The European Association for Computer Graphics 45^{th} Annual Conference

EUROGRAPHICS 2024

Limassol, Cyprus April 22 – 26, 2024

Organized by

EUROGRAPHICS THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Full Papers Chairs Evangelos Kalogerakis, University of Massachusetts, Amherst, USA Amit H. Bermano – Tel-Aviv University, Israel

Conference Chairs Yiorgos Chrysanthou, CYENS CoE, University of Cyprus, Cyprus Fotis Liarokapis, CYENS CoE, Cyprus

> Published by *The Eurographics Association and John Wiley & Sons Ltd.* in Computer Graphics *forum*, Volume 43 (2024), Issue 2 ISSN 1467-8659

COMPUTER GRAPHICS forum Volume 43 (2024), Number 2

Organizing Committee

STARs Chairs

Rachel Macdonnell, Trinity College Dublin, Ireland Andreas Aristidou, University of Cyprus (UCY), Cyprus

Tutorials Chairs Katerina Mania, Technical University of Crete, Greece Alessandro Artusi, CYENS CoE, Cyprus

Short Papers Chairs Ruizhen Hu, Shenzhen University, China Panayiotis Charalambous, CYENS CoE, Cyprus

Education Papers Chairs Beatriz Sousa Santos, University of Aveiro, Portugal Eike Anderson, Bournemouth University, UK

Posters Chairs Lingjie Liu, University of Pennsylvania, USA Melinos Averkiou, CYENS CoE, Cyprus

Doctoral Consortium Chairs Mina Konaković Luković, Massachusetts Institute of Technology, USA Valentin Deschaintre, Adobe, UK

> Industrial Chairs Amal Dev Parakkat, Telecom Paris, France Mubbasir Kapadia, Rutgers University, USA

COMPUTER GRAPHICS forum Volume 43 (2024), Number 2

Co-Organisers



COMPUTER GRAPHICS forum Volume 43 (2024), Number 2

Adobe

RESEARCH

Preface

This issue of the Computer Graphics Forum contains the technical full papers program of the Eurographics Association 45th annual conference, held in Limassol, Cyprus from April 22 to 26, 2024. The Eurographics annual venue presents a unique opportunity to present outstanding technical contributions in computer graphics. The full papers selected for publication in the Computer Graphics Forum journal are arguably the most prestigious feature of the conference.

The technical paper selection process involved a group of 86 experts forming the International Program Committee (IPC). We invited experts without more than three consecutive years of participation in the IPC so that the committee can be regularly renewed. The IPC members covered a diverse range of research subareas in computer graphics. They also covered all continents spanning Europe, Asia, North and South America, Africa, and Oceania.

We received a total of 161 valid submissions. A sorting committee, consisting of the two Chairs and seven advisory board members subsequently assigned each paper to two IPC members, as either primary or secondary reviewer, up to five papers, respecting their preferences, expertise, conflicts, and automatically computed matching scores between IPC members and submitted papers. The primary and secondary reviewers in turn invited three additional tertiary reviewers on each submission.

After the initial five reviews per submission were collected, the authors had a week to consult these reviews and write a 1000word rebuttal, addressing key questions and potential misinterpretations. Finally, all reviewers assigned to a paper read the rebuttal and all reviews and together reached an initial decision.

This year, following an established tradition that started in 2012 and improved continuously through the years, we replaced the traditional in-person IPC meeting with a one-week virtual asynchronous meeting, where the discussions between the IPC members leading to the final decisions were performed off-line by a bulletin board and other means of personal communication. This led to extensive discussions where papers and reviews were debated extensively involving other IPC members as extra readers when needed. Each paper had a discussion board, and each and every IPC member contributed to discussions where they felt competent.

All papers conditionally accepted with minor revisions went through a short second review cycle, with evaluations from the primary reviewer, and sometimes the secondary reviewer, before being finally accepted.

In the end, *53 papers out of the 161 full submissions* were accepted with minor revisions, resulting in a *32.9% acceptance rate.* 9 more papers were recommended to a fast-track review process with major revisions to be considered for publication in a future issue of Computer Graphics Forum. This year we had papers on a diverse range of topics including generative AI, character animation, digital humans, face modeling, texture synthesis, geometry processing, meshes, fabrication, cloth simulation, fluid simulation, neural rendering, rendering and simulation of natural phenomena, reflectance models, perceptual rendering, image enhancement, sampling, denoising, vector art, line drawings, typography, motion tracking, procedural modeling, 3D reconstruction, shape analysis, scene understanding, and camera path generation.

All accepted full papers are published as open-access Computer Graphics Journal papers. It is worth noting that for all submissions conflict-of-interest was managed on all levels, from reviewers, committee, advisory board, best paper committee, up to the chairs. The review process for tertiary reviewers was double-blind and in case the original set of reviewers did not conclude with a decision, additional reviewers were invited to perform a full review and assist the decision process. Best papers were selected by a dedicated awards committee who selected among the top 10 papers based on overall review scores.

We would like to thank everyone who made this possible. First and foremost, we are grateful to all the members of the IPC who dedicated a remarkable amount of their time to finding tertiaries, reviewing papers, discussing papers during the virtual IPC meeting (1190 messages were posted on the discussion board during the post-rebuttal period!), and subsequently shepherding the accepted papers undergoing the minor revision cycle. We wish to thank all the reviewers, who provided 825 reviews in total and, of course, all the authors for their efforts in preparing and revising the submitted papers. We are especially grateful to *Michael Wimmer* who shared with us the insights from previous years and was indefatigable with his help and assistance. We would like to express strong appreciation to the advisory board for their support with paper sorting. Last but not least, we would like to thank *Stefanie Behnke* from Eurographics Publishing for her outstanding support with SRM functionality for her responsiveness which was the key to the successful outcome of the paper selection process.

We are very happy to present the full paper proceedings of Eurographics 2024. We believe that these papers reflect the extraordinary variety of computer graphics research and excellent contributions. It was both an honor and a pleasure for us to lead this selection process and we hope that you will find both the papers and the entire conference thought-provoking and inspiring of your future endeavors.

EG 24 Full Papers Co-Chairs Evangelos Kalogerakis, University of Massachusetts, Amherst, USA Amit H. Bermano, Tel-Aviv University, Israel

Full Papers Advisory Board

Alliez, Pierre INRIA, France Chaine, Raphaelle Université de Lyon, France Hauser, Helwig University of Bergen, Norway Kim, Theodore Yale University, USA Lefebvre, Sylvain Inria, France Myszkowski, Karol MPI Informatik, Germany Wimmer, Michael TU Wien, Austria

COMPUTER GRAPHICS forum Volume 43 (2024), Number 2

International Programme Committee

Abdal, Rameen Stanford University, USA Achlioptas, Panos Stanford University, USA Attene, Marco CNR - IMATI, Italy Baek, Seung-Hwan POSTECH, Korea **Barbic**, Jernej University of Southern California, USA Bender, Jan RWTH, Germany **Benes, Bedrich** Purdue University, USA **Billeter. Markus** University of Leeds, UK Campen, Marcel Osnabrück University, Germany Chapiro, Alexandre Meta, USA Chaudhuri, Siddhartha Adobe Research, India Chu, Mengyu Peking University, China Deng, Zhigang University of Houston, USA Deschaintre, Valentin Adobe Research, UK **Digne**, Julie LIRIS - CNRS, France Fu, Hongbo City University of Hong Kong, Hong Kong Gain, James University of Cape Town, South Africa Gao, Lin University of Chinese Academy of Sciences, China Garces, Elena Universidad Rey Juan Carlos, Spain Gingold, Yotam George Mason University, USA Golyanik, Vladislav Max Planck Institut für Informatik, Germany

Gryaditskaya, Yulia Surrey Institute, UK **Guerrero**, Paul Adobe Research, UK Günther, Tobias FAU Erlangen-Nürnberg, Germany Gutierrez, Diego University of Zaragoza, Spain Hachisuka, Toshiya University of Waterloo, Canada Herholz, Philipp Meta, USA Hu, Shi-Min Tsinghua University, China Huang, Hui SIAT, China Ju. Tao Washington University in St. Louis, USA Kaufman, Danny Adobe Research, USA Kazhdan, Misha John Hopkins University, USA Kellnhofer, Petr TU Delft, Netherlands Khademi Kalantari, Nima Texas A&M, USA Lavoué, Guillaume Ecole Centrale Lyon - ENISE, France Li, Dingzeyu Adobe Research, USA Li. Tzu-Mao University California San Diego, USA Lin, Chen-Hsuan NVidia Research, USA Litany. Or Technion, Israel Liu, Libin Peking University, China Lu, Min Shenzhen University, China Mahdavi-Amiri, Arash Simon Fraser University, Canada Masia, Belen University of Zaragoza, Spain Mech, Radomir Adobe Research, USA

International Programme Committee

Mellado, Nicolas CNRS, France Memari, Pooran Ecole Polytechnique, France Michels, Dominik L. KAUST, Saudi Arabia Mo. Kaichun NVidia Research, USA Oliveira, Manuel M. Universidade Federal do Rio Grande do Sul, Brazil Papas, Marios Disney Research, Switzerland Parakkat, Amal Dev Telecom Paris, France Peers. Pieter College of William and Mary, USA Pellacini, Fabio Sapienza University, Italy Philip, Julien Adobe Research, UK **Ritchie**, Daniel Brown University, USA **Rousselle**, Fabrice NVidia Research, USA Schudeiske (Hanika), Johannes Karlsruhe Institute of Technology, Germany Sharf, Andrei Ben-Gurion University, Israel Sharp, Nicholas NVidia Research, USA Shinar, Tamar University of California Riverside, USA Singh, Gurprit Max Planck Institut für Informatik, Germany Singh, Karan University of Toronto, Canada Skouras, Melina **INRIA**, France **Smirnov**, **Dmitry** Netflix, USA Stein, Oded University of Southern California, USA

Steinberger, Markus Graz University, Austria Stomakhin, Alexey Weta+Unity, New Zealand Sung, Minhvuk KAIST, Korea Theobalt, Christian Max Planck Institut für Informatik, Germany Thies, Justus Technical University of Munich, Germany Thomaszewski, Bernhard Disney Research, Switzerland Tursun, Cara University of Groningen, Netherlands van Kaick. Oliver Carleton University, Canada Vicini, Delio Google, Switzerland Wang, Beibei Nanjing University, China Wang, Charlie C.L. University of Manchester, UK Wang, Peng-Shuai Peking University, China Wang, Rui Zhejiang University, China Wang, Tuanfeng Y. Adobe Research, UK Wang, Zeyu Hong Kong University of Science and Technology, Hong Kong Wong, Tien-Tsin The Chinese University of Hong Kong, Hong Kong Xu, Kai National University of Defense Technology, China Xu, Zexiang Adobe Research, USA Yan, Ling-Qi UC Santa Barbara, USA Zhou, Yang Adobe Research, USA

Zhu, Bo Georgia Tech, USA

Reviewers

Abdelkarim, Sherif Abdelkarim Abdrashitov, Rinat Ahmed, Abdalla Aigerman, Noam Alexa, Marc Alexanderson, Simon Aliaga, Carlos Aliaga, Daniel Ando, Ryoichi Araujo, Chrystiano Argudo, Oscar Asano, Yuta Ascenso, João Azevedo, Vinicius Back, Jonghee Badler, Norman Bærentzen, Jakob Andreas Bahat, Yuval Bako, Steve Balint, Martin Banterle, Francesco Batty, Christopher Belcour, Laurent Bemana, Mojtaba Bernstein, Gilbert Bessmeltsev, Mikhail Bijelic, Mario Binninger, Alexandre Bitterli, Benedikt Bolkart, Timo Boltcheva, Dobrina Bonneel, Nicolas Boulch, Alexandre Bousseau, Adrien Brown, Michael Bruneton, Eric Burley, Brent Cai, Ruojin Cai, Shengqu Cao. Yan-Pei Carr. Nathan Casas. Dan Ceylan, Duygu Charalambous, Panayiotis Chen, Baoliang Chen, Bin Chen, Hansheng Chen, Haoyu Chen, Honglin Chen, I-Hsiang

Chen, Jingyu Chen, Peter Yichen Chen. Oiang Chen, Renjie Chen, Shuhong Chen, Shu-Yu Chen, Weikai Chen, Wenzheng Chen, Yongbiao Chen. Zhen Chen, Zhiqin Cheng, Chin-Yi Cheng, Zhanglin Chengze, Li Chern, Albert Chhatkuli, Ajad Christie, Marc Coeurjolly, David Cordonnier, Guillaume Coumans, Erwin Cui, Weiwei Dabral. Rishabh Daviet, Gilles de Goes, Fernando de Lutio, Riccardo Deng, Boyang Deng, Qixin Deng, Xi Dhillon, Daliit Singh Dille, Sebastian Diolatzis, Stavros Dittebrandt, Addis Dobashi, Yoshinori Dodik, Ana Dogaru, Andreea Dong, Yue Dong, Zhao Doyle, Michael Droske, Marc Duan, Haodong Duinkhariav, Budmonde Dumas. Jeremie Egger, Bernhard Eisemann, Elmar Eisemann. Martin Elek, Oskar Eom, Haegwang Erleben, Kenny Feng, Xudong Ferguson, Zachary

Ferman, David Fernandes, Leandro Firmino, Arthur Fischer, Michael Frisvad, Jeppe Revall Frühstück, Anna Fu, Chi-Wing Fujieda, Shin Galin. Eric Gao, Yue Gastal, Eduardo S. L. Georgiev, Iliyan Gharbi, Michael Ghosh, Abhijeet Giachetti, Andrea Giebenhain, Simon Gillespie, Mark Gkanatsios, Nikolaos Gkioulekas, Ioannis Gotardo, Paulo Grigorev, Artur Grittmann, Pascal Gu, Xianfeng David Guarnera, Giuseppe Claudio Guerin, Eric Guillard. Benoit Guo, Jianwei Guo, Jie Guo, Shihui Guo, Xiaohu Gupta, Kunal Guthe, Michael Hadadan, Saeed Hahn, David Hanji, Param He, Chengan He, Ying Henz, Bernardo Henzler, Philipp Herholz, Philipp Herholz. Sebastian Hertzmann. Aaron Hildebrandt, Klaus Höllein, Lukas Holzschuch, Nicolas Hou, Fei Hou, Qiqi Hu, Ruizhen Hu, Wenbo Huang, Xingchang

Huang, You-Liang Hubenschmid, Sebastian Hwang, Inseung Ilcík, Martin Jang, Deok-Kyeong Jarabo, Adrian Jaspe, Alberto Jeon, Daniel Jiang, Caigui Jiang, Hongda Jiang, Zhenyu Jiang, Zhongshi Jin, Haian Jin, Xiaogang Jindal, Akshay Jung, Claudio Kaiser, Adrien Kaufmann, Manuel Keller. Alexander Kettunen, Markus Keyser, John Kim, Byungsoo Kim, Vladimir Kindlmann, Gordon Klein, Reinhard Kobbelt, Leif Kohlbrenner, Maximilian Kolb, Andreas Kollias, Dimitrios Kondapaneni, Ivo Koo, Juil Kopanas, Georgios Krüger, Björn Kumari, Nupur Kurzhals, Kuno Kuznetsov, Alexandr Kwon, Taesoo Laehner, Zorah Lagunas, Manuel Lai, Yu-Kun Lan, Xingvu Lattas. Alexandros Le. Binh Lee, Joo Ho Lee, Sing Chun Leimkuehler, Thomas Lescoat, Thibault Li, Chen Li, Hao Li, Jing Li, Mengke Li, Nannan Li, Ruihui

Li, Wei Li, Yijing Li, Yining Karl Li. Yue Li, Yue Li, Zhengqin Liao, Zhouyingcheng Liu, Chenxi Liu, Hanyuan Liu, Hsueh-Ti Derek Liu, Kunliang Liu, Richard Liu, Shiguang Liu, Shuaicheng Liu, Xueting Liu, Yilin Liu, Yuan Livesu, Marco Long, Xiaoxiao Lopez-Moreno, Jorge Loscos, Celine Luan. Fujun Lukac, Mike Luo, Ling Luo, Zhengyi Ma, Pingchuan Ma, Rui Maggioli, Filippo Malomo, Luigi Malpica, Sandra Mandad, Manish Manzi, Marco Mao, Xiaoyang Marschner, Steve Martin, Daniel Martínez, Jonàs Mason, Ian McCann. Jim Meister, Daniel Meka, Abhimitra Melzi, Simone Menapace, Willi Merrell, Paul Miguel, Eder Mo, Haoran Monszpart, Aron Montazeri, Zahra Montes, Juan Mullia, Krishna Munkberg, Jacob Musialski, Przemyslaw Musse, Soraia Nabizadeh, Mohammad Sina Nacenta, Miguel Narain, Rahul Nascimento, Erickson R. Nauata, Nelson Nicolet, Baptiste Nimier-David, Merlin Noh, Junyong Olszewski, Kyle Otaduy, Miguel A. Pajouheshgar, Ehsan Palmer, David Pan, Hao Pan, Yifang Pandey, Rohit Parakkat, Amal Dev Parida, Kranti Paris, Axel Paris, Sylvain Parmar, Gaurav Paulin, Lois Peng, Sida Perel. Or Peters, Jorg Petrovich, Mathis Pettre, Julien Pietroni. Nico Pirk, Sören Pluta, Kacper Pourramezan Fard, Ali Puppo, Enrico Qiao, Yi-Ling Qin, Yipeng Oin, Zheng Rakotosaona, Marie-Julie Rath, Alexander Reading, Cody Ren, Jing Richardson, Elad Ritschel, Tobias Rodriguez-Pardo, Carlos Rohmer, Damien Romero, Victor Rosales, Enrique Rushmeier, Holly Sadeghi, Iman Sadlo, Filip Salvi, Marco Samavati, Faramarz Sánchez-Reyes, Javier Sato, Syuhei Satriadi, Kadek Ananta Sauvage, Basile Sawayama, Masataka

Scateni, Riccardo Schied, Christoph Schneider, Jens Schroeder, Craig Schumacher, Christian Sellán, Silvia Sen, Pradeep Shamir, Ariel Shao, Ruizhi Shao, Tianjia Shi, Yifei Sintorn, Erik Skorokhodov, Ivan Smirnov, Dmitry Smith, Breannan Sokolov, Dmitry Solomon, Justin Sun, Oi Sun, Zhaoyang Sýkora, Daniel Takahashi, Tetsuya Tan, Jianchao Tang, Jiaxiang Tang, Kai Tang, Min Tanveer, Maham Telea, Alexandru Teschner, Matthias Tiwari, Garvita Tong, Xin Trusty, Ty Um, Kiwon Uy, Mikaela Angelina Vaidyanathan, Karthik van de Ruit, Mark Vanderhaeghe, David Vasquez-Gomez, Juan Irving Vaxman, Amir Verhoeven, Floor

Vining, Nicholas Viville, Paul Vorba, Jirí Vouga, Etienne VS, Vibashan Wampfler, Rafael Wang, Beibei Wang, Congli Wang, Dongqing Wang, Jingbo Wang, Xuan Wang, Yifan Wang, Yiming Wang, Yizhi Wang, Yu Wei, Li-Yi Weidlich, Andrea Weinkauf, Tino Weiss, Tomer Wen, Jiahao Weyrich, Tim Wiedemann, Oliver Wilkie, Alexander Won, Jungdam Wu, Hongzhi Wu, Jun Wu, Kui Wu, Minye Wu, Shangzhe Wuhrer, Stefanie Xia, Mengqi Xia, Shihong Xiao, Taihong Xie, Minshan Xie, Zhaoming Xiong, Shiying Xiu, Yuliang Xu, Bing Xu, Chenfeng

Xu, Hongyi Xu, Kun Xu. Lan Xu, Xudong Xu, Zhan Yan, Dong-Ming Yan, Ling-Qi Yan, Xingguang Yang, Shan Yeung, Sai-Kit Yi, Ran Yi, Renjiao Yi, Xinyu Yu, Emilie Yu, Fenggen Yu, Tao Yuan, Ye Zeltner, Tizian Zeng, Dan Zeng, Wei Zerman, Emin Zhang, Feng Zhang, Han Zhang, Jiayi Eris Zhang, Lvmin Zhang, Qi Zhang, Xianyao Zhang, Xiuming Zhang, Yang Zhang, Yunbo Zhao, Haisen Zhao, Shuang Zhao, Yajie Zhou, Xiaowei Zhou, Xilong Zint, Daniel

Author Index

Aigerman, Noam	e15005
Akkaynak, Derya	
Alexa, Marc	
Aljumayaat, Zaineb	
Alper, Morris	
Ashtari, Amirsaman	
Averbuch-Elor, Hadar	
Avril, Quentin	
Aydin, Tunç Ozan	
Azevedo, Vinicius C	
Banterle, Francesco	
Barla, Pascal	
Batty, Christopher	
Bednarik, Jan	
Beeler, Thabo e15038,	e15039,
	.e15041
Bemana, Mojtaba	.e15051
Bezalel, Hana	e15006
Binninger, Alexandre	
Bolkart, Timo	
Botsch, Mario e15025,	
Bousseau, Adrien	
Bradley, Derek	
Buehler, Marcel	
Bukenberger, Dennis R	
Bunge, Astrid	
Busch, Jay	
Cani, Marie-Paule	
Cao, Wei	
Ceylan, Duygu	
Chandran, Prashanth	
Chang, Jian	
Chen, Jiong	e15034
Chang, Phil Sik	e15027
Chen, Baoquan	.e15055
Chen, Zebin	.e15053
Choi, Myung Geol	.e15027
Choutas, Vassilis	
Christie, Marc	
Cirio, Gabriel	
Coeurjolly, David	
Çoĝalan, Ugur	
Cohen-Or, Daniel	
Collins, Edo	
Coomans, Arno	e13014

Condomnion $C_{1} = a_1 5022 = a_1 5024$
Cordonnier, G e15033, e15034
Courty, Nicolase15020
Cun, Xiaodonge15044
Diolatzis, Stavrose15011
Dominguez-Elvira, He15029
Dominici, Edoardo Ae15014
Drettakis, Georgee15011
Dudai, Chen e15006
Döring, Christiane15014
Eisemann, E e15018, e15019
Fink, Laura e15012
Fisher, Matthewe15042
Fleming, Roland W e15037
Fourneau, Garye15017
Franke, Linus
Fu, Rao
Gailleton, Boris
Gain, James
Gao, Hongyun e15036
Garces, Elena
Gauthier, Alban e15011
Genest, Baptistee15020
Gerndt, Andrease15010
Ginkel, Ingo e15010
Giryes, Raja e15015
Gotardo, Pauloe15041
Greer, Joseph e15057
Gross, Markus e15039, e15050
Gruber, Aurel
Guerrero-Viu, Julia e15037
Gutierrez, D e15009, e15037
Hanji, Parame15036
Hanocka, Ranae15006
Hermosilla, Pedro e15016
Hertz, Amir
Hertzmann, Aarone15042
Hilliges, Otmare15041
Hladky, Jozef
Hou, Wanni
Houdard, Antoine e15013
Hu, Sizhe
Huang, Jianconge15049
Igarashi, Takeo
Jarabo, Adrian e15035
Ji, Soohyune15045

Jiang, Hongdae15055
Ju, Eunjunge15027
Kang, Gyoo-Chule15027
Kang, Jihoe15057
Kemper, Fabian e15046
Kerbiriou, Glenn e15040
Kesdogan, Timur Levent . e15028
Kim, Kwang-yune15027
Kim, Seongcheol e15045
Kim, Vladimir Ge15005
Kobbelt, Leife15032
Kolářová, Monika e15008
Kosinka, Jiří
Kovacic, Iva
Kovács, Áron Samuel e15016
Koyama, Yukie15043
Lachiver, Loïce15008
Lang, Itai
Lanza, Dario
Lastic, Maude15034
Lee, Sung-Hee
Leimkühler, Thomase15011
Li, Gengyan e15041
Li, Peizhuo e15028
Li, Yuanboe15052
Liang, Hanxue e15036
Liu, Libine15055
Liu, Ligang e15049
Livesu, Marcoe15026
Luo, Xuejiaoe15018
Lyu, Luan e15023
Ma, Lingnie15057
Ma, Tianyie15052
Mantiuk, Rafale15036
Marchal, Maude15040
Masia, Belen e15035, e15037
Meka, A e15039, e15041
Memari, Poorane15019
Meyran, Time15010
Mitra, Niloy J
Monzon, Nestor
Morreale, Lucae15005
Motejat, Michael e15056
Mueller, F e15039, e15041
Mueller, Joerg H e15014
widenei, joerg 11

Author Index

Muñoz, Adolfoe15009
Myszkowski, Karole15051
Nader, Georgese15013
Nguyen, Vivien e15042
Nicás, Aliciae15029
Noh, Junyonge15045
Öztireli, Cengiz e15036
Ohrhallinger, Stefan e15019
Oliveira, Louis Dee15013
Ortner, F. Peter
Orts-Escolano, Sergioe15039
Pacanowski, Romaine15017
Pajarola, Renatoe15031
Pan, Xingyue e15049
Papas, Mariose15050
Parakkat, Amal Dev e15019
Piotrowski, Lisae15056
Prasso, Luca
Pretorius, Pieter C e15034
Pun, Chi-Mane15044
Qi, Anrane15043
Raidou, Renata Georgia e15016
Rasoulzadeh, Shervin e15054
Ren, Jing e15030
Ren, Xiaohua e15023
Ritchie, Daniel e15047, e15052
Rodríguez, Alejandro e15029
Rohmer, Damien e15034
Rusinkiewicz, Szymon e15042
Rössl, Christian e15056
Röthlin, Gerhard e15050
Rückert, Darius e15012
Salehi, Farnood e15050
Sancho, Sergioe15022
Sarkar, Ke15039, e15041

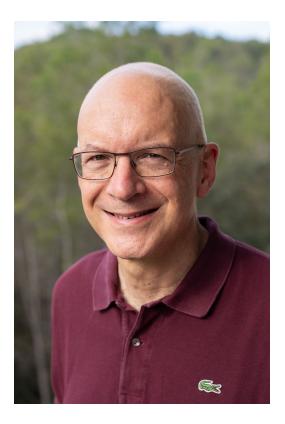
Scandolo, Leonardo e15018
Schneegans, Simon e15010
Schwanecke, Ulriche15046
Seidel, Hans-Petere15051
Seo, Chang Wook e15045
Seo, Kwanggyoone15045
Serrano, Anae15037
Shamir, Ariele15043
Shen, I-Chaoe15043
Shim, Eungjunee15027
Song, Peng e15053
Sorkine-Hornung, Olga e15015,
e15028, e15030
Speetzen, Nilse15032
Stamminger, Marce15012
Stanhope, Jacksone15048
Stauss, Philipp e15054
Steer, Philippe
Steinberger, Markus e15014
Storrs, Katherine Re15037
Su, Ruoline15007
Subias, Jose Daniel e15037
Tang, Jingweie15022
Tatsukawa, Yukie15043
Telea, Alexandru Ce15024
Theisel, Holgere15056
Tzathas, Petrose15033
Violante, Nicolase15011
Wagner, Sven Dominik e15025
Wang, Daoye e15038
Wang, Tuanfeng Y e15028
Wang, Xi
Wang, Xiaokune15024
Wang, Xingcee15021
Weinreich, Clémente15013
, , , , , , , , , , , , , , , , , , , ,

Weiss, Sebastiane15048
Wenninger, Stephane15046
Wilkie, Alexander e15008
Wimmer, Michael e15054
Wood, Erroll
Wu, Chenglei e15038
Wu, Enhuae15023
Wu, Tianhao e15036
Wu, Wenminge15007
Wu, Zhongke e15021
Xia, Menghane15044
Xu, Benzhue15007
Xu, Yanruie15024
Yang, Dongseoke15057
Yang, Zhi-Xine15023
Ye, Xingyu
Ye, Yuting
Yoon, Soyeon
Yoon, Sungjin
You, Lihua
Yun, Kwane15045
Zachmann, Gabriel e15010
Zawallich, Larse15031
Zhan, Xiaoe15047
Zhang, Jian Jun
Zhang, Jiaxuane15049
Zhang, Xianyaoe15050
Zhao, Yuming
Zheng, Liping
Zheng, Yudian
Zhou, Ningfeng
Zhu, Jian
Zhu, Shiline15023
Zoss, Gasparde15048
2088, Oasparu

Award Winners

Eurographics Distinguished Career Award 2024 George Drettakis	xix
Eurographics Outstanding Technical Contributions Award 2024 Anat Levin	XX
<i>Eurographics Young Researcher Award 2024</i> Justus Thies	xxi
Eurographics Young Researcher Award 2024 Thomas Müller	xxii
Keynotes	
Bringing Digital Characters and Avatars to Life Markus Gross	xxiii
Image-Based Rendering: From View Synthesis to Neural Radiance Fields and Beyond Ravi Ramamoorthi	xxiv
From Single-Video Models to All-Video Models Tali Dekel	XXV
Compositional Modeling of 3D Objects and Scenes Leonidas Guibas	xxvi
Shape and Scene Understanding	
Neural Semantic Surface Maps Luca Morreale, Noam Aigerman, Vladimir G. Kim, and Niloy J. Mitra	e15005
HaLo-NeRF: Learning Geometry-Guided Semantics for Exploring Unconstrained Photo Col- lections	e15006
Chen Dudai, Morris Alper, Hana Bezalel, Rana Hanocka, Itai Lang, and Hadar Averbuch-Elor	
Raster-to-Graph: Floorplan Recognition via Autoregressive Graph Prediction with an Atten- tion Transformer	e15007
Sizhe Hu, Wenming Wu, Ruolin Su, Wanni Hou, Liping Zheng, and Benzhu Xu	
Reflectance and Shading Models	
Interactive Exploration of Vivid Material Iridescence based on Bragg Mirrors Gary Fourneau, Romain Pacanowski, and Pascal Barla	e15017
Single-Image SVBRDF Estimation with Learned Gradient Descent Xuejiao Luo, Leonardo Scandolo, Adrien Bousseau, and Elmar Eisemann	e15018

Procedural Modeling and Architectural Design


PossibleImpossibles: Exploratory Procedural Design of Impossible Structures Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie	e15052
Hierarchical Co-generation of Parcels and Streets in Urban Modeling Zebin Chen, Peng Song, and F. Peter Ortner	e15053
Strokes2Surface: Recovering Curve Networks From 4D Architectural Design Sketches Shervin Rasoulzadeh, Michael Wimmer, Philipp Stauss, and Iva Kovacic	e15054
Real-time Neural Rendering	
TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Rendering Linus Franke, Darius Rückert, Laura Fink, and Marc Stamminger	e15012
<i>Real-time Neural Rendering of Dynamic Light Fields</i> Arno Coomans, Edoardo Alberto Dominici, Christian Döring, Joerg H. Mueller, Jozef Hladky, and Markus Steinberger	e15014
Real-Time Neural Materials using Block-Compressed Features Clément Weinreich, Louis De Oliveira, Antoine Houdard, and Georges Nader	e15013
Neural 3D Shape Synthesis	
SENS: Part-Aware Sketch-based Implicit Neural Shape Modeling Alexandre Binninger, Amir Hertz, Olga Sorkine-Hornung, Daniel Cohen-Or, and Raja Giryes	e15015
<i>Physically-Based Lighting for 3D Generative Models of Cars</i> Nicolas Violante, Alban Gauthier, Stavros Diolatzis, Thomas Leimkühler, and George Drettakis	e15011
Rendering Natural Phenomena	
Real-Time Underwater Spectral Rendering Nestor Monzon, Diego Gutierrez, Derya Akkaynak, and Adolfo Muñoz	e15009
Physically Based Real-Time Rendering of Atmospheres using Mie Theory Simon Schneegans, Tim Meyran, Ingo Ginkel, Gabriel Zachmann, and Andreas Gerndt	e15010
An Empirically Derived Adjustable Model for Particle Size Distributions in Advection Fog Monika Kolářová, Loïc Lachiver, and Alexander Wilkie	e15008
Geometry Processing	
BallMerge: High-quality Fast Surface Reconstruction via Voronoi Balls Amal Dev Parakkat, Stefan Ohrhallinger, Elmar Eisemann, and Pooran Memari	e15019

Non-Euclidean Sliced Optimal Transport Sampling Baptiste Genest, Nicolas Courty, and David Coeurjolly	e15020
GLS-PIA: n-Dimensional Spherical B-Spline Curve Fitting based on Geodesic Least Square with Adaptive Knot Placement Yuming Zhao, Zhongke Wu, and Xingce Wang	e15021
Cloth Simulation	
Estimating Cloth Simulation Parameters From Tag Information and Cusick Drape Test Eunjung Ju, Kwang-yun Kim, Sungjin Yoon, Eungjune Shim, Gyoo-Chul Kang, Phil Sik Chang, and Myung Geol Choi	e15027
Neural Garment Dynamics via Manifold-Aware Transformers Peizhuo Li, Tuanfeng Y. Wang, Timur Levent Kesdogan, Duygu Ceylan, and Olga Sorkine- Hornung	e15028
Practical Method to Estimate Fabric Mechanics from Metadata Henar Dominguez-Elvira, Alicia Nicás, Gabriel Cirio, Alejandro Rodríguez, and Elena Garces	e15029
Meshes	
Polygon Laplacian Made Robust Astrid Bunge, Dennis R. Bukenberger, Sven Dominik Wagner, Marc Alexa, and Mario Botsch	e15025
Advancing Front Surface Mapping Marco Livesu	e15026
Fluid Simulation	
The Impulse Particle-In-Cell Method Sergio Sancho, Jingwei Tang, Christopher Batty, and Vinicius C. Azevedo	e15022
Wavelet Potentials: An Efficient Potential Recovery Technique for Pointwise Incompressible Fluids	e15023
Luan Lyu, Xiaohua Ren, Wei Cao, Jian Zhu, Enhua Wu, and Zhi-Xin Yang	
Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows Xingyu Ye, Xiaokun Wang, Yanrui Xu, Jiří Kosinka, Alexandru C. Telea, Lihua You, Jian Jun Zhang, and Jian Chang	e15024
Fabrication	
Computational Smocking through Fabric-Thread Interaction Ningfeng Zhou, Jing Ren, and Olga Sorkine-Hornung	e15030
Unfolding via Mesh Approximation using Surface Flows Lars Zawallich and Renato Pajarola	e15031

Freeform Shape Fabrication by Kerfing Stiff Materials Nils Speetzen and Leif Kobbelt	e15032
Simulating Natural Phenomena	
<i>Physically-based Analytical Erosion for fast Terrain Generation</i> Petros Tzathas, Boris Gailleton, Philippe Steer, and Guillaume Cordonnier	e15033
Volcanic Skies: Coupling Explosive Eruptions with Atmospheric Simulation to Create Consis- tent Skyscapes Pieter C. Pretorius, James Gain, Maud Lastic, Guillaume Cordonnier, Jiong Chen, Damien Rohmer, and Marie-Paule Cani	e15034
Perceptual Rendering	
Navigating the Manifold of Translucent Appearance Dario Lanza, Belen Masia, and Adrian Jarabo	e15035
Perceptual Quality Assessment of NeRF and Neural View Synthesis Methods for Front-Facing Views Hanxue Liang, Tianhao Wu, Param Hanji, Francesco Banterle, Hongyun Gao, Rafal Mantiuk, and Cengiz Öztireli	e15036
Predicting Perceived Gloss: Do Weak Labels Suffice? Julia Guerrero-Viu, Jose Daniel Subias, Ana Serrano, Katherine R. Storrs, Roland W. Fleming, Belen Masia, and Diego Gutierrez	e15037
Digital Humans and Characters	
TailorMe: Self-Supervised Learning of an Anatomically Constrained Volumetric Human Shape Model Stephan Wenninger, Fabian Kemper, Ulrich Schwanecke, and Mario Botsch	e15046
CharacterMixer: Rig-Aware Interpolation of 3D Characters Xiao Zhan, Rao Fu, and Daniel Ritchie	e15047
Stylize My Wrinkles: Bridging the Gap from Simulation to Reality Sebastian Weiss, Jackson Stanhope, Prashanth Chandran, Gaspard Zoss, and Derek Bradley	e15048
Sampling and Image Enhancement	
Enhancing Image Quality Prediction with Self-supervised Visual Masking Ugur Çoĝalan, Mojtaba Bemana, Hans-Peter Seidel, and Karol Myszkowski	e15051
Enhancing Spatiotemporal Resampling with a Novel MIS Weight Xingyue Pan, Jiaxuan Zhang, Jiancong Huang, and Ligang Liu	e15049

Neural Denoising for Deep-Z Monte Carlo Renderings Xianyao Zhang, Gerhard Röthlin, Shilin Zhu, Tunç Ozan Aydin, Farnood Salehi, Markus Gross, and Marios Papas	e15050
Face Modeling and Reconstruction	
Learning to Stabilize Faces Jan Bednarik, Erroll Wood, Vassilis Choutas, Timo Bolkart, Daoye Wang, Chenglei Wu, and Thabo Beeler	e15038
3D Reconstruction and Semantic Modeling of Eyelashes Glenn Kerbiriou, Quentin Avril, and Maud Marchal	e15040
ShellNeRF: Learning a Controllable High-resolution Model of the Eye and Periocular Region Gengyan Li, Kripasindhu Sarkar, Abhimitra Meka, Marcel Buehler, Franziska Mueller, Paulo Gotardo, Otmar Hilliges, and Thabo Beeler	e15041
Vector Art and Line Drawings	
Region-Aware Simplification and Stylization of 3D Line Drawings Vivien Nguyen, Matthew Fisher, Aaron Hertzmann, and Szymon Rusinkiewicz	e15042
FontCLIP: A Semantic Typography Visual-Language Model for Multilingual Font Applications Yuki Tatsukawa, I-Chao Shen, Anran Qi, Yuki Koyama, Takeo Igarashi, and Ariel Shamir	e15043
Sketch Video Synthesis Yudian Zheng, Xiaodong Cun, Menghan Xia, and Chi-Man Pun	e15044
Neural Texture and Image Synthesis	
Surface-aware Mesh Texture Synthesis with Pre-trained 2D CNNs Áron Samuel Kovács, Pedro Hermosilla, and Renata Georgia Raidou	e15016
GANtlitz: Ultra High Resolution Generative Model for Multi-Modal Face Textures Aurel Gruber, Edo Collins, Abhimitra Meka, Franziska Mueller, Kripasindhu Sarkar, Sergio Orts-Escolano, Luca Prasso, Jay Busch, Markus Gross, and Thabo Beeler	e15039
Stylized Face Sketch Extraction via Generative Prior with Limited Data Kwan Yun, Kwanggyoon Seo, Chang Wook Seo, Soyeon Yoon, Seongcheol Kim, Soohyun Ji, Amirsaman Ashtari, and Junyong Noh	e15045
Camera Paths and Motion Tracking	
Cinematographic Camera Diffusion Model Hongda Jiang, Xi Wang, Marc Christie, Libin Liu, and Baoquan Chen	e15055
<i>OptFlowCam: A 3D-Image-Flow-Based Metric in Camera Space for Camera Paths in Scenes with Extreme Scale Variations</i> Lisa Piotrowski, Michael Motejat, Christian Rössl, and Holger Theisel	e15056
DivaTrack: Diverse Bodies and Motions from Acceleration-Enhanced 3-Point Trackers Dongseok Yang, Jiho Kang, Lingni Ma, Joseph Greer, Yuting Ye, and Sung-Hee Lee	e15057

Eurographics Distinguished Career Award 2024: George Drettakis

George Drettakis receives the EUROGRAPHICS Distinguished Career Award 2024. George is an INRIA Senior Researcher. He graduated from the University of Crete, and holds an M.Sc. and Ph.D. from the University of Toronto. He was a researcher in the iMAGIS group at INRIA Grenoble, and founded the REVES research group at INRIA Sophia-Antipolis. Since 2016 he has directed the follow-up group GRAPHDECO. George is a EURO-GRAPHICS Fellow and received the EUROGRAPHICS Outstanding Technical Contributions Award in 2007.

Throughout his career he made significant contributions to all aspects of rendering, including image-based approaches, perception, cross-modality, weathering, relighting, or interactive techniques with a recent focus on deep learning methods. From earlier work on perspective shadow maps to more recent advances in neural ren-

© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

dering, George is consistently pushing the envelope in novel and creative ways.

A hallmark of his research are the practical applications enabled by his proposed solutions, built on a solid theoretical background but always including a profound understanding of the actual stumbling blocks and problems that CG practitioners face. He was awarded an ERC Advanced Grant to research the benefits of accurate, approximate and image-based rendering techniques in a unified framework. His more recent works continue to receive significant attention, including the recent 3D Gaussian Splatting method for real-time radiance field rendering that has significantly impacted both research and industry.

In addition to being a distinguished researcher, George has served in multiple roles in the community. For example: he chairs the ACM SIGGRAPH Papers Advisory Group and the EURO-GRAPHICS Steering Committee for the Working Group on Rendering; he was the SIGGRAPH Asia 2010 technical papers chair, and co-chaired both the EUROGRAPHICS Conference and the EUROGRAPHICS Workshop on Rendering. He has been co-editor in chief of top computer graphics journals. George has mentored many young researchers, graduating more than twenty Ph.D. students who built successful careers both in industry and academia.

EUROGRPAHICS is extremely pleased to honor George Drettakis with the 2024 Distinguished Career Award in recognition of his leadership and seminal contributions to one of the core areas in computer graphics.

Eurographics Outstanding Technical Contribution Award 2024: Anat Levin

Anat Levin receives the EUROGRAPHICS Outstanding Technical Contributions Award 2024. Anat received her PhD in Computer Science from The Hebrew University of Jerusalem in 2006, and was a postdoctoral researcher at MIT. She was a professor at the Weizmann Institute of Science and is now a professor at the Technion. For her research, Anat received numerous honors, including two ERC Starting Grants and an ERC Consolidator Grant.

Anat Levin made groundbreaking contributions to computational photography and imaging, and has recently presented very innovative new ways to utilize principles from optics and computer graphics light transport simulation for real world physical measurements, in particular, for imaging deep inside scattering tissue. Her seminal works build essential mathematical foundations in these areas. The following are examples from her work.

Anat is well known for her work on colorization of grayscale images, matting, and deblurring. Her works in this domain are widely cited and considered seminal papers in the field. Further on, Anat has contributed groundbreaking works in the area of coded aperture imaging where she showed how unconventional optics and computational optimization enable the extraction of previously unattainable information from a single image.

More recently, she has continued to explore how concepts from computer graphics, and computational imaging open up ground-

```
© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
```

breaking new possibilities in other areas of science and technology, beyond visual computing. For instance, her recent works at the intersection of optics and computational imaging have enabled entirely new ways of material measurement, for instance to image low SNR biological targets deep inside scattering tissue and correcting severe aberrations. These works also lay the foundations for new types of displays.

Anat Levin has published highly cited works in the top tier conferences and journals of computer graphics and computer vision. Due to the interdisciplinary nature of her research, her works are equally widely recognized in top tier publication venues of physics and optics.

EUROGRAPHICS is extremely pleased to recognize Anat Levin with the 2024 Outstanding Technical Contributions Award.

Eurographics Young Researcher Award 2024: Justus Thies

Justus Thies receives the EUROGRAPHICS Young Researcher Award 2024. Justus obtained his PhD from the University of Erlangen Nuremberg. He is now a full Professor at the Technical University of Darmstadt where he is leading the 3D Graphics & Vision group. In addition, he is an independent research group leader at the Max Planck Institute for Intelligent Systems.

Justus studies the capture and synthesis of digital humans. His work blends elements of computer graphics, computer vision, and machine learning, with the end goal of capturing and resynthesizing reality. Justus has done profound work on important aspects of "digital humans", namely marker-less capture, neural synthesis, and multi-media forensics, among others.

Justus' Face2Face algorithm was a pioneering and very successful approach to real-time facial performance capture from video data which also enabled facial re-enactment. Later, with the advent of neural networks, Justus again considerably advanced the state of the art with his work on deferred neural rendering. Importantly, new methods for high-quality image and video, colloquially known

© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

as "deep fakes," can also be abused, e.g. for misinformation. Justus and colleagues have made great strides on this equally important aspect in their work FaceForensics++, which allows to detect manipulated facial images. As the saying goes: "It takes (someone that makes) one to know one", thus it is of paramount importance that researchers that develop new machine learning-based image synthesis approaches with all their great potential for computer graphics, additionally invest in identifying synthesized imagery. Justus' groundbreaking work is a demonstration of this principle.

The work of Justus Thies is published in the top tier conferences and journals of computer graphics and computer vision, and has been very widely cited. His work also received several honors, such as the emerging technology award at SIGGRAPH 2016. With his considerable and impactful contributions to the field of digital humans, Justus helps to shape the future of how the real and the virtual interact.

EUROGRAPHICS is extremely pleased to recognize Justus Thies with the 2024 Young Researcher Award in recognition of his outstanding contributions to Computer Graphics in the area of marker-less motion capture and synthesis.

Eurographics Young Researcher Award 2024: Thomas Müller

Thomas Müller receives the EUROGRAPHICS Young Researcher Award 2024. Thomas received his PhD from ETH Zürich. He is now a Principal Research Scientist at Nvidia.

Thomas contributed very impactful research results at the intersection of machine learning and (inverse) light transport simulation. His works also had a great impact in practical applications.

Examples from his earlier work are new techniques to render polydisperse, heterogeneous and dynamic, granular mixtures by introducing a grain scattering distribution function. Further, his new approach on practical path guiding using learned spatio-directional radiance fields received the EGSR Best Paper Award. He also showed a new way to utilize deep networks for the prediction of the light transport inside of clouds in order to approximate atmospheric effects at low cost. Later, he presented seminal works on using neural networks for neural importance sampling in rendering, as well as on rendering of complex participating media effects.

In recent years, one of his major areas of research became inverse rendering techniques and neural reconstruction methods. Variable

© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

Bitrate Neural Fields and, especially, Instant Neural Graphics primitives, had a significant impact and enabled a new level of performance in capturing neural fields. The latter received the SIG-GRAPH Best Paper Award, as well as the TIME Best Inventions of 2022 Award. Such techniques made projects like Neuralangelo possible, in which a high-fidelity surface reconstruction of the David statue by Michelangelo was presented.

Thomas also contributed to the community in the form of several noteworthy and widely used libraries, such as tiny-cuda-nn or the image comparison tool tev. His works were published in the top tier journals and conferences of computer graphics and computer vision. The various honors and awards he already received further illustrate the strong impact that Thomas had on the field of Computer Graphics and Computer Vision.

EUROGRAPHICS is extremely pleased to recognize Thomas Müller with the 2024 Young Researcher Award in recognition of his outstanding contributions to Computer Graphics in the area of machine learning and (inverse) light transport simulation.

Bringing Digital Characters and Avatars to Life

Markus Gross

unit, where he and his team are pushing the forefront of technology innovation in service of the filmmaking process. Gross has published over 500 scientific papers and holds over 100 patents. His work and achievements have been recognized widely, including two Academy Awards and the ACM SIGGRAPH Steven Anson Coons Award. Gross is member of multiple academies of science and of the Academy of Motion Picture Arts and Sciences.

Abstract

The creation of lifelike digital human faces has been pivotal in a range of applications, spanning from healthcare and telepresence to virtual assistants and cinematic visual effects. For decades, the ultimate objective has been to create digital representations so authentic that they are virtually indistinguishable from real faces, while also conveying genuine emotional depth. Overcoming the challenge of the "uncanny valley" has been crucial to this pursuit. In this talk, I will give a 30-year retrospective of pioneering research in digital humans. We will explore the evolution of various elements —including facial capture techniques, geometry, appearance modeling, soft tissue modeling as well as eyes, teeth, and hair.

The talk will also highlight the transformative impact of contemporary machine learning on facial visual effects. As we look toward the future, the focus will shift to real-time facial animation and the symbiotic relationship between digital characters and machine learning algorithms to bring AI avatars to life.

Biography

Markus Gross is the Chief Scientist of the Walt Disney Studios and a professor of Computer Science at ETH Zürich. He is one of the leading authorities in visual computing, computer animation, digital humans, virtual reality, and machine learning. In his role at Disney he leads the Studio segment's research and innovation

© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

Image-Based Rendering: From View Synthesis to Neural Radiance Fields and Beyond

Ravi Ramamoorthi

Abstract

Applications in augmented reality, 3D photography, immersive experiences and appearance acquisition require solving the view synthesis problem – given a few images of an object or scene of interest, how can we synthesize images from new viewpoints. This is a fundamental problem in computer vision and graphics, often referred to as image-based rendering, and can be encapsulated as reconstructing the light field of all light passing through a scene from a set of observations. In this talk, I will first briefly describe the 30-year history of the problem and seminal papers, then discuss a series of efforts my group has made in light field synthesis from sparse images, ultimately leading to the now widely used neural radiance field representation. I discuss the impact of this work and follow-ups, leading to newer work from my group on personalized avatars, enabling real-time radiance fields or live 3D portraits from a single image.

Biography

Ravi Ramamoorthi is the Ronald L. Graham Professor of Computer Science at UCSD and founding director of the UC San Diego Center for Visual Computing. He earlier held tenured faculty positions at UC Berkeley and Columbia University, in all of which he played a key leadership role in building multi-faculty research groups recognized as leaders in computer vision and graphics. He

© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd. has authored more than 200 refereed publications in computer graphics and vision, including 90+ ACM SIGGRAPH/TOG papers. Prof. Ramamoorthi has introduced widely used theoretical representations and computational models for problems in vision and graphics, such as spherical harmonic lighting and neural radiance fields, and widely adopted methods in industry such as Monte Carlo denoising. He has consulted with Pixar and startups in computational imaging, and currently holds a part-time appointment as a Distinguished Research Scientist at NVIDIA. Prof. Ramamoorthi has received about twenty major honors for his research including the ACM SIGGRAPH Significant New Researcher Award for his work in computer graphics, and the Presidential Early Career Award for Scientists and Engineers for his work on physicsbased computer vision. He is a fellow of IEEE, ACM and the SIG-GRAPH Academy, recently received an inaugural Frontiers of Science Award, and has twice been honored with the edX Prize certificate for exceptional contributions in online teaching and learning. He has graduated more than 30 postdoctoral and Ph.D. students, whose theses have been recognized by the ACM Dissertation Award honorable mention, the ACM SIGGRAPH outstanding dissertation award and the UCSD Chancellor's Dissertation Medal.

From Single-Video Models to All-Video Models

Tali Dekel

toral Associate at the Computer Science and Artificial Intelligence Lab (CSAIL) at MIT. Tali completed her Ph.D. studies at the school of electrical engineering, Tel-Aviv University, Israel. Her research interests include computational photography, image/video synthesis, geometry, and 3D reconstruction. Her awards and honors include the National Postdoctoral Award for Advancing Women in Science (2014), the Rothschild Postdoctoral Fellowship (2015), the SAMSON – Prime Minister's Researcher Recruitment Prize (2019), Best Paper Honorable Mention in CVPR 2019, and Best Paper Award (Marr Prize) in ICCV 2019. She often serves as program committee member and area chair of major vision and graphics conferences More information in: https://www.weizmann.ac.il/math/dekel/home

Abstract

The field of computer vision is in the midst of a generative revolution, demonstrating groundbreaking image synthesis results, portraying highly complex visual concepts such as objects' interaction, lighting, 3D shape, and pose. Expanding this progress to videos introduces two key challenges: (i) the distribution of natural videos is vast and complex, requiring orders of magnitude more training data than images, and (ii) raw video data is extremely high dimensional, requiring extensive computation and memory. In this talk, I'll present different methodologies aimed at overcoming these challenges and advancing our capabilities to synthesize and edit visual content across both space and time. These methods range from layered video representations tailored to a specific video, to leveraging generative image priors for video synthesis tasks, and finally, designing and harnessing large-scale text-to-video models, which provides us with powerful motion priors. I'll demonstrate how these methods unlock a variety of novel content creation applications, such as transferring motion across distinct object categories, imageto-video synthesis, video inpainting, and stylized video generation.

Biography

Tali Dekel is an Assistant Professor at the Mathematics and Computer Science Department at the Weizmann Institute, Israel. She is also a Staff Research Scientist at Google, developing algorithms at the intersection of computer vision, computer graphics, and machine learning. Before Google, she was a Postdoc-

© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

Compositional Modeling of 3D Objects and Scenes

Leonidas Guibas

Abstract

The compositional structure of objects (into parts) and of scenes (into objects) is central to many tasks in 3D scene understanding or 3D content creation. The identification and organization of structural components and their metric and relational attributes informs the modeling of component geometry, arrangements, affordances, and functionality - while also providing tools for semantics-aware content selection and manipulation. This talk will highlight some of the history and progress on neural approaches enabling representations for 3D objects and scenes that are, or can be made to be, structure aware - along with the challenges associated with obtaining data sets, data annotations, etc. It will also demonstrate how, in turn, such structural information allows improved or more efficient 3D reconstruction or generation, as well as the controllable creation of variations, both discrete and continuous. Finally, the talk examines how 3D compositional structure can emerge from data without little or no human supervision, how it is reflected in natural language, and how we can increase 3D structure awareness and spatial reasoning abilities in current large-scale LLMs and VLMs.

Biography

Leonidas Guibas is the Paul Pigott Professor of Computer Science (and by courtesy), Electrical Engineering at Stanford University, where he heads the Geometric Computation group, and also a Principal Scientist at Google. Prof. Guibas obtained his Ph.D. from

© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

Stanford University under the supervision of Donald Knuth. His main subsequent employers were Xerox PARC, DEC/SRC, MIT, and Stanford, including stays at Meta, Google, and Autodesk. He has worked in numerous areas of computer science, such as geometric algorithms, computer vision, computer graphics, robotics, machine learning, discrete mathematics, and biocomputation. At Stanford he is a member and past acting director of the Artificial Intelligence Laboratory and a member of the Computer Graphics Laboratory, the Institute for Computational and Mathematical Engineering (iCME), and the Bio-X program. Dr. Guibas has been elected to the US National Academy of Engineering, the US National Academy of Sciences, and the American Academy of Arts and Sciences and is an ACM Fellow, an IEEE Fellow, and winner of the ACM Allen Newell Award, the ICCV Helmholtz prize, and Siggraph's Test-of-Time paper award.