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Figure 1: CharacterMixer enables interpolation between two 3D models that have different surface mesh topologies and rig skeletons. It
preserves a posable rig throughout interpolation. In the top row, we show an example of interpolating source to target with a fixed pose.
CharacterMixer constructs three types of bones to handle different skeleton topologies: 1-to-1 matched bones are Constrained, 1-to-many
matches are Loose (tail), and 1-to-void matches are Virtual (shoulder-mounted cannons). The bottom row shows the same interpolation, but
where the character’s pose changes continuously during a run cycle (posed rigs are omitted for a clear visual of the geometry).

Abstract
We present CharacterMixer, a system for blending two rigged 3D characters with different mesh and skeleton topologies while
maintaining a rig throughout interpolation. CharacterMixer also enables interpolation during motion for such characters, a
novel feature. Interpolation is an important shape editing operation, but prior methods have limitations when applied to rigged
characters: they either ignore the rig (making interpolated characters no longer posable) or use a fixed rig and mesh topology.
To handle different mesh topologies, CharacterMixer uses a signed distance field (SDF) representation of character shapes, with
one SDF per bone. To handle different skeleton topologies, it computes a hierarchical correspondence between source and target
character skeletons and interpolates the SDFs of corresponding bones. This correspondence also allows the creation of a single
“unified skeleton” for posing and animating interpolated characters. We show that CharacterMixer produces qualitatively
better interpolation results than two state-of-the-art methods while preserving a rig throughout interpolation. Project page:
https://seanxzhan.github.io/projects/CharacterMixer.

CCS Concepts
• Computing methodologies → Shape analysis; Shape modeling;

1. Introduction

Interpolation is a fundamental operation in 3D shape modeling and
editing. Producing smooth blends between shapes can be used to
create animations [The23], to “fill in gaps” between shapes in a
collection [MCA∗22], or to create new hybrid shapes [ALX∗14].
One of the most common types of 3D shape is a 3D character:

an articulated body that is animated in some film, game, or other
3D graphics experience. Interpolation between 3D characters can
be used for pose matching [ENK∗21] or for creating a range of
blended characters from a smaller set of hand-modeled ones (e.g.
for creating crowds of background characters) [CG 23].

When the shapes to be interpolated are 3D characters, the rigs,

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.15047

CGF 43-2 | e15047

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-1375-180X
https://orcid.org/0000-0002-0115-0831
https://orcid.org/0000-0002-8253-0069
https://seanxzhan.github.io/projects/CharacterMixer.html
https://doi.org/10.1111/cgf.15047


2 of 10 X. Zhan, R. Fu, D. Ritchie / CharacterMixer: Rig-Aware Interpolation of 3D Characters

or the articulated skeletons that allow characters to be animated, for
those characters should be taken into account, which complicates
the problem. In practice, most systems which can interpolate be-
tween rigged characters are based on parametric models which can
produce variations of the character’s body shape but always keep
the same surface mesh and rig topologies, limiting the range of
characters that can be interpolated [LMR∗15]. Methods exist for in-
terpolating between different 3D shapes, but when applied to rigged
characters, they ignore the rigs, leading to intermediate shapes that
are no longer rigged and thus not directly posable [ENK∗21].

In this paper, we present CharacterMixer, the first system for in-
terpolating between two rigged characters with different mesh and
skeleton topologies, such that a rig is preserved. With the preserved
rig, not only does CharacterMixer allow interpolated characters to
be posable, but it can also generate animation sequences where in-
terpolation happens at the same time (Fig. 1). Handling different
mesh and skeleton topologies is crucial for interpolation tasks in-
volving characters not created by the same artist, or when anima-
tors do not control characters’ sources, such as uploaded assets in
the online gaming community. To handle characters with different
mesh topologies, CharacterMixer uses signed distance field (SDF)
representations of the source and target geometries. To make the
system rig-aware, a character is represented as a union of SDFs,
one per each bone of the rig. Mesh-based methods such as Neuro-
Morph [ENK∗21] are unable to interpolate the identities of charac-
ters; they deform the source mesh to match the shape of the target,
keeping the source topology unchanged. In contrast, the SDF rep-
resentation allows our method to interpolate geometry and produce
intermediate characters of different identities (Fig. 1). To interpo-
late between two rigged characters with different skeletal topolo-
gies, CharacterMixer computes a hierarchical correspondence be-
tween two skeletons. This correspondence allows it to create a sin-
gle “unified skeleton” whose pose can drive the pose of both the
source and target characters. Given the unified skeleton, Charac-
terMixer interpolates between the two characters’ geometries by
linear interpolation of the SDFs of corresponding bones.

We evaluate CharacterMixer by comparing to a state-of-the-art
optimal transport approach for shape interpolation [SdGP∗15] and
a mesh-based data-driven method for shape correspondence and in-
terpolation [ENK∗21], showing that CharacterMixer generates in-
termediate shapes with higher visual fidelity while also maintaining
a posable rig. In summary, our contributions are:

• A method for computing hierarchical correspondence between
two skeletons and producing unified intermediate skeletons

• A technique for posing and animating interpolated characters us-
ing the unified skeletons

• An interpolation approach for blending between two characters’
geometries while preserving a rig

2. Related Works

Shape Interpolation. There is a significant body of prior work
on shape interpolation and blending. One family of work uses
optimal transport, treating the source and target shapes as prob-
ability distributions and finding a transformation of the source
to the target that moves as little probability mass as possi-
ble [SdGP∗15, JCG20, MDZ∗21]. Another work interpolates the

interiors of shapes in an as-rigid-as-possible manner, restricting
local volumes to be least-distorting [ACOL00]. There are also
data-driven approaches, interpolating from a source shape to a
target shape by finding a path through a large collection of re-
lated shapes [AS21, GCLX16, GLHH13] or using the structures
of manufactured shapes [YML∗22, GYW∗19]. Most recently, sev-
eral works train neural networks to produce deformations from a
source to target shape [ENK∗21, YAK∗20, JHTG20]. Deep gen-
erative models can also be viewed as interpolators, as their latent
spaces allow interpolation between shapes in the generator’s out-
put domain [ADMG17,LLHF21,YHH∗19,CZ19,ZLWT22]. These
methods are all oblivious to character rigs and thus intermediate
interpolated shapes would not be posable, making it impossible to
interpolate throughout an animation.

To the best of our knowledge, no prior work focuses on rig-
aware character interpolation. Parametric body models, such as
SMPL [LMR∗15], support interpolation between body shapes with
the same rig; these shapes all have the same mesh and skeleton
topology. Our method supports interpolation between characters
with different mesh and skeleton topologies.

Automated Character Rigging. Our system interpolates be-
tween 3D characters such that the intermediate characters are still
animatable. One could instead use a rig-oblivious shape interpola-
tion method and then attempt to automatically compute a rig for the
new intermediate shape. Several automated rigging methods exist:
some are restricted to characters created via a specialized sketch-
based modeling interface [BJD∗12, DSC∗20], whereas others can
take arbitrary shapes as input and produce a skeleton [XZKS19],
potentially with skinning weights [XZK∗20]. These methods can
sometimes fail to predict usable rigs, and they would produce dif-
ferent rigs for each step in an interpolation sequence. Our method
produces a single rig that can animate all intermediate characters
over an interpolation sequence. Alternatively, one may opt not to
use a skeleton to pose an intermediate character. This would require
posing one of the two input characters and using techniques such
as [LMHM18, HRE∗08, VCH∗21, ZYD∗21] to transfer the pose
to the other character before blending the two characters. However,
this offers no direct rigging control over the intermediate character.

Tree Correspondence. CharacterMixer computes a hierarchi-
cal correspondence between two rig skeletons. This is related to
prior work on computing hierarchical correspondences between 3D
shapes [ZYL∗17]. One work in this space uses these correspon-
dences to “interpolate” between shapes [ALX∗14], though they fo-
cus on manufactured objects and produce transitions that involve
discrete structural switches; we instead focus on continuous blends.

Part-based character blending. One way to produce transitions
or blends between two 3D shapes is by gradually swapping their
constituent parts. Modeling-by-assembly could be used to do this,
albeit with considerable user interaction [FKS∗04, KJS07]. Some
prior work can produce such transitions automatically [JTRS12].
There also exists a system which can mix and match parts from
rigged character models such that the resulting chimera is also
rigged [NPC∗22]. Our goal is to produce a qualitatively different
kind of interpolation between characters: a continuous morph from
one to the other.
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Figure 2: The overall pipeline of CharacterMixer. Given a source and target character (represented as surface meshes + skeletal rigs),
CharacterMixer uses rig skinning weights to segment each character’s geometry into a set of parts. It also computes a correspondence
between the source and target skeletons, which it uses to create a single unified skeleton given a time step. This unified skeleton is used to
guide interpolation between the geometries of corresponding parts. Given a posed unified skeleton, CharacterMixer transfers the pose to
source and target characters and interpolates the deformed geometries of the two posed characters. CharacterMixer enables interpolation
during animation, where poses change (red arrow) concurrently with interpolation time steps (purple arrow) as shown in the bottom right.

3. Approach

Since prior shape interpolation methods [SdGP∗15, ENK∗21] ig-
nore the underlying structure of shapes, the intermediate results
cannot be manipulated. When the shapes are 3D characters, the in-
terpolated characters are not posable. CharacterMixer resolves this
issue by rig-aware interpolation; it maintains a rig throughout the
interpolation process. Users can pose an intermediate rig to animate
an interpolated character. Furthermore, while the geometry of the
unified rig changes with varying interpolation time steps, its topol-
ogy remains the same. Thus, characters can be interpolated for an
animation sequence of a single unified skeleton, such that interme-
diate characters’ poses and identities vary at the same time.

Fig. 2 illustrates CharacterMixer’s pipeline. Given a pair of
source and target characters in rest-pose and their rigs, Charac-
terMixer produces animatable interpolated characters. Character-
Mixer first finds hierarchical correspondences between the skele-
tons of the two characters using recursively defined cost func-
tions (Section 4). It then creates a unified skeleton using the corre-
sponding pairs (Section 5). The unified skeleton serves as a proxy
that guides geometry interpolation between topologically-different
characters and supports user interaction. Users may animate the
unified skeleton, and CharacterMixer transfers the poses to source
and target skeletons by propagating bone transformations (Sec-
tion 6). If there is no pose input, the source and target characters
remain in their rest poses. Lastly, CharacterMixer generates geom-
etry for each bone in the unified skeleton by interpolating between
the corresponding character part SDFs (Section 7).

4. Skeleton Correspondence

Character interpolation should preserve semantics of body parts:
legs should be interpolated with legs, and arms should be in-

terpolated with arms, etc. This calls for a method to find cor-
responding body parts. While existing methods find surface cor-
respondence using functional maps [OBCS∗12] or neural net-
works [ETLC20, ENK∗21], their interpolation ignores rigs such
that intermediate results are not posable. In contrast, we seek to
maintain a rig throughout the interpolation process. Thus, Char-
acterMixer finds hierarchical correspondence between input skele-
tons. As part of preprocessing, CharacterMixer segments rest-pose
characters’ meshes into surface patches representing body parts us-
ing skinning weights, where we assign each vertex to the bone that
has the highest skinning weight for that vertex. If two bones are cor-
responded, their segmented body parts are also corresponded. We
then convert segmented surface patches of characters in rest-pose
to SDFs, which is further discussed in Section 7.

The process of finding bone correspondences is identified as the
"Skeleton Correspondence" module in Figure. 2. A bone within a
skeleton hierarchy is defined as (hi, li,bi,M(xi,yi,zi)), where hi is
the world position of the head of the bone, li is the bone length,
bi is the tightest axis-aligned bounding box around the part surface
geometry in bone local space, and M transforms from bone local
space to world space given by the bone’s x,y,z axes. Note that the y-
axis of bone local space is along the direction of the bone from head
to tail, and the x, z axes are computed such that the rotation matrix
from the y-axis satisfies the damped track constraint [Ble23]. bi’s y-
axis is aligned along the bone’s y-axis. The need for bi is explained
in Section 7.1. We define source skeleton as bones S = {si} and
target skeleton as D= {d j}.

CharacterMixer first produces initial bone correspondences, us-
ing Xu et al. [XLY∗22]’s hierarchical correspondence algorithm
with our custom heuristics suitable for 3D bone matching. The al-
gorithm outputs 1-to-1 and 1-to-void pairs, where one bone can
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Figure 3: Our pipeline for computing correspondences between
skeletons and constructing an unified skeleton. Left: All the bones
from both source and target skeletons. Middle: The initial corre-
spondence phase which takes the source skeleton (white) and the
target skeleton (gray) and produces 1-to-1 and 1-to-void matches,
where void is denoted by ∅. Right: Grouping 1-to-void pairs to to
create 1-to-many correspondences.

match with another bone or none. Having only these two types
of pairs is undesirable for 3D skeleton correspondence, as some
matching body parts may have different numbers of bones. Char-
acterMixer addresses this issue by grouping as many 1-to-void cor-
respondences as possible into 1-to-many correspondences, where
one bone is matched to multiple bones. In this way, semantically
matching body parts with different numbers of bones can be corre-
sponded correctly. To illustrate, in Fig. 3, the heads of source and
target shapes are correctly corresponded after grouping.

4.1. Producing Initial Skeleton Correspondences

CharacterMixer finds bone correspondences between two input
skeletons to establish part correspondences, and it produces an
intermediate character by interpolating geometries of two corre-
sponding parts. We adapt Xu et al. [XLY∗22]’s hierarchical cor-
respondence algorithm to find 1-to-1 and 1-to-void bone map-
pings between two input hierarchies. Note that a bone in the skele-
ton hierarchy can be either a leaf bone or a branch bone. There
are five correspondence cases: leaf-to-leaf, leaf-to-void, branch-to-
void, branch-to-leaf, and branch-to-branch. Xu et al.’s algorithm
defines cost functions for leaf-to-leaf and leaf-to-void correspon-
dences, and the costs for the latter three cases are recursively com-
puted from the first two. A matrix encoding the cost of matching
any source bone to any target bone is then constructed, and the
Hungarian algorithm is used to solve for optimal 1-to-1 and 1-to-
void correspondences [Kuh55]. The cost function heuristics used
in Xu et al.’s algorithm are designed for 2D layouts, so we have
developed custom heuristics suitable for 3D skeletons. In the sup-
plemental material, we enumerate our heuristics and perform an
ablation study that validates them.

4.2. Post-Processing Initial Skeleton Correspondences

Source and target characters may have semantically correspond-
ing body parts with different numbers of bones. Fig. 3 shows a

source character having a head with one bone (5) and a target char-
acter having a head with four bones (1, 6, 11, 16). When inter-
polating, since the head bones have 1-to-void correspondence, the
source head would shrink and the target head would grow instead
of interpolation. This is undesirable, so we post-process the ini-
tial pairings by introducing 1-to-many correspondences. A source
set and a target set of 1-to-void correspondences can be grouped
into 1-to-many correspondence if the lowest common ancestor of
the source nodes is in 1-to-1 correspondence with the lowest com-
mon ancestor of the target nodes. In Fig. 3, the four target bones
(1, 6, 11, 16) are grouped together to correspond to the one source
bone (5) because all bones satisfy 1-to-void correspondence and
the source ancestor (0) is 1-to-1 corresponded with the target an-
cestor (0). In the supplemental material, we provide detailed pseu-
docode for an algorithm that eliminates as many 1-to-void corre-
spondences as possible in favor of 1-to-1 and 1-to-many mappings.
We define correspondence as P = (rs,rd), where P has five cases:
(s,d),(S,d),(s,D),(s,∅),(∅,d), S ⊂ S,D ⊂ D,s ∈ S,d ∈ D.

5. Unified Skeleton Generation

We seek to preserve a rig throughout the interpolation process
such that the intermediate characters are posable. Given 1-to-1,
1-to-many, 1-to-void skeleton correspondences (Section 4), Char-
acterMixer generates a unified skeleton at a time step t (Fig. 4).
This process is identified as "UniSkelGen" in Fig. 2. The geome-
tries of unified skeletons vary depending on t, but their topolo-
gies remain the same. Thus, animators can interact with a single
unified skeleton and specify interpolation steps for each frame to
generate an animation sequence where motion and interpolation
happen simultaneously (Figs. 1, 9). A unified bone inherits the
properties of a regular skeleton bone, and it additionally refer-
ences source and target bones, a source bone and void, or a tar-
get bone and void. Define reference R = (rs,rd), where R is one of
(s,d),(s,∅),(∅,d),s ∈ S,d ∈ D. A unified bone also carries t, de-
noting the interpolation time step. Thus, a unified bone is defined
as (hk, lk,bk,Rk, t), k ∈ K, where K is the set of all bones in an
unified skeleton. In this section, we will first discuss the three types
of unified bones then explain how to construct a unified bone. We
define three types of unified bones displayed in Fig. 4:

• Constrained. Reference R = (s,d), where s,d satisfy 1-to-1 cor-
respondence P = (s,d).

• Loose. Reference R = (s,d), where s,d are associated via 1-to-
many correspondence P = (S,d) or (s,D), s ∈ S,d ∈ D.

• Virtual. Reference R = (s,∅) or (∅,d), where s,d satisfy 1-to-
void correspondence P = (s,∅) or (∅,d).

Given a 1-to-1 pair P = (s,d), CharacterMixer constructs a con-
strained unified bone (Fig. 4, Constrained). Since we have 1-to-
1 mapping, it’s straightforward to make an intermediate bone; we
linearly interpolate each attribute of s,d. hk = lerp(hs,hd , t), lk =
lerp(ls, ld , t), bk = lerpbox(bs,bd , t), and Mk = slerp(Ms,Md , t),
where lerpbox linearly interpolates the eight corners of two bound-
ing boxes. The constrained unified bone references s and d.

Given a 1-to-many correspondence pair P = (S,d), Character-
Mixer constructs |S| number of loose unified bones (Fig. 4, Loose).
CharacterMixer first splits up d into |S| parts whose lengths are
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Figure 4: Generating unified bones at t = 0.5. The blue claw is a
constrained bone made from 1-to-1 correspondence. Each yellow
head bone is a loose bone made from 1-to-many correspondence.
The red tail is a virtual bone made from 1-to-void correspondence.

proportional to lsi ,si ∈ S. bki is generated similarly by splitting bd
into parts proportional to the geometries of bsi (Section 7.2). We
have now converted the problem into 1-to-1 interpolation. Each ki
can then be constructed in the same way as a constrained bone. For
example, in Fig. 4, k2 is linearly interpolated between s2 and d′

2.
The loose unified bone ki references si and d, where si ∈ S.

Given a 1-to-void correspondence pair P = (∅,d), Character-
Mixer constructs a virtual unified bone (Fig. 4, Virtual). Charac-
terMixer uses bounding box mapping to map hd to the source char-
acter, where the details of bounding box mapping are explained in
Section 7.1. Note that the center of the bounding box sits at the
head of the root bone, and the axes of the box are aligned with
those of the root bone. Then, CharacterMixer linearly interpolates
hd and the projected point to acquire hk. The virtual unified bone
k’s length and bounding box is computed by lk = lerp(0, ld , t), and
bk = lerpbox(b0,bd , t), where b0 denotes a bounding box whose
height, width, and length are all 0. The virtual unified bone refer-
ences ∅ and d. The supplemental material contains more detailed
pseudocode for the unified skeleton construction process.

6. Pose Transferring

Users can interact with the unified skeletons to pose or animate in-
terpolated characters. CharacterMixer also produces animation se-
quences where interpolation happens simultaneously as shown in
Fig. 1. Given animation input for a unified skeleton at t, Charac-
terMixer transfers poses to source and target characters’ skeletons
and blends their geometries to generate a posed or animated inter-
polated character at interpolation time t. Note that by construction,
even though the geometry of the unified skeleton varies depending
on time step t, its topology remains the same throughout the in-
terpolation. Thus, users can animate any unified skeleton and also
vary the interpolate time step such that characters are interpolated
during an animation sequence. In this section, we will discuss how
pose is transferred from a unified skeleton to source and destination
skeletons. This process is identified as "Pose Xfer." in Fig. 2.

CharacterMixer transfers the unified skeleton’s pose to source
and target skeletons by propagating bone transformations. We
will explain how CharacterMixer transfers poses from constrained,
loose, and virtual unified bones.

A constrained unified bone k references one source bone s and
one target bone d, where s and d have 1-to-1 correspondence. In this
case, the source and target nodes should transform in the same way
as the unified bone. Given user input joint angles for the unified
bone, CharacterMixer computes a local rotation matrix Rotk and
sets Rots = Rotd = Rotk.

Loose unified bones are created from 1-to-many correspondence
P = (S,d), and each unified bone ki references Ri = (si,d),si ∈ S.
When users pose ki, the behavior of si should be the same; Rotsi =
Rotki . To rotate bone d, one way would be to compute the vector
from the head of the S linkage to its tail and rotate bone d to align
with that vector. However, this would ignore the rotation around the
axis along bone d. Thus, CharacterMixer averages the joint angles
of {ki} to construct rotation matrix Rotd .

A virtual unified bone k references R = (s,∅) or R = (∅,d). If
R = (s,∅), rotating k only affects s and has no impact on the target
skeleton. Thus, CharacterMixer sets Rots = Rotk or Rotd = Rotk.

7. Rig-Aware Geometry Interpolation

We have discussed how CharacterMixer computes skeleton corre-
spondence and constructs a unified skeleton. It is established that
bone correspondence implies part correspondence (Section 4), and
each unified bone refers to a source and/or a target bone in ei-
ther 1-to-1, 1-to-many, or 1-to-void correspondence (Section 5).
The unified skeleton allows for rig-aware character interpolation;
a rig is maintained throughout interpolation, and CharacterMixer
builds geometries around the unified skeleton. Given user pose or
animation input for a unified skeleton, CharacterMixer transfers
the pose to source and target characters’ skeletons and interpolates
their posed geometries. If there is no pose input, CharacterMixer
interpolates their rest-pose geometries. Note that although the ge-
ometries of the unified skeletons vary depending on the input inter-
polation time step t, their topologies remain the same. Thus, users
can pose a single unified skeleton generated at an arbitrary t and
pass different interpolation steps to CharacterMixer’s rig-aware ge-
ometry interpolation algorithm for each frame of animation. Char-
acterMixer then produces an animation sequence where interpola-
tion and motion happen at the same time (Fig. 1 bottom row). In
Fig. 2, a user animates the unified skeleton generated at t = 0.5
(center) and passes different interpolation steps for each animated
frame to CharacterMixer and produces a run cycle sequence where
the source character is interpolated to the target character.

Since interpolation of source and target geometries should pre-
serve part-level semantics (e.g. legs should be interpolated with
legs), CharacterMixer employs part-based representation of char-
acters, and CharacterMixer uses each unified bone’s reference in-
formation R to identify and interpolate source and target parts. We
choose signed distance fields (SDFs) to represent characters’ body
parts, as SDFs allow easy interpolation between geometries with
different mesh topologies. Furthermore, CharacterMixer’s geome-
try interpolation is aware of the rig state, which allows for inter-
polating character geometries during animation,; CharacterMixer
keeps track of bone local frames and interpolates parts in bone local
spaces where SDFs are defined. To obtain an SDF for a segmented
body part, CharacterMixer converts the part to voxels on a 1283
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Figure 5: Interpolating part geometries for a constrained unified
bone. With part-based SDFs, interpolating between two characters
amounts to taking a query point (cyan dot) within the bounding box
of a unified skeleton bone in the bone’s local space, finding which
point in the source and target boxes that it maps to, looking up SDF
values at those points, and linearly interpolating between them.

regular grid then to SDFs using distance transform. When inter-
polating part SDFs, CharacterMixer uses bounding box mapping to
ensure that the interpolated geometry preserves characteristics from
both parts. Fig. 5 shows how CharacterMixer acquires SDF values
for a blended part by mapping a query point to the source and tar-
get spaces then interpolating. A query point is evaluated by each
unified bone k ∈ K to produce SDF value vk; CharacterMixer de-
fines the final SDF value for that point as Vk = min{vk}, which can
be interpreted as a union operation. In the following subsections,
we explain bounding box mapping, discuss shape interpolation for
different types of unified bones, and show how to query deformed
SDFs given character poses.

7.1. Bounding Box Mapping

When interpolating between corresponding parts, the intermediate
result should preserve characteristics from both parts. Character-
Mixer achieves this by re-localizing query points with bounding
box centers and scaling them when transforming to source and tar-
get spaces. Fig. 6 shows two methods for part interpolation. If we
map a query point p in the unified bone space to source and tar-
get spaces relative to its position to the bone heads, interpolating a
hexagon and an ellipse results in an unexpected shape. In contrast,
bounding box mapping outputs a rounded hexagon. CharacterMixer
first constructs bounding boxes Bs,Bd around source and target part
mesh geometries and interpolate to obtain an intermediate bound-
ing box Bk = lerpbox(bs,bd , t) for a constrained or loose unified
bone k. Then CharacterMixer finds p’s location in the intermediate
bounding box before scaling it to source and target bounding box
spaces. Let bc denotes the center of b, and bx,by,bz denotes the x,
y, z axes lengths of b. Point p in the source bounding box space is
given by (p− bc

k) · (
bx

s
bx

k
,

by
s

by
k
,

bz
s

bz
k
). Note that a query point may land

outside of the interpolated bounding box, but the transformation
still applies as bounding box geometries provide scaling.

7.2. Interpolation with Unified Bones

CharacterMixer uses a unified bone k’s reference information R to
interpolate between source and destination part geometries.

Figure 6: Comparison between interpolation using bounding box
mapping and bone-relative mapping with 2D SDF visualization,
where white outlines geometries and grey denotes bones. The inter-
polated geometry (“interp") is generated by mapping a point (cyan
dot) in the unified bone’s space to source and target spaces and
then interpolating the queried SDFs. Interpolation with bounding
box mapping preserves characteristics of input geometries while
the other method does not.

It’s simple to compute geometry for a constrained unified bone
k which references one source bone s and one target bone d. Fig. 5
shows how to obtain an interpolated SDF value given a query point
p in world space. CharacterMixer first transforms p into the in-
terpolated bounding box bk = lerpbox(bs,bd , t). Using bounding
box mapping, CharacterMixer finds the position of p in bs, bd .
SDF values of source and target parts are defined in bone local
space, so CharacterMixer transforms p from bounding box space
to bone local space to query vs,vd , where the point is translated
by bc, the bounding box center. The final SDF value is given by
vk = lerp(vs,vd , t).

When source and target bones are in 1-to-many correspondence
P = (S,d), CharacterMixer constructs |S| number of loose uni-
fied bones ki, each referencing Ri = (si,d),si ∈ S, where each si
has bounding box bsi. Similar to how CharacterMixer proportion-
ally splits up bone d when generating ki, CharacterMixer splits
d’s bounding box bd into sub-boxes b′

di
whose y-axis lengths are

proportional to each of bsi . In this way, an interpolated bound-
ing box can be generated for each loose unified bone ki, where
bki = lerpbox(bsi ,b′

di
, t). CharacterMixer then proceeds to interpo-

late geometries as described in the previous paragraph.

A virtual unified bone k references (s,∅) or (∅,d). Interpolation
for virtual bones works similarly to constrained bones. When ei-
ther the source or destination bounding box is b0, CharacterMixer
doesn’t attempt to transform point p into b0 but sets vs = 0 or vd = 0
then interpolates for vk.

7.3. Querying Deformed SDFs

Given a posed unified skeleton and an interpolation time step, Char-
acterMixer queries deformed SDFs of source and target charac-
ters to generate an interpolated character. After transferring the
unified skeleton’s pose to source and target skeletons, Character-
Mixer poses the two input characters using their respective skinning
weights. CharacterMixer then segments the characters into parts
using the procedure described in the beginning of Section 7, con-
verts them to SDFs, and uses rig-aware interpolation (Section 7.2)
to generate geometry for the posed unified skeleton.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



X. Zhan, R. Fu, D. Ritchie / CharacterMixer: Rig-Aware Interpolation of 3D Characters 7 of 10

Figure 7: Qualitative comparisons between CharacterMixer, ConvWasser [SdGP∗15], and NeuroMorph [ENK∗21] (“NMorph∗"). The
“NMorph∗" rows are produced using the method in Section 8. CharacterMixer smoothly interpolates characters while the others do not.
ConvWasser is agnostic to correspondences, and NeuroMorph produces many artifacts (arms at steps 3, 4 of top left; head and paws at steps
3, 4 of bottom left; legs at steps 2, 3, 4 of top right; arms and head at steps 2, 3, 4, 5 of bottom right). In the supplemental document, we show
two sets of NeuroMorph interpolations generated from both directions for each pair. See supplementary video for animated comparisons.

Figure 8: Qualitatively comparing our correspondences with Neu-
roMorph. We visualize CharacterMixer’s skeleton correspondence
by segmenting meshes using skinning weights and assigning differ-
ent colors to surface patches associated with corresponding bones.
NeuroMorph colors denote vertex-level correspondence.

8. Results and Evaluation

In this section, we present results of interpolating a variety of
characters with CharacterMixer. We compare CharacterMixer with
ConvWasser [SdGP∗15], a rig-oblivious method for shape inter-
polation with optimal transport, and NeuroMorph [ENK∗21], a
learning-based approach that produces surface correspondence and
interpolation given two input meshes. We trained each charac-
ter pair with NeuroMorph for 5000 epochs to obtain results. For
our experiments, we used 36 character pairs from the RigNet
dataset [XZK∗20], sourced from Models Resource [VG 19], a
publicly-available dataset of rigged video game characters. Exper-
iments were run on 6-core Intel i7 machine with 32GB RAM and
a NVIDIA GTX 1080Ti GPU. We strongly encourage readers to
watch our supplementary video for animated results.

Fig. 8 compares CharacterMixer and NeuroMorph correspon-
dences. Leveraging characters’ rigs, CharacterMixer produces
more fine-grained correspondences and correctly identifies corre-

sponding body parts. For instance, in Fig. 8 column 3, we match
the two heads of the character pair, while NeuroMorph matches the
shell of the first character to the head of the second character. See
the supplemental material for more of our correspondences.

Fig. 7 compares how well CharacterMixer interpolates rest-pose
characters compared to ConvWasser and NeuroMorph∗. Neuro-
Morph changes the pose of one shape to match the other while
leaving its identity unchanged. We produced NeuroMorph’s inter-
polation for both directions from source s to target d and d to
s to obtain st=0, ...st=1 and dt=0, ...dt=1. Intermediate results, la-
beled NeuroMorph∗, are computed by lerp(SDF(st),SDF(d1−t), t)
where SDF(·) converts a mesh to SDF. Our approach produces
higher-quality and semantic-preserving interpolations. For exam-
ple, in the bottom right of Fig. 7, our approach smoothly inter-
polates the heads, while ConvWasser ignores correspondence and
NeuroMorph∗ has many artifacts around the intermediate charac-
ters’ head and arms. Furthermore, our method allows intermediate
characters to be posed, while ConvWasser and NeuroMorph do not.

Fig. 9 shows interpolation during animation. For each sequence,
an artist has animated the unified skeleton generated at t = 0.5 (Sec-
tion 5) and specified interpolation time steps for each frame. Char-
acterMixer then transfers the poses to source and target characters
(Section 6) and performs rig-aware interpolation (Section 7). Since
CharacterMixer maintains a rig with the same topology through-
out interpolation, it allows for interpolation while the intermediate
characters perform a motion sequence.

In terms of timing, CharacterMixer produces a posed interpo-
lated character in 83 seconds on average. We experimented with
another approach to generate geometry for a posed intermediate
character that is 17% faster with negligible cost in quality (see the
supplemental material).

© 2024 Eurographics - The European Association
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Figure 9: Interpolation during animation. For each character pair, the top row shows correspondence and posed unified skeletons, and the
row below shows a motion sequence where character poses and interpolation steps vary at the same time. During interpolation, Character-
Mixer preserves a “unified skeleton" whose geometry varies depending on time steps and topology remains the same. Thus, animators can
interact with a single unified skeleton and specify interpolation steps for each frame to achieve interpolation during animation. Pairs 1, 4
include 1-to-1, 1-to-void, and 1-to-many correspondences, and pairs 2, 3, 5, 6 include 1-to-1 and 1-to-void correspondences. Please watch
our supplementary video for animated sequences.
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9. Conclusion

We presented CharacterMixer, a method to interpolate between 3D
characters with different mesh and rig topologies, such that users
can pose the intermediate interpolated characters. It also enables
interpolation during animation. To the best of our knowledge, Char-
acterMixer is the first system that tackles this novel challenge.
CharacterMixer achieves this goal by maintaining a unified rig
throughout interpolation, where the unified rig is built from skele-
ton correspondences between two input rigs of potentially differ-
ent topologies. CharacterMixer is agnostic to mesh topologies as
it represents characters as a union of sign distance fields, one per
each bone of the character’s rig. We showed how to perform rig-
aware interpolation of characters and pose any intermediate in-
terpolated character. Our experiments show that CharacterMixer
produces higher-quality character interpolations than rig-oblivious
shape interpolation methods [SdGP∗15, ENK∗21].

CharacterMixer is not without its limitations. Similar to Xu et
al. [XLY∗22]’s work, our skeleton correspondence algorithm can
sometimes produce incorrect correspondences that may not satisfy
users. In this case, an interactive system built on CharacterMixer
could simply allow users to manually correct the automatically-
produced correspondences. Moreover, CharacterMixer can struggle
to produce a good correspondence between characters with drasti-
cally different skeletons—indeed, in some cases, a meaningful cor-
respondence might not exist. In the supplemental material, we pro-
vide some correspondence failure cases. Although we have shown
that NeuroMorph [ENK∗21], a mesh-based method, creates severe
artifacts and does not support interpolation during animation, Char-
acterMixer’s SDF-based representation has a lack of control over
output surfaces such as loss of original mesh topology and tex-
ture. In terms of posing intermediate results by propagating poses to
source and target characters, the current pose transferring method
works well when the local frames of matching bones align well.
It is an interesting future direction to implement more dedicated
pose retargeting to refine the intermediate characters’ motion. Nev-
ertheless, such dedicated techniques only need to deal with local
motion retargeting as we have simplified the problem to three cat-
egories – constrained, loose, and virtual. Additionally, more work
is needed to optimize CharacterMixer for real-time use. To pose an
interpolated character, 70% of reconstruction time is spent on con-
verting part-level mesh geometries to SDFs with voxelization and
distance transform. The runtime can be improved by employing
faster methods to convert from mesh to SDFs, such as fast winding
numbers [BDS∗18]. Neural SDFs [DNJ20] may further increase
the speed of interpolation.
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