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Figure 1: Current full-face facial scanning techniques (a) can capture geometry sufficient for most shots, but start to lack details needed
for close-up shots. Prior work either used wrinkle simulation (b) to fill in the missing details, or texture synthesis from sparse small patch
scans (c). We obtain the best of both worlds by first simulating the wrinkles with spatial-varying parameters estimated from real skin and then
stylizing the output given high-resolution patch scans (d).

Abstract
Modeling realistic human skin with pores and wrinkles down to the milli- and micrometer resolution is a challenging task. Prior
work showed that such micro geometry can be efficiently generated through simulation methods, or in specialized cases via 3D
scanning of real skin. Simulation methods allow to highly customize the wrinkles on the face, but can lead to a synthetic look.
Scanning methods can lead to a more organic look for the micro details, however these methods are only applicable to small skin
patches due to the required image resolution. In this work we aim to overcome the gap between synthetic simulation and real
skin scanning, by proposing a method that can be applied to large skin regions (e.g. an entire face) with the controllability of
simulation and the organic look of real micro details. Our method is based on style transfer at its core, where we use scanned
displacement maps of real skin patches as style images and displacement maps from an artist-friendly simulation method as
content images. We build a library of displacement maps as style images by employing a simplified scanning setup that can capture
high-resolution patches of real skin. To create the content component for the style transfer and to facilitate parameter-tuning for
the simulation, we design a library of preset parameter values depicting different skin types, and present a new method to fit the
simulation parameters to scanned skin patches. This allows fully-automatic parameter generation, interpolation and stylization
across entire faces. We evaluate our method by generating realistic skin micro details for various subjects of different ages and
genders, and demonstrate that our approach achieves a more organic and natural look than simulation alone.

1. Introduction

A crucial step in creating and rendering realistic-looking digital
avatars is the accurate representation of the facial micro details,
such as pores and fine scale wrinkles. This micro geometry helps
to break up the specular reflections when rendering, and is one of
the key components in achieving photorealism of digital characters.
Although simple approximations like adding noise can be used for

real-time applications [vdPJD∗14], more sophisticated techniques
are typically used to achieve high quality results when rendering skin
offline [GTB∗13, WMC∗23]. The need for realistic micro details
is exacerbated by the ever-expanding use of digital characters in
high-end visual effects productions, where extreme close-up shots
are common.
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The most recent solution to achieve skin micro wrinkles has been
through a simulation approach. Weiss et al. [WMC∗23] proposed
a graph-based simulation method to synthetically generate micro
geometry for static faces, baked into a displacement map. While
the simulation allows for fine details with full artist controllability,
this solution has one major drawback; since the micro geometry is
created through a computer simulation, it can sometimes appear too
synthetic and fail to represent the organic chaotic variations in pore
distribution and wrinkle shape that are present in real skin (refer to
Fig. 1, b).

On the other hand, Graham et al. [GTB∗13] proposed a scanning
setup that can capture patches of real skin in an area of 2x2cm
with very high quality. Then, texture synthesis methods like image
analogies [HJO∗01] or patch nearest neighbors [GFS∗22] (refer to
Fig. 1, c) are used to extend the scanned patches over the entire
face. While this approach can create organic looking skin, it has
several limitations. First, it requires a very intricate and custom-built
hardware setup. Second, image analogies or patch nearest neighbors
as the method to fill in the entire face are dependent on the quality
of the UV map and do not consider stretching and compression in
the parametrization. Third, artists cannot influence the result of the
reconstruction, e.g. controlling which features are shown.

We present a pipeline that combines the best features of the two
approaches. The main idea is to have an artist-controllable wrinkle
simulation, where the output is further stylized by skin features
from real scanned patches. At its core, the problem becomes dis-
placement map stylization, where the style image comes from real
data and the content image comes from the simulation. To obtain
style images, we built a simplified patch scanning setup inspired
by Chen et al. [CGS06], which does not require a custom-built
light setup. This patch scanner allows us to quickly capture a li-
brary of displacement maps of small high-resolution patches of real
skin, which can be selected as the style images for our method.
To obtain content images, we use the recent wrinkle simulator of
Weiss et al. [WMC∗23], which can generate a multitude of differ-
ent pore and micro-wrinkle formations. To facilitate usability, we
introduce a library of preset simulation parameters that target differ-
ent wrinkle structures, which can be spatially interpolated over the
facial surface. We further present a new method to optimize simula-
tion parameters to match our scanned patches, using a combination
of an image classification network and image generation network.
This fitting method provides an automatic way of expanding the
preset parameter library. Ultimately, an artist interactively selects
simulation presets for different parts of the face, interpolates them
spatially, runs the forward simulation, and then stylizes the simula-
tion result to re-introduce the organic nature of real skin, again in
a controllable way by selecting from the library of scanned patch
displacement maps. The final output is a full face displacement map
of micro geometry with the organic look of real skin obtained in an
artist-controllable manner (see to Fig. 1, d).

To summarize, we propose

• a simplified patch capturing setup requiring only three cameras
and a hand-held flashlight,
• a simulation preset library representing a variety of micro-wrinkle

types to help artists in designing full-face simulated wrinkles,

• a dual discriminator-generator reconstruction pipeline that can fit
simulation parameters to match the captured displacement map
of real skin, and
• an application of style transfer to introduce the organic nature of

real skin into the simulated micro wrinkles.

2. Related Work

We now describe related work in the areas of scanning micro wrin-
kles from real skin and synthesizing micro geometry with simulation.
As our method is based on high-resolution image style transfer, we
also discuss relevant works in that field.

Scanning Micro Wrinkles. Capturing the full face in 3D is not
a new problem, with several methods that utilize different 3D
reconstruction techniques and can achieve impressive results
[NHRD90, BBA∗07, BBB∗10, GFT∗11, RGB∗20b]. Many of these
methods rely on expensive and complicated capture hardware in-
cluding multiple cameras and lights. More lightweight, in-the-wild
methods have also been proposed [WBGB16,IBP15,LLK∗22], some
of which utilize a pre-trained neural prior to fit a 3D face mesh to one
or several images [TZK∗17, GPKo19, DYX∗19, GZY∗20, FFBB21,
DTA∗21, WBH∗22, CZGB23]. In any case, full face reconstruction
methods are currently not capable of recovering the fine-scale micro
details that we address in this work.

Scanning micro wrinkles often requires dedicated setups that
focus on capturing high resolution scans of small skin patches. Gra-
ham et al. [GTB∗13] present a hardware setup that can acquire skin
patch geometry at an impressive resolution of 7µm per pixel. Their
scanning method was derived from that of Ma et al. [MHP∗07] and
requires a complex lighting rig with multiple polarized, controllable
lights. Later works such as Nagano et al. [NFA∗15] used a similar
setup to measure the skin while being stretched and compressed, and
used this captured data to simulate deformations in reconstructed
skin. Further works sought to improve the resolution of skin patch
scans using microscopes [BMH∗16].

These patch scanning methods are able to show high levels of
fidelity and quality, but their reliance on complex hardware set-ups
makes them difficult to operate and replicate. With this in mind,
we are motivated to devise a patch scanning method that can be
economically built and easily operated with minimal training.

Synthesizing Micro Geometry. As an alternative to micro-
detail scanning techniques, simulation methods can be used to
generate synthetic skin wrinkles and pores. Early works by
Ishii et al. [IYYT93] and Wu et al. [WKT96] use Voronoi cells
or Delaunay triangulation to create polygonal patterns on the skin.
The edges of these polygons are then carved into the displacement
map to form the micro wrinkles. These models assume isotropic
stress: One hypothesis of why micro wrinkles are formed is as a
skin reservoir for stretching [LC93]. In regions of isotropic muscle
movements, wrinkles also form equally oriented in every direction.
In regions of anisotropic muscle movements, e.g. the forehead, mi-
cro wrinkles tend to form in parallel lines. This anisotropic nature is
explored by Bando et al. [BKN02] in a greedy simulation method
where lines are drawn sequentially following a flow field of wrinkle
orientations. Later work extended upon this method with improved
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Figure 2: We present a scanning and stylization pipeline to enhance the realism of synthetic facial wrinkles. We propose a new patch
scanning setup, Section 4, to acquire highly detailed scans (a) and reconstruct the displacement map (b) per patch. A novel parameter fitting
process, Section 5.2, then fits simulation parameters (c) for that preset, so that a customized wrinkle simulation [WMC∗23] can create a
spatially-varying synthetic wrinkle displacement map (d). Finally, a modified stylization method, Section 6, then stylizes this map to enhance
the realism (e) using the reconstructed maps of real skin as the style.

control parameters and drawing methods [VB18, LXZ07, LLLC11].
Recently, Weiss et al. [WMC∗23] presented a graph-based method
for skin micro details where the wrinkles are treated as the edges
that connect the nodes of the graph representing the pores on the
skin. This simulation allows for fine control over the appearance of
the skin and consistent wrinkle generation over the entire face.

One major drawback of simulation methods is that they tend to
look too synthetic, often lacking the natural organic structure of real
skin. Our work aims to bridge the gap between simulation and reality.
We build upon the simulation method of Weiss et al. [WMC∗23] and
extend it with spatially-varying parameter presets, better parameter
fitting to scanned data, and a final stylization method that leverages
the organic structure of real skin patches.

High-Resolution Style Transfer. Our approach to add a data-
driven layer to simulated micro wrinkles is based on image style
transfer. Early works in style transfer like image analogies [HJO∗01]
require matched pairs of input and stylized images or are limited to
high-frequency details [Ash03, LSRY10, LSY11]. With the seminal
work by Gatys et al. [GEB16] on neural style transfer and the intro-
duction of a neural style loss, texture transfer over large ranges of fre-
quencies became possible. Since then, many works have investigated
the quality and controllability of style transfer [GEBo17, LWLH17]
or improving the speed of style transfer by training neural networks
to directly perform stylization in an inference pass [JAFF16, HB17,
LZY∗17, SYZ18, SKLO18, LLKY19, LCLB21, CZG∗21]. We refer
the reader to the recent survey of Jing et al. [JYF∗19] for more a
more in depth summary of the neural style transfer methods.

Many stylization algorithms mentioned above struggle with scal-
ability to high-resolution images. For example, in our situation the
displacement maps for skin micro wrinkles on a face may have a
resolution of 16k or more. Performing stylization on large images at
once is infeasible due to memory limitations, even with a reduced
network size [WLW∗20], and running it patch-by-patch leads to
border artifacts. Chen et al. [CWX∗21] show how to circumvent
this issue by carefully controlling the normalization between border
patches. Abdellatif and Elsheikh [AE23] store the inner feature maps
along the border of the image to avoid artifacts due to padding. Al-
ternatively, Lötzsch et al. [LRB∗22] use differentiable image filters,

a collection of manually designed, parameterized filters, to stylize
the input image. As this method does not rely on neural network
inference, it is also applicable to high-resolution input images. In
our work, we employ the stylization method of Li et al. [LCLB21]
which is fast and offers stylization even from only one (or a few)
style images, which allows us to style the entire face (patch by patch)
given only a small number of scanned real patches as style images.

3. Overcoming the Synthetic Nature of Simulated Wrinkles

To tackle the problem of overcoming the synthetic nature of simu-
lated micro wrinkles, we propose to stylize the output of the simula-
tion using real scan data, see Fig. 2 for an overview. To this end, we
create a library of style images (high-resolution displacement maps)
by scanning real patches on a number of actor’s faces using a new
simplified patch scanner (Section 4). For the “content" part of the
image stylization we rely on a recent micro-wrinkle simulator that
allows artistic control, and we propose to generate a library of preset
simulation parameters depicting a variety of skin micro details. We
further propose an approach to fit the simulation parameters to real
scanned patches, allowing to automatically extend the preset library.
With these simulation presets, the wrinkle simulation can create con-
sistent micro wrinkles for the whole face by smoothly interpolating
between the different styles of skin at different locations (Section 5).
Finally, given the simulated content result and the scanned patch
library for stylization, we propose to use a fast style transfer al-
gorithm to generate the final micro-detail displacement map in a
patch-by-patch manner (Section 6). The result will be a micro-detail
displacement map of the entire face, artistically generated with real
organic features. In this work, we create displacement maps at a
resolution of 16k x 16k pixels.

4. Style Library via Real Patch Scanning

We present a simple hardware setup and reconstruction method
for scanning real skin patches and use it to collect a diverse set of
displacement maps of various facial regions from different subjects
at a micro-meter resolution. The goal is to capture a vast amount of
natural variation, thus providing us a rich collection of patches for
style transfer.
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Figure 3: Schematic overview (left) and realization (right) of the
scanning setup featuring one main camera (blue) and two side
cameras (green) for light source estimation from two mirror balls. A
handheld flashlight (yellow) illuminates the skin which is pressed
against a small cutout window from the back.

While our patch scanner takes inspiration from several previous
approaches, it has a few unique features. We aim to achieve a similar
(or greater) level of detail as Graham et al. [GTB∗13] but without
the complex light dome hardware. Thus we adopt a method inspired
by Chen et al. [CGS06] but adapted for skin patches.

4.1. Hardware Setup

Our simple hardware setup consists of three DSLR cameras, two
mirror balls, a flashlight and a board with a small cutout window (see
Fig. 3). In the center of the scanning setup is a board with a window
(2cm x 2cm) for subjects to press their face against from the back.
The window was modeled and 3D printed, such that the shape of the
window is easy for subjects to press all parts of their face (cheeks,
forehead, temple, etc) into the scanner. During capture, subjects
are given a face rest to use to help them remain still. A capture
session lasts about 30 seconds for a single patch. For the light
source, a handheld flashlight is used. At each frame during capture,
the light source is manually moved, illuminating the skin patch
from different angles. No fixed set of light positions are required,
and in practice a set of approximately 30 images are recorded in
fast succession (around 1 image per second), covering 30 different
light angles. Two mirror spheres are placed on either side of the
face window, which are used to estimate the position of the light
sources. The scanner uses three synchronized cameras, one main
camera with 180mm macro lens framed and focused on the skin
patch only, and two additional side cameras each with 60mm lenses
framed to see both mirror balls for light position estimation. All three
cameras are calibrated in a single world space and the positions and
sizes of the mirror balls are also reconstructed in 3D by annotating
their projections in the two side cameras and using their known
diameter to triangulate their 3D positions. The main camera has a
resolution of 18MP, and so with this setup the scanning resolution
is approximately 5µm per pixel.

4.2. Light Source Estimation

To estimate the 3D position of the light source in each capture frame
we threshold the side camera images and apply blob detection to
find the two pixels per camera that most likely contain the reflection
of the flashlight in the mirror balls. Projecting these four highlight

pixels into 3D space gives us four intersection points on the mirror
spheres, which are reflected to obtain four rays that should converge
at the 3D light position. Due to inaccuracies in blob detection the
rays do not perfectly converge, and thus we search for the point that
minimizes the distance to the four light rays. A detailed explanation
of this procedure can be found in the supplemental document. The
optimized light source position is found for each captured frame,
which gives us a light direction for each captured image of a skin
patch, which will be used in the displacement map reconstruction
method described next.

4.3. Displacement Map Reconstruction

Since small movements due to breathing or even blood flow cannot
be avoided, we first align all captured images from the main camera
using an image registration technique that works under varied illumi-
nation [PQE21]. Human skin is covered with a thin oily film, called
the skin surface lipid film [INN07]. This film leads to a very specular
reflection of the skin, especially at the micro scale and encodes most
of the wrinkle structure. Therefore, to estimate the normal of the
skin, we again follow the approach by Chen et al. [CGS06] using
shape-from-specularity, instead of a more traditional reconstruction
method based on a Lambertian assumption. Specular reflections are
identified as pixels that exceed a certain threshold. Then the normal
vector n j at the current pixel j is given as the half vector between
the direction to the camera and the direction to the light source. This
gives rise to a sparse collection of normal samples over all captured
images N = {n1,n2, ...,nK}.

Since we capture only a small set of around 30 images to keep
the stress for the subject as low as possible, the normal samples are
very sparse. To obtain a dense displacement map D, we construct
the following linear system,

∂D
∂x

= nx, normal constraint (1)

∂D
∂y

= ny, normal constraint (2)

λ∆D = 0, smoothness constraint (3)

D(c) = 0, fix height of the center pixel, (4)

where c is the center pixel of the image, nx and ny are the observed
normals in the x- and y-directions, and λ is a regularization weight.
For normal constraints, ∂D

∂x ,
∂D
∂y is computed using a first order cen-

tral differences filter. ∆D is computed with a Laplacian filter with a
weighting of λ = 1e−3. These filters are constructed as sparse matri-
ces that operate on the flattened image, which allows this system to
be solved as a linear system with an out-of-the-box solver. An exam-
ple of the sparse normal and displacement map result can be found
for one skin patch in Fig. 4. Additionally, we apply a high-pass
filter to the displacement map to filter out low-frequency variations
introduced by the bulging of the skin when it is pressed against the
observation window, as well as to filter out all the frequencies that
may already be captured in the baseline full-face 3D reconstruction.
The result is a displacement map containing only the micro details
missing from the macro-scale full-face reconstruction.

The displacement maps, together with metadata containing gen-
eral skin properties (eg. age) and the location of the patches on the
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a) b) c)

Figure 4: From a set of input images (a) (only one frame is shown),
we extract a sparse set of normal vectors corresponding to the
specular reflections (b). These normal map samples are then used
to reconstruct a dense displacement map (c).

Figure 5: An actor with markers drawn on the face to align scanned
patches to a full face scan. 3 displacement map patches are shown
for visualization, from the forehead, cheek, and chin regions.

face (eg. forehead, cheek, etc.) are collected in a Displacement Style
Library. An example of the captured locations for one subject to-
gether with three recovered displacement maps are shown in Figure
5. In order to locate the scanned patches on the face after scanning
we place 4 dots at the patch corners. The displacement maps recov-
ered have a resolution of 5µm per pixel, exceeding the resolution of
Graham et al. [GTB∗13] who report a spatial resolution of 7µm per
pixel.

5. Wrinkle Simulation with a Preset Library

The scanned patches from the previous section form the style images
for our displacement map style transfer application. We now discuss
the creation of the content images. The main idea is to use the

micro-wrinkle simulator of Weiss et al. [WMC∗23], with a few key
extensions. First, we prepare a number of preset parameter values
to represent a variety of skin types. We also propose a method
to fit parameter values to the real scanned patches from Section 4,
extending the preset library. Then, given the preset parameter library,
an artist can place different skin parameters at different places on
the face and interpolate the parameter values spatially. Running the
final simulation generates the base content for stylization over the
entire face. In this section we elaborate on the preset library, fitting
the simulation to real data and interpolating for simulation.

5.1. Artistically Designed Parameter Presets

Using the simulator of Weiss et al. [WMC∗23], we empirically
created different skin structure types by varying the simulation
parameters. These preset values form the basis for a Simulation
Preset Library. Pre-defining these preset values helps to speed up the
interactive spatially-varying wrinkle design process for the whole
face (described in Section 5.3). A collection of eight such user-
defined presets representing various skin types are shown in Fig. 6.

5.2. Fitting the Simulation to Real Skin

We can additionally create simulation parameter presets by fitting
the simulation to real data, i.e. the scanned patches from Section 4.
This provides two benefits. First, the fitting process we propose
is automatic, and thus one can avoid tedious manual parameter
tweaking to achieve a certain wrinkle style in the preset library.
Second, the scanned patches provide a lot of micro-detail variability,
and converting them to simulation parameters is a great way to boost
the variability of the preset library as well.

Fitting the parameters of the wrinkle simulator to real data is not
a new idea. In fact, Weiss et al. [WMC∗23] proposed a method
themselves to fit to their own simulator. Their approach uses Particle
Swarm Optimization (PSO) [KE95] for this task, however, we found
that this optimization sometimes gets stuck in suboptimal local
minima (as illustrated in Fig. 7c). We therefore present a more
robust fitting pipeline using neural networks.

Our approach is to synthetically generate 50,000 simulated skin
patches (at a resolution of 512× 512) by randomly sampling the
parameter space of the simulator, and then learn a mapping from the
simulated patches back to the parameters. One method to accom-
plish this task is through training a classification network. To this
end, we adapt the VGG-11 architecture by Simonyan et al. [SZ14],
but change the input resolution from 224 to 512 and add a global
pooling layer between the last convolutional layer and the first fully
connected layer to make the network more agnostic to global trans-
lations [LMW∗22, SK22]. After training, we can feed real scanned
patches to the classifier and directly predict the simulation parame-
ters. Unfortunately, when exposed to real-world displacement maps
that were never seen during training (eg. Fig. 7a), the classification
network fails to capture the parameters like wrinkle orientation, size,
depth or pore rendering parameters, which create the “feel” of the
texture. It does, however, accurately predict the density of the pores
(Fig. 7d).

An alternative to classification is to train a class-conditioned gen-
erative network, where the classes are the simulation parameters,
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a) b) c) d) e) f) g) h)

Figure 6: User-defined simulation presets to represent a variety of different skin types: (a,b) strong directional wrinkles, (c,d) horizontal and
vertical wrinkles, (e,f) crisscrossing wrinkles, (g) irregular cells, (h) mainly pores. The patches are shown as displaced geometry shaded with a
light source coming slightly from the left.

and then attempt to optimize for the class that produces a gener-
ated displacement map that best matches the scanned target. We
evaluate this approach by training a generative network based on
the StyleGAN2 architecture [KLA∗20] with the last layer changed
from RGB to grayscale and the simulation parameters as contin-
uous class labels. One way to think of the generative network is
like a differentiable proxy of the (non-differentiable) wrinkle sim-
ulator. This generator can be used to fit simulation parameters by
embedding the target displacement map in the C-space, the space
spanned by the input class labels, i.e. the simulation parameters.
To that end, we freeze the network weights and optimize the class
labels in order to minimize a style loss between the generator output
and the target displacement map using Adam [KB14]. We use the
same style loss as Huang and Belongie [HB17] as presented by
Weiss et al. [WMC∗23]. As shown in Fig. 7e, the StyleGAN-based
optimization manages to fit the parameters responsible for the “feel”
well, but fails in optimizing the pore distance.

Therefore, we propose a dual discriminator-generator pipeline,
combining both networks: first, the classification network is used
to infer an initial set of simulation parameters. Then, the Style-
GAN embedding starts with those parameters and refines them. This
combination leads to the best fit as shown in Fig. 7b. Additional
comparisons and evaluations are presented in the supplemental doc-
ument, together with some examples of our synthetic training data.
Our proposed patch fitting process can be used to automatically
obtain additional simulation parameters to enhance the Simulation
Preset Library. Detailed hyperparameter choices are listed in the
supplemental document (Section B.1).

5.3. Parameter Placement, Interpolation and Simulation

The final micro-detail displacement map that will be used as the
content for stylization is obtained in a controllable way, by choosing
simulation parameters from the Simulation Preset Library, placing
them at various locations on the face, interpolating the parameters
spatially across the entire face, and then running the simulator of
Weiss et al. [WMC∗23]. This can be accomplished in an interactive
session as illustrated in Fig. 8.

6. Style Transfer for Final Micro Details

As stated from the beginning, the simulated displacement map cre-
ated in Section 5 lacks the small-scale organic variations of real skin.
To overcome this limitation, we apply style transfer to merge the full-
face simulated wrinkles with the patch-based scanned displacement
maps of real skin.

a) Target b) Our Fit

c) PSO d) Classifier e) StyleGAN

Figure 7: Fitting simulation parameters to a target real displace-
ment map (a). Using our approach of StyleGAN-embedding with
initialization from the classifier (b) leads to the best fit. The PSO
approach [WMC∗23] (c) gets stuck in a suboptimal minima, the
pure classifier (d) can capture the pore density well but not the
other parameters, and the pure StyleGAN embedding (e) manages
to capture the feel of the texture but not the pore density.

Due to the fine resolution of the displacement map, optimization-
based style transfer approaches as, e.g., initially proposed by
Gatys et al. [GEB16] become intractable. We therefore turn to
fast stylization methods that train a neural network to perform the
stylization at inference time. As a further limitation, only relatively
few style images are available, since scanning thousands of skin
patches is impractical, and so we focus on few-shot stylization al-
gorithms. With these limitations in mind, we propose to employ
the style transfer algorithm of Li et al. [LCLB21] (SITTA). Here, a
convolutional neural network similar to a GAN-like architecture is
trained to stylize content images taken from the database of synthetic
patches (see Section 5.2) using a style image from the Displacement
Style Library. The SITTA architecture preserves both the structure
from the content image and texture from the style image, making it
particularly useful for stylizing the simulated skin. We follow the
training scheme by Li et al., leading to a training time of around 30
minutes for a single style image.
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Figure 8: Example of an interactive session where an artist applies
the parameter presets from the Simulation Preset Library on the face
(black circles) and the simulation creates micro wrinkles spanning
the entire face with smoothly interpolated looks.

After training, network inference is used to stylize the full 16k
displacement map from the simulation in a patch-by-patch man-
ner. To hide seams between the patches, we use an overlap of 50
pixels and feather the edges [Sze96]. Furthermore, to maintain the
differing micro-detail skin structure from different regions of the
face, additional SITTA models can be quickly trained from one or
more additional scanned patches in the Displacement Style Library.
Stylizing the entire displacement map takes around 35 seconds on
a single RTX4070 GPU. This stylization of the simulation output
can effectively re-introduce the high-frequency details and organic
variations lacking in the simulation as shown in Fig. 9. To control the
strength of the stylization in the final output, we blend the original
displacement map and the stylized version with a user-controllable
blending factor. Finally, users are free to choose different style im-
ages in order to achieve different fine-detail organic effects, offering
another level of artistic control as illustrated in Fig. 10 and the
supplemental video.

7. Results

We now demonstrate the results of our method by creating micro-
wrinkle geometry for four different subjects (one elderly female and
three younger subjects, two female and one male). In all cases the
base geometry was obtained by a full-face 3D scan [RGB∗20a], and
we compare the proposed method to several alternatives as follows:

PNN - Texture synthesis to repeat the scanned displacement maps
and fill the entire face using Patch Nearest Neighbors [GFS∗22],
an improved method over Image Analogies [HJO∗01] as used by
Graham [GTB∗13].
Sim-Uniform - A pure simulation of the micro wrinkles with
per-face constant simulation settings using the method by
Weiss et al. [WMC∗23].
Sim-Presets - The simulation extended by our spatially-varying
Simulation Preset Library to obtain vastly different wrinkle types in
different regions (see Section 5).

a) b) c)

Figure 9: The wrinkle simulation (a) creates globally consistent
micro wrinkles and pores spanning the entire face. Combining this
as the content image with a displacement map captured from real
skin (b) as style image leads to the final output (c). Images best
viewed zoomed-in.

Figure 10: Comparison of different styles on a forehead patch. The
first row shows three different style images used to stylize the same
simulated wrinkles, with the results in the bottom row. Images best
viewed zoomed-in.

Stylized - Our proposed method of stylizing the above spatially-
varying simulation with displacement maps obtained from the Dis-
placement Style Library using style transfer (see Section 6).

Qualitative comparisons are presented in Section 7.1. For a quan-
titative comparison between the four methods above we conducted
a user study, which is summarized in Section 7.2.

7.1. Qualitative Comparison

Visual results for the four subjects can be found in Fig. 1, Fig. 11,
Fig. 12, and Fig. 13. The geometry obtained from the full-face
3D reconstruction already contains macro-scale displacements, i.e.
coarse wrinkles and features like moles (Base). It can be easily seen
in the aforementioned figures that our methods add a substantial
level of micro details.

For comparison, we have included the Patch Nearest Neighbors
method (PNN), inspired by Graham et al. [GTB∗13]. This method
certainly improves over the base geometry, but the method does
not preserve longer connected wrinkles that are commonly found in
human skin. Furthermore, certain areas of the face appear stretched
and deformed due to UV parametrization and flow lines are not
respected.
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Table 1: Raw results of the A/B comparisons of the user study. 58
participants were tasks with ranking 56 pairs of images on which
one looks more realistic to them. Each pair of images shows two
methods for displacement maps from the same part of the face
and subject. The table below shows how often a method won over
another method in the survey.

PPPPPPPWinner
Loser

PNN
Sim-Uniform

Sim-Presets

Stylized

PNN 0 84 71 73
Sim-Uniform 264 0 289 300

Sim-Presets 219 465 0 490
Stylized 275 338 380 0

The method of Weiss et al. [WMC∗23] with uniform settings for
the entire face (Sim-Uniform) shows relatively high quality results,
however, due to the fact that the simulated wrinkles are tuned for a
specific region of the face (we chose the forehead), that region looks
convincing but the rest of the face lacks realism. The simulated
wrinkles with spatially varying parameters provided by the preset
library (Sim-Presets) overcomes this problem. Compare the nose in
Fig. 11, as well as nose and cheek in Fig. 12 to see this clearly.

The stylization of the simulated wrinkles adds additional detail
(Stylized). Specifically, we observe that it breaks up sharp lines found
in the simulation and adds organic noise. For example, compare the
nose in Fig. 11 and forehead in Fig. 13. The effect of stylization can
be best seen in the accompanying video when swapping between
different style images.

7.2. User Study for a Quantitative Ranking

We conducted a user study to evaluate the different wrinkle gen-
eration methods perceptually. At a high level, users were shown
side-by-side results from two different methods on the same small
skin patch and were asked to "rank which image looks more real-
istic" based on which one "feels more natural to you" as human
skin. To focus only on the geometric detail, the skin patches were
rendered without a color texture, similar to the qualitative figures
presented in Section 7.1.

More specifically, we used four zoom-in regions (forehead, cheek,
nose, crow’s feet at the side of the eye) on each of our four subjects,
for a total of 16 patches. For each patch, we rendered the displace-
ment maps with the four methods PNN, Sim-Uniform, Sim-Presets,
Stylized. Following the two-alternative forced choice approach, we
showed the participants random pairs of two different methods for
the same patch. To keep the survey short, we did not show all possi-
ble combinations, but a random selection of 56 samples.

58 participants took part in the study from different backgrounds,
including some people with and some without a technical back-
ground as well as some people from the medical community. The
raw results of the study can be found in Table 1 and the images used
for the survey can be found in the supplementary material.

To evaluate this incomplete tournament, we use the page rank
algorithm [PBMW98] as presented by Pang and Ling [PL13]. The
rankings are shown in Table 2. Patch Nearest Neighbors PNN is

Table 2: Page rank results given the comparisons from Table 1. The
best method has the lowest ranking score, the best one the highest.

1. (best) Sim-Presets Score = 0.168
2. Stylized Score = 0.187
3. Sim-Uniform Score = 0.209
4. (worst) PNN Score = 0.435

outperformed by the simulation-based methods by a large margin
based on the user study. The winning method is Sim-Presets, the
simulation with the parameters changing spatially based on our pre-
sets. A close second is Stylized, the Sim-Presets result stylized by
our method. Overall our extension of the wrinkle simulator from
Weiss et al. [WMC∗23] to Sim-Presets has greatly increased its “re-
alistic feel", according to the study. And while not always chosen as
the preferred favorite, our Stylized method still outperforms previous
work (e.g. PNN, Sim-Uniform) and offers a layer of artistic control
on top of Sim-Presets.

8. Conclusion

We present an approach for generating realistic and convincing
micro details for human skin, which combines the customizable
benefits of simulation with the organic look of real skin patches. Our
method is based on the recent simulator of Weiss et al. [WMC∗23],
which allowed for artistic and intuitive simulation of wrinkles, and
we bridge the gap between simulation and realism by utilizing
3D scans of skin patches captured from real actors and creating
simulation presets to vary the simulation across the face.

First, we use a novel skin patch scanning set up to recover geom-
etry of the skin in various regions of the face. Next, a simulation
parameter preset library is built from artistically designed simulated
patches combined with fitted simulation parameters that match the
geometry recovered from the skin patches, made possible by the
dual discriminator-generator fitting method that we propose. This
collection of presets can then be easily used by artists to quickly
and intuitively create a 16k displacement map that contains bespoke,
simulated micro geometry. This displacement map is then stylized
using our captured Displacement Style Library, using a fast style
transfer method to add further organic detail and enhance realism.

Our method is not without some limitations. As discussed in Sec-
tion 7.2 it is clear that audiences do not always prefer the stylized
wrinkle results over pure simulation with spatially-varying parame-
ters (although they do quite often). However, we would note that the
user study was performed with just one particular artistic choice of
style images, and so we expect results to be a little subjective. Our
method allows full artistic freedom to choose different styles for dif-
ferent skin regions, some of which may result in a more organic and
realistic look than others. Additionally, the proposed capture setup
is susceptible to vibrations and movements caused by the captured
subject, due to breathing or shifting during capture. This motion
may disrupt reconstruction when viewed at the scale we capture at.
We largely alleviate the problem by aligning the captured images,
but it is difficult to remove the motion completely. A possible future
work would be to revisit the image registration step and improve the
image alignment further.
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Base

PNN

Sim-Uniform

Sim-Presets (Ours)

Stylized (Ours)

Figure 11: Detailed comparison of Subject 1. The first row shows the base mesh as obtained from a full head 3D reconstruction. The second
row shows micro geometry created by texture synthesis (PNN) similar to Graham et al. [GTB∗13]. The third row shows the refinement using
the simulation method by Weiss et al. [WMC∗23] using constant uniform simulation parameters across the face. In the fourth row we improve
this by spatially varying the simulation parameters using the proposed Simulation Preset Library. In the last row, this simulation is then
stylized using the Displacement Style Library.
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Base

PNN

Sim-Uniform

Sim-Presets (Ours)

Stylized (Ours)

Figure 12: Detailed comparison of Subject 2, with the same rows described in Fig. 11. Note that when estimating the micro geometry using
texture synthesis (PNN) wrinkles that conform to the flow lines are lost and the structure of regions that cannot be captured, e.g. the nose, do
not match expectations.
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Base

PNN

Sim-Uniform

Sim-Presets (Ours)

Stylized (Ours)

Figure 13: Detailed comparison of Subject 3. Here, the differences between a simulation with uniform parameters and a simulation with
spatially varying parameters drawn from the preset library are especially noticeable. A strong stylization was chosen for the cheek and nose
region to highlight the features that can be introduced with this method.
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