. This strategy
enhances the quality of abstraction, particularly in scenarios involv-
ing substantial object motion.

3.2.2. Curves Optimization

Following a well-executed stroke initialization for the video, our
aim is to optimize the curves based on the positions of their points.
This optimization needs to ensure that the resulting sketch video
maintains not only semantic similarities with the input video but
also consistency across frames.

Firstly, we follow image-based sketching methods [VPB*22] to
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max
1≤i≤T

(Di
1 + Di

2 + . . . + Di
n)

Dt
1 Dt

2 Dt
n+ + … +γ

sct =

w/ width initw/o width init

w1 = w wt = w × sc1

wt = w

wT = w

wt = w × sct

wT = w × scT

Figure 5: Curve Width Initialization. The width wt of strokes in t-
th frame is scaled by the variable sct , with initialized width w. The
variable γ controls the contrast ratio of scale (default value is 3).

use the semantic-aware loss Lsemantic to measure the differences be-
tween the generated points and the original video. Lsemantic is based
on the differences in multi-scale perception features extracted from
the pre-trained CLIP image encoder [RKH*21]. Since CLIP is
trained on a larger-scale dataset to align the text and image infor-
mation through contrastive learning, the semantic information can
be well-aligned. Formally, for the control points S = {s1, ...,sN}
where si = {(xi,yi)

k}4
k=1 on each vector frame, we optimize the

positions of the control points based on the disparity between the
generated vector sketch and the actual input image I via the l-th
layer of pretrained CLIP Φ:

Lsemantic = ∑
l∈[3,5,9]

T

∑
t=1

||Φl(R(St))−Φl(It)||1, (5)

Here, T represents the total number of frames, and R is the differ-
entiable rasterizer as introduced above.

We also investigate the impact of variants of the CLIP encoders,
specifically, the ViT [DBK*20] based and ResNet101-based mod-
els [HZRS16]. The ResNet101-based CLIP model exhibits better
performance with more local structures, while the ViT-based meth-
ods focus more on global features. Consequently, we default to us-
ing the ResNet101-based CLIP model, as depicted in Figure 6.

CLIP-VIT CLIP-ResNet101

Figure 6: The differences in the choice of different semantic losses.

Besides, for our video sketching, we design a novel consis-
tency loss to measure the consistency between the generated sketch
frames The most naive approach is to maintain control over the
corresponding offsets to guarantee temporal consistency via opti-
cal flow [TD20; WLZ*18]. While optical flows are typically dense,
they might suffer from potential errors, e.g., forward-backward
consistency, and cumulative errors. Therefore, we employ the
trained atlas network to obtain a panoramic view of the video. This
allows each point in every frame of the video to be associated with
a consistent global position on the atlas. By ensuring that related
points and lines have consistent global positions, we can maintain
the continuity of the video. Specifically, we utilize the pre-trained

mapping network M f from the layer atlas, as illustrated in Fig-
ure 2. For each control point p̂t1

n and its neighboring point p̂t2
n with

the same index n, they are expected to be spatially closer in the at-
las. Here, t1 and t2 are defined for sequentially neighboring frames.
Then Lconsistency can be written as:

Lconsistency = ∑
p̂′∈Nt (p̂)

∑
p̂∈P

||M f (p̂)−M f (p̂′)||1, (6)

where the Nt means temporal neighborhood (neighboring frames).
After optimization, point p̂n, with the same index n across frames,
aim to have a similar location in the 2D UV -map and keeps consis-
tency over frames.

Overall, the loss function can be written as:

L= ω1Lsemantic +ω2Lconsistency, (7)

where ω1 and ω2 are used to control the extent of semantics and
consistency between sketches, respectively. We experimentally set
ω1 = 200.0 and ω2 = 3.0.

3.3. Applications

SVG Editing. Because the generated video is in the form of SVG,
the size can be edited losslessly. Our method also has the ability to
change the colors of all lines or fill specific lines within the video
to create richer details in the visual content. As shown in Figure 1,
we can resize the canvas, paint all objects in orange, and fill the
enclosed lines.

Video Editing and Doodling. Our method can also be employed
for video editing and doodle creation. As shown in Figure 1, Af-
ter generating the SVGs, we initially remove the foreground object
from the video using inpainting techniques [SLM*21]. Following
the restoration of the original video (background filling), we can
seamlessly blend the sketch into the foreground. Additional video
results are presented in the supplementary video.

4. Experiments

Our method is evaluated on DAVIS dataset [PPC*17], which pro-
vides foreground annotations for each frame. We also evaluate
the proposed method on some self-collected datasets, utilizing the
video matting method [LYSS21] to generate the foreground videos.
In each case, we only used the first 50 frames in the video to gener-
ate the results for a fair comparison. Subsequently, we decompose
the video into an atlas. For the optimization of sketching videos,
we utilize the Adam optimizer with a learning rate of 1.0, follow-
ing the approach of CLIPasso [VPB*22]. On average, optimizing
a video sketch takes approximately 29 minutes, consuming around
19.5GB on a single NVIDIA GeForce RTX 3090 GPU.

4.1. Compare with State-of-the-Art Methods

As no previous video sketching methods exist, we employ some
image sketching and edge detection techniques for comparison. For
image abstraction, in particular, we compare with frame-by-frame
CLIPasso [VPB*22]. Regarding edge detection, we assess against
traditional edge detection techniques, namely Canny [Can86], as
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Input Video

Canny

HED
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Figure 7: Comparisons with our methods and the states-of-the-art methods frame-wise methods, i.e., frame-wise CLIPasso [VPB*22]
and edge detection methods (canny [Can86] and HED [XT15]) on different frames of the videos.
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Temporal ↑ Semantic ↑ Abstraction ↑
Canny 0.975± 0.0038 0.807± 0.0095 0.298± 0.0071
HED 0.982± 0.0036 0.816± 0.0072 0.283± 0.0067
CLIPasso 0.949± 0.0033 0.801± 0.0074 0.299± 0.0069
Ours 0.983± 0.0029 0.821± 0.0086 0.300± 0.0070

Table 1: The mean values of clip scores (± denotes standard error).

Temporal ↑ Abstraction ↑ Overall ↑
Canny 2.65± 0.055 2.58± 0.060 2.51± 0.062
HED 2.67± 0.063 2.30± 0.064 2.60± 0.062
CLIPasso 2.13± 0.069 2.41± 0.065 2.31± 0.064
Ours 2.58± 0.061 2.74± 0.062 2.71± 0.061

Table 2: User study opinions on average (± denotes standard er-
ror).

well as the deep learning-based method, HED [XT15]. As demon-
strated in Figure 7, in comparison to CLIPasso, our approach ex-
hibits improved temporal consistency while effectively preserving
semantic information. In comparison with the edge detection meth-
ods, our proposed technique showcases superior semantic-aware
abstraction. Further insights and video comparisons can be found
in the supplementary video.

We conduct the quantitative evaluation using the trained CLIP
model [RKH*21] as previous methods [ECA*23b; HHF*21]. The
results are presented in Table 1. Specifically, we measure the tem-
poral consistency of videos by calculating the cosine similarity be-
tween clip features of consecutive frames. This metric is also em-
ployed to assess frame-wise similarity with the original foreground
video, indicating semantic coherence. In the case of Abstraction,
we compute the cosine similarity with the text "a freehand drawing
of <video name>" to gauge the likelihood of a freehand represen-
tation.

Recognizing the absence of universally accepted standard met-
rics for numerically evaluating sketching, we conduct user stud-
ies to assess the performance of the generated video. In detail, for
each of the 12 clips, we provide generated videos created by differ-
ent methods for comparison. We then invite 25 individuals to rank
the resulting videos in terms of semantic alignment (Abstraction),
temporal consistency (Temporal), and overall quality (Overall), re-
spectively. To help users understand abstraction, we describe it as
resembling a freehand drawing and aligning well with its mean-
ings. Temporal consistency is explained as the stability of the im-
age over time. In terms of overall quality, we define it as users’
general preference. The order of the generated videos is shuffled,
and participants are required to rank the results of four different

Semantic ↑ Abstraction ↑
Random 0.712± 0.014 0.256± 0.005
Rand+Propag 0.722± 0.018 0.279± 0.012
Attn+Propag 0.788± 0.027 0.283± 0.009
Atlas+Propagn+Warmup 0.819± 0.015 0.298± 0.010
Attn+Propag+Warmup 0.825± 0.012 0.300± 0.012

Table 3: Ablation on Point Initialization (± denotes standard er-
ror).

Warmup 500 1000200

w/ consistency loss

w/o consistency loss

100Init

Figure 8: Point Visualization. To further support the effectiveness
of the proposed consistency loss on the atlas, we visualize the lo-
cation of the same curves (same color) on different frames during
optimization. Kindly take note that the warmup points have been
gathered, and it is recommended to view them with zoom in.

methods from best to worst (with 4 being the best and 1 being the
worst). The final score is determined based on these rankings. As
presented in Table 2, our method receives more favorable feedback
from users when compared to the baseline CLIPasso [VPB*22],
demonstrating improvements across temporal consistency, seman-
tic abstraction, and overall quality. Moreover, it’s noteworthy that
our approach achieves enhanced semantic results with scores on
par with those of edge detection methods in terms of temporal con-
sistency.

4.2. Ablation Studies

Point Initialization. We emphasize the importance of point initial-
ization in sketch generation, as depicted in Figure 3. We propose
a point initialization method that considers both local and global
features. Here, we utilize CLIP scores [HHF*21], as explained in
Section 4.1, to quantitatively evaluate different strategies. Specifi-
cally, ’random’ involves randomly choosing points in each frame,
’propagation’ maintains the same 2D initial location across frames,
’attention’ samples points using the attention maps of each frame,
’atlas’ uses the attention map from atlas, and ’warmup’ keeps cor-
responding points across frames at the same location in the atlas.
The evaluation results align with the visual outcomes in Figure 3,
indicating that our approach outperforms other strategies in the Ta-
ble 3.

Optimization Visualization. We introduce a novel consistency
loss based on the trained atlas network. Here, we visualize the
points on the global UV map (atlas) to gain a clearer understanding.
As illustrated in Figure 8, points with the same index across multi-
ple frames are represented in the same color. During the optimiza-
tion process, the control points from different frames are appro-
priately positioned at the same points after the warming-up phase.
Subsequently, we optimize these points using both the consistency
loss and the semantic loss to ensure performance in terms of se-
mantic alignment and coherence.

Consistency Weights. The novel consistency loss maintains tem-
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Figure 9: The importance of the proposed consistency loss
(ωconsistency means ω2 in eq.7).

poral domain consistency through the trained atlas representation.
In our ablation study, we investigate this loss using different values.
As depicted in Figure 9, when the consistency loss is excluded (i.e.,
ωconsistency = 0), the generated sketch exhibits distinct representa-
tions across frames. As we increment this parameter, the optimized
results demonstrate enhanced stability.

Strokes Number and Width. We also show the vector sketch
frame using different numbers and widths of default strokes. In-
creasing the number of paths, as illustrated in Figure 10, leads to
the generation of sketches that capture more intricate details. For
instance, the details of the dress and its movements become more
prominent and well-defined, which reduces the level of abstraction.
Likewise, adjusting the stroke width yields similar effects. Decreas-
ing the stroke width during optimization emphasizes finer details
within the strokes rather than the overall structure, resulting in a
less abstract representation.

4.3. Limitation

Our method excels at generating coherent and semantically rich
videos, encompassing rigid objects, as exemplified by the snow-
board sketch video in Figure 1. Nevertheless, our approach en-
counters challenges with complicated motion sequences. The lim-
itations of the trained layer atlas [KOWD21] constrain the quality
of the sketches. For instance, it faces challenges when represent-
ing the motion of non-rigid bodies. Additionally, during cases of
self-occlusion, the generated abstract sketches may contain errors,
often appearing as improper turns (as observed in the supplemen-
tary video). Furthermore, the generated sketches may exhibit some

Stroke = 50,
width = 1.7

Stroke = 50,
width = 0.7

Stroke = 50,
width = 1.2

Stroke = 32,
width = 1.2

Stroke = 96,
width = 1.2

Figure 10: The ablations on the stroke width and numbers.

texture artifacts when the video undergoes significant motion or in-
volves complex foreground elements. As depicted in Figure 11,
our proposed method exhibits artifacts when the male face shakes
violently, and the atlas struggles to accurately represent the woman
in the image. While some of these issues can be mitigated by seg-
menting the video into smaller sections and employing more layers,
the accuracy of segmentation and the computational cost associated
with multi-layer approaches remain challenges.

Learned Atlas Original Frame / Generated Sketch

Figure 11: Limitations. When the motion is large and the object is
complex, the generated atlas may not be accurate, causing tempo-
ral inconsistency.

4.4. Conclusion

We present an optimization-based approach for generating sketch
videos that maintain both semantic and temporal consistency. Our
method facilitates the creation of sketching videos with the appro-
priate level of abstraction. Essentially, it includes a novel initializa-
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tion technique for acquiring well-initialized points and a distinctive
consistency loss derived from self-supervised video decomposition.
These innovations empower us to craft sketch videos using simple
Bézier curves. Since the resulting videos are composed using Scal-
able Vector Graphics, our proposed methods offer versatile applica-
tions in video editing and doodling, accommodating various sizes
while preserving intricate details.
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