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Abstract

This paper investigates individual variation in aesthetic preferences,
and learns models for predicting the preferences of individual users.
Preferences for color aesthetics are learned using a collaborative
filtering approach on a large dataset of rated color themes/palettes.
To make predictions, matrix factorization is used to estimate la-
tent vectors for users and color themes. We also propose two exten-
sions to the probabilistic matrix factorization framework. We first
describe a feature-based model using learned transformations from
feature vectors to a latent space, then extend this model to non-
linear transformations using a neural network. These extensions al-
low our model to predict preferences for color themes not present
in the training set. We find that our approach for modelling user
preferences outperforms an average aesthetic model which ignores
personal variation. We also use the model for measuring theme sim-
ilarity and visualizing the space of color themes.
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1 Introduction

Understanding preferences for visual aesthetics is an important goal
for many industries, such as advertising, fashion, and design. In-
dividual preference models could be used for a variety of tasks,
such as targeted online advertisements, improved results for visual
search engines like Google or Flickr, and better design tools. For
example, given a set of rated graphic designs for a user, a design
tool could suggest design modifications, such new colours, fonts,
or layouts, based on learned preferences. Unfortunately, there is
currently little understanding of individual preferences; most meth-
ods for evaluating aesthetics currently predict a single value for all
users. By contrast, online recommender systems such as Netflix
utilize sophisticated techniques to model individual preferences.
In this work, we adapt these techniques for visual aesthetics, and
demonstrate their use in modelling preferences for color themes.

Color themes are a common shorthand used by designers to de-
scribe the palettes of graphic designs, photographs, and fashion
outfits, and have been used for several research projects in these do-
mains [Lin et al. 2013; Wang et al. 2010; Lin and Hanrahan 2013;
Yu et al. 2012]. O’Donovan et al. [2011] used large-scale datasets
of color themes to evaluate and learn models of color compatibility.
In that work, a theme rating is the average of all user ratings, and
a linear regression model is used to predict ratings. This approach

of ‘averaging aesthetics’ is standard for predicting aesthetic ratings,
and has been used for photographs [Datta et al. 2006; Marchesotti
et al. 2011], paintings [Li and Chen 2009], and videos [Moorthy
et al. 2010]. This approach is reasonable for several reasons. Firstly,
it models the overall trend in aesthetics, which can be useful. Sec-
ond, the learned models are often simple and interpretable. Lastly,
subjective preferences are extremely noisy, so averaging reduces
noise which makes learning easier. However, this it ignores any sub-
jective variation in ratings due to personal preference. For color aes-
thetics in particular, subjective preferences are common. The wide
variety of color palettes found in clothing and interior design speaks
to the extent of individual color preferences. In this work, we use
a collaborative filtering (CF) approach to predict per-user ratings
for color themes. We show that this approach outperforms an ‘av-
erage rating’ model by a wide margin, indicating the usefulness of
modelling individual aesthetic preferences.

One common approach to CF performs a matrix factorization on
the rating matrix into latent vectors for users and items. However,
this approach is limited in two respects. First, it ignores features
of the items, which are often very important for aesthetic items like
color themes or photographs. Items with very few ratings also bene-
fit highly from features, as their latent vectors are underconstrained.
Second, the model cannot predict ratings for novel items which are
not present in the training data. To address these limitations, we use
a feature-based approach based on probabilistic matrix factoriza-
tion [2008b]. We extend this model to learn a latent linear transfor-
mation from features, instead of learning a per-theme latent vector.
We then extend the model to handle non-linear transformations us-
ing a neural network. Feature-based CF methods are not new, but
we show that for visual aesthetics, a feature-based approach signifi-
cantly outperforms the standard approach without features, and can
predict aesthetic ratings for themes not seen during training.

We also show that the learned model is useful for other aesthetic
tasks. We use the model for measuring the distance between color
themes, as nearby themes in the learned latent space have simi-
lar styles. For example, two themes with random hues may have a
high pixel distance (as measured by comparing individual colours),
but have a similar aesthetic style. An analogy with images would
be red-eye removal: the before/after images are almost identical in
pixel space, but have a high aesthetic distance. We also perform
dimensionality reduction using t-SNE [van der Maaten and Hin-
ton 2008] to visualize the space of color themes. We show that the
learned latent space improves the embedding, with similarly rated
themes clustered together.

More broadly, our work is among the first to train models of in-
dividual preference in visual aesthetics. While we examine color
aesthetics in particular, our approach could be used for making per-
sonalized recommendations for images, videos, or graphic designs.

2 Related Work

2.1 Predicting Aesthetics

While color preferences are important to many industries, aesthetic
preferences for colours and color combinations remain poorly un-
derstood. In recent decades, psychologists have begun controlled
studies of color compatibility and preferences [Granger 1952; Ou
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and Luo 2006; Szabó et al. 2010; Schloss and Palmer 2010]. Pref-
erences of demographic groups are often investigated, though some
researchers investigate individual preferences [Palmer and Griscom
2013]. However, data for this work comes from tightly-controlled
laboratory experiments, which forces a small number of partici-
pants (usually less than 100), a small range of colors (usually less
than 100), and a small number of combinations (usually 1-3). Re-
cently, O’Donovan et al. [2011] explored color compatibility and
color preferences using large sets of themes from Kuler and Col-
orLovers, and MTurk experiments. The aesthetic model was a sim-
ple linear regression of features to predict the mean rating of a color
theme, i.e., the average rating over all users. O’Donovan et al. also
cluster similar users and learn regressors for the clusters, though
this approach does not learn an individual model of preference.

While it is well-known that individual differences exist in aesthetic
preferences [Martindale et al. 1990], the approach of ‘averaging
aesthetics’ is quite common. Large datasets of visual objects are
increasingly used to train aesthetic models, including photographs
[Datta et al. 2006; Marchesotti et al. 2011], Impressionist paintings
[Li and Chen 2009], and videos [Moorthy et al. 2010]. In all these
cases, ratings are averaged over all users to compute an overall pre-
diction of aesthetic quality. Wu et al. [2011] present a structured
SVM model which learns a distribution of ratings, though not user
preferences. By contrast, we predict theme ratings for individual
users using a collaborative filtering approach, and show that this
approach substantially improves on averaged predictors.

Reinecke and Gajos [2014] recently examined website aesthetics
for demographic groups including gender, age, education, and na-
tionality. They found significant variation between these groups,
and learn a model to predict user preferences based on demographic
features. In this work, we also use demographics to improve predic-
tion, but learn a per-user latent vector, as prior work has suggested
personal preferences outweigh demographic preferences in color
aesthetics [O’Donovan et al. 2011].

Researchers have also investigated individual preferences for image
enhancement parameters. Kapoor et al. [2013] use a CF approach
to predict the desired color correction and tonal adjustments for a
user, given a small number of training adjustments. Bychkovsky
et al. [2011] similarly predict the tonal adjustment style of expert
photographers. Our work differs however, since we model ratings
of aesthetic preference, not image enhancement parameters.

2.2 Collaborative Filtering

Over the last decade, recommender systems, such as Netflix, have
made significant progress in modelling individual preferences.
A common approach is collaborative filtering (CF), where large
datasets of preferences for many users are used to aid personalized
predictions. We next introduce the relevant research from the CF
literature. For a survey, see Su and Khoshgoftaar [2009].

Matrix Factorization. Collaborative filtering often involves a set
of ratings for items by users. One common approach uses latent fac-
tors, decomposing the rating matrix into the product of two matri-
ces: a matrix U modeling each user, and a matrix V modeling each
item. Salakhutdinov and Mnih [Salakhutdinov and Mnih 2008b]
presented a simple probabilistic framework, later extended to a full
Bayesian model [Salakhutdinov and Mnih 2008a]. The distance be-
tween latent vectors can also be used to model relationships be-
tween objects. For example, Latent Semantic Analysis [Landauer
and Dumais 1997] models the similarity between documents. We
use this approach to model similarity between color themes.

Feature-based Collaborative Filtering. One limitation of sim-
ple factorization approaches is they ignore valuable features about

items. For movies, the date, director, and country are all highly
informative. Furthermore, they cannot generalize to unseen items
since latent vectors are independent. While using item features has
a long history in the collaborative filtering literature [Prem Melville
and Nagarajan 2001; Basu et al. 1998], features are less common in
matrix factorization approaches. Chen et al. [2011] define a ma-
trix factorization framework which uses item and user features, as
well as global features. Our work is similar to this approach, but
we present a probabilistic model for features which extends the
PMF model of Salakhutdinov and Mnih [Salakhutdinov and Mnih
2008b]. Adams et al. [2010] also extend the PMF framework with
Gaussian Process (GP) priors defined over the latent vectors using
features. Our work also uses item features, but with a much simpler
model: a single-layer neural network that learns a transformation
from input features to latent features. Collaborative filtering prob-
lems often have tens of thousands of users and items, so GPs are
problematic due to their large memory requirements.

3 Color Theme Dataset

We next present a short overview of the MTurk dataset and fea-
tures from O’Donovan et al. [2011]. In this dataset, 13,343 color
themes were randomly from the Adobe Kuler website. Each theme
was then rated on a scale of 1-5 stars by 40 participants on Ama-
zon’s Mechanical Turk, producing a final dataset includes 528,106
individual ratings. Participants also reported their gender, age, color
experience, and nationality.

Following the work of O’Donovan et al., we compute features in
several different color spaces: RGB, CIELab, HSV, and CHSV1. In
each color space, we compute the following features: theme col-
ors, colors sorted by lightness, differences between adjacent colors,
sorted color differences, mean, standard deviation, median, max,
min, and max minus min across a single channel. We also include
plane-fitting features where a 2D plane is fit to the 3D color coor-
dinates using PCA. Lastly, features related to hue entropy (roughly,
the spread of hues along the color wheel), and hue probabilities,
both unary and for adjacent colors, are included. The final set of
334 features is then normalized to the range 0...1. See O’Donovan
et al. [2011] for a full description of these features.

4 Feature-based Matrix Factorization

4.1 Probabilistic Matrix Factorization

We first briefly describe the probabilistic matrix factorization model
of Salakhutdinov and Mnih [2008b]. This approach uses a set of M
items, N users, and integer rating values from 1 to V. R is a matrix
of ratings, usually incomplete, where R

ij

represents the rating of
user i for item j. We first define a latent vector for each user i and
item j as U

i

and V

j

respectively, and model R as the product of
the user and item latent vectors. That is, each rating is defined as
R

ij

= U

T

i

· V
j

. The set of all user vectors is given by the matrix
U (of dimension N ⇥K), and the item vectors as V (of dimension
M ⇥K). The parameter K determines the size of the latent space.

We define the conditional distribution over the observed ratings as:

p(R|U, V,�2) =
1
2

NY

i=1

MY

j=1

[N(R
ij

|UT

i

V

j

,�

2)]Iij (1)

where is N(x|µ,�) is a Gaussian distribution with mean µ and
variance � and I

ij

is the indicator function that is equal to 1 if user

1A space where hue ✓ and saturation s are remapped to Cartesian coor-
dinates: d1 = s cos(✓) and d2 = s sin(✓).
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Figure 1: Factorization Models. (a) standard probabilistic matrix factorization learns latent vectors for each user U and each item V. (b)
feature-based matrix factorization learns a linear transformation T from fixed item features F to the latent space. (c) features are transformed
to the latent space using a neural network. (d) both fixed latent features and non-linear feature transformations are used to model users.

i rated item j and equal to 0 otherwise. Gaussian priors are also
defined for U

i

and V

j

:
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U
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MAP estimation is then used to learn the latent vectors for items
and users. The log posterior of Eqn 1 and 2 is used to define a
sum-of-squared-errors objective function:

E(U, V ) =
1
2

NX

i=1

MX

j=1

I

ij

(R
ij

� U

T

i
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j

)2

+↵
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||U
i

||2
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+↵
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X

j=1

||V
j

||2
Fro

(3)

The gradients with respect to U

i

and V

j

are simple to compute, and
training done by gradient descent; please see Salakhutdinov and
Mnih [2008b] for details. In our experiments, we set the dimen-
sionality of the latent space to K = 5 based on a validation set of
ratings, described in the next section.

4.2 Linear Feature-based Matrix Factorization

A major disadvantage of the previous approach is it ignores item
information which could help rating estimation. For color themes,
or other visual stimuli, this information is important for prediction.
Another disadvantage is poor generalization; ratings for new items
not present in the training data cannot be estimated.

Given a feature vector F
j

for each item j, we can learn a mapping
from feature space to latent space. We first present a linear transfor-

mation T of the feature vector:

E(U, T ) =
1
2

NX

i=1

MX

j=1

I

ij

(R
ij

� U

T

i

· (TF
j

))2
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U

NX
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||U
i

||2
Fro
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||T
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||2
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(4)

The gradients with respect to U and T are again straightforward,
and training is done with gradient descent. The matrix T is of size
Q⇥K, where Q = 334 and K = 15.

4.3 Non-linear Feature-based Matrix Factorization

We can also define a non-linear transformation function T (F
j

;W )
with parameters W :

E(U,W ) =
1
2

NX

i=1

MX

j=1

I

ij

(R
ij

� U

T

i

· T (F
j

;W ))2

+↵

U

NX

i=1

||U
i

||2
Fro

(5)

The non-linear transformation is a neural network trained using
back-propagation. When learning the parameters, the user vectors
U and the network parameters W are updated alternately; the pa-
rameters are fixed for one set and the gradient calculated for the
other. The users’ latent vectors are updated at each iteration as be-
fore. The users’ latent vectors act as a final layer of linear weights
on the neural network, with the errors are back-propagated through
the network to W .

There is also no prior on the network weights. While such regular-
ization is trivial to add, we expect our simple model shared over our
hundreds of thousands of datapoints will be robust to overfitting.
Therefore, sparsefying or penalizing higher weights may rule out
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good transformations. In practice, small weights are learned with
little overfitting (Fig. 2). Initial experiments with regularization re-
vealed no improvement. The neural network included 200 logistic
units, and the dimensionality of the latent space was K = 15, set
using validation ratings. We found the performance of the FPMF
models were fairly robust to parameters changes; results did not
change significantly.

A further extension is to add feature-based latent vectors for users
as well. Each user in our dataset self-reported gender, experience,
country, and age. We can therefore use these binary features with a
second transformation:

E(U,W1,W2) =

1
2

NX

i=1

MX

j=1

I

ij

⇣
R

ij

� [U
i

T1(Gi

;W1)]
T · T2(Fj

;W2)
⌘2

+ ↵

U

NX

i=1

||U
i

||2
Fro

Where the vector [U
i

T1(Gi

;W1)] is the concatenation of the user’s
latent vector U

i

with the output the neural network T1 given the
user features G

i

and parameters W1. We use 200 logistic units for
the item-feature network, and 50 logistic units for the user-feature
network. U

i

has dimension 15, and T1 has dimension 5.

5 Experimental Results

The first baseline we compare our CF approach against is an av-
erage aesthetic model. This model is trained on the average of all
training ratings for a theme. Testing is however done for each in-
dividual rating, not the average. This baseline indicates how much
individual user preferences affect the rating. We use the approach of
O’Donovan et al. [2011]: linear regression with an L1-norm [Tib-
shirani 1996]. A training set of 300,000 ratings was used, with a
testing set of 128,106 ratings. A separate validation set of 100,000
ratings was used to select model parameters.

We also compare our feature-based models with regular PMF to
evaluate how important features are for modeling visual aesthet-
ics. As mentioned earlier, one important advantage of feature-based
models is the ability to handle test themes not seen in training.
We therefore test on a dataset (‘Novel’) where all test ratings are
for new themes. Feature creation can be time-consuming and of-
ten requires expert knowledge. We therefore also explore the mod-
els’ performance with a reduced feature set. With a smaller set of
features, we expect non-linear FPMF should perform better than
linear FPMF, as the non-linear transformation should compensate
for less hand-crafted features. We therefore test a feature set (‘Re-
duced’) with only the 15 CIELab colors, and compare to the full
334-dimensional feature vector.

Table 1 shows our main result: the error for the average predictor
is substantially higher than those which model individual user pref-
erences. We also show the value of using features when modeling
visual aesthetics, as the feature-based FPMF model performs much
better than PMF at predicting theme ratings. Non-linear FPMF also
out-performs linear FPMF, with better relative performance with
fewer features. However, adding demographic user features only
gives a very small improvement. Fig. 2 plots the error of the valida-
tion set.

We next investigate the effects of user modelling and demographic
features. As a baseline, we trained the non-linear FPMF model
with a constant U

i

for all users and no demographic features, using

Method Seen Reduced Novel
Averaged 1.082 1.107 1.081
PMF 0.964 0.964 -
Linear FPMF 0.842 0.969 0.841
NL FPMF (V) 0.831 0.945 0.829
NL FPMF (U+V) 0.829 0.944 0.828

Table 1: Model Testing. We evaluate various models using the
RMSE of test theme ratings. ‘Averaged’ is a linear regressor trained
on mean theme ratings ([O’Donovan et al. 2011]) Non-linear
FPMF (V) uses a neural network with theme features. Non-linear
FPMF (U+V) uses a neural network with user and theme features.
‘Seen’ and ‘Reduced’ include previously seen users and themes.
The ‘Novel’ set has no themes used in training. ‘Reduced’ uses only
15 features (the theme’s CIELab color values); ‘Seen’ and ‘Novel’
sets use the full 334-dimensional feature vector.
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Figure 2: RSME of validation set during training epochs

the ‘Novel’ dataset. This model gave a RMSE of 1.079, as com-
pared to 0.828 for the non-linear FPMF with user modelling, again
demonstrating its value. Note that this approach closely matched
the RMSE of 1.081 for the averaged predictor of O’Donovan et
al. [2011], which also ignores user modelling.

We then tested using only demographic features to model the user.
Specifically, we removed the latent vector U

i

from Eqn. 6, and mod-
elled users only by the neural network T1(Gi

), where G

i

are the
demographic features of user i. This model produced a RMSE of
1.066, suggesting that while demographic features are informative,
they are far less important than modeling individual preferences for
color themes. The marginally better performance with demographic
features is slightly surprising. Previous research on webpage aes-
thetics, including colourfulness, found significant differences be-
tween demographic groups [Reinecke and Gajos 2014]. One reason
may be that Reinecke’s dataset included a broad sampling of coun-
tries, whereas the vast majority of the MTurk color dataset are from
USA or India. It is also likely that color theme preferences have
more variation within groups than across them, particularly com-
pared to webpage aesthetics.

In Fig. 3, we show a concrete example for two users with differ-
ent aesthetic styles. We show highly and poorly rated themes for
the two users, along with predicted ratings for new themes using
the non-linear FPMF model, demonstrating that our CF model ac-
curately captures the users’ aesthetic preferences. Our method can
also predict ratings distributions, by predicting ratings for all users
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Figure 3: Collaborative Filtering Example. The top three rows
show highly and poorly rated themes from two users (i and j) with
different aesthetic preferences. The ratings for the two users are
denoted as r
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and r
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. The bottom two rows shows our predicted
ratings p

i

and p

j

for new themes using non-linear FPMF.

in the training set. In Fig. 4, we show the distribution for two novel
testing themes not seen in the training data. This figure shows that
there can be large differences between distributions; the variance
of the top theme is much higher, indicating more disagreement in
ratings than the bottom theme.

6 Applications

Navigating the space of color themes is a difficult problem with lit-
tle previous work. User-specified tags are often used for searching
similar themes (e.g., ‘pastel’, ‘venice’ , ‘stone’, ‘rose’) but this ap-
proach is limited. The main problem is the lack of a distance metric
for themes. We wish to find ‘similar’ themes, but similarity is poorly
understood for color combinations. One simple solution is to take
the sum of color differences in a perpetually uniform color space
like CIELab. However, this naive approach does not model the re-
lationships between colours, or the overall style of the theme. For
example, a color theme which lies along a gradient (for ex, dark to
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Figure 4: Predicting Rating Distributions. Given a novel theme
(i.e., one not present in the training set), we predict the ratings for
all users in the training set, and plot the distribution of their ratings.
In this example, both themes have a mean rating of 3.00, but the top
theme has greater disagreement (std. dev. of 1.03 vs 0.64).

light) should be closer to the flipped theme (i.e., light to dark) than
to a random permutation of the colors which does not preserve the
gradient, though it may have a lower CIELab distance. An analogy
for images would be before and after red-eye removal. While both
images are extremely similar in pixel distance, they have a large
aesthetic disparity.

Instead of color differences, we propose a similarity metric for
color themes which measures differences in aesthetic style. Un-
fortunately, specifying such a distance is not intuitive. However,
theme ratings can be used as a proxy for measuring aesthetic dis-
tances; themes which are aesthetically similar will tend to have sim-
ilar ratings. We would like a transformation for themes such that, in
this new space, a small distance results in a small rating difference.
FPMF produces such a transformation, incorporating aesthetic dif-
ferences and grouping similarly rated themes. Similar latent factor
approaches have been used to detect synonyms [Landauer and Du-
mais 1997], and to visualize similar movies [Koren et al. 2009].

In Fig. 5 we next show several themes with a large CIELab distance
but a small distance in the FPMF latent space, and vice-versa. Since
the scales of the spaces are different, we also report the distance sort
order in each space. That is, for each theme, we first calculate the
distances to every other theme. These distances are then sorted, and
the order number reported. A value of 0 indicates the second theme
is the closest theme to the first in this space. A value of 1 is the most
distant. This metric gives a relative sense of the distances.

In the top three examples, we show themes which are visually
quite similar have a large CIELab distance. By contrast, the la-
tent distance is much smaller. In the top example, the two hues are
switched; in the second, the gradient is reversed; in the third, both
themes are poorly ordered with bright primary colors. In the bottom
three examples, themes with a small CIELab distance are visually
quite distinct, which is reflected by a larger latent distance. A naive
CIELab distance does not account for contrast between colors. If
two themes have similar lightness and saturation, they will have a
fairly low CIELab distance. However, a single modified hue can
greatly decrease the perceived similarity and aesthetic rating.

To visualize the space of color themes, we use t-SNE [van der
Maaten and Hinton 2008] to create a 2-D embedding. In Fig. 6,
we compare an embedding using the CIELab distance with one
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Figure 6: t-SNE embedding of 2000 color themes. Top left: Embedding of CIELab color values. Top right: Embedding of FPMF latent
features. Bottom left: Mean user ratings for each theme (CIELab embedding). Bottom right: User ratings of FPMF embedding. Please zoom

in for detail. The FPMF embedding clusters similarly rated themes better than the CIElab embedding.

using the latent vectors (please zoom in for more detail). While
both embeddings lack clear clusters, the results are improved with
FPMF in several ways. First, there is an overall diagonal light to
dark trend with FPMF not present in the CIELab embedding. Sec-
ond, bright themes with significant color variation (e.g., the third
theme of Fig. 5) are clustered in the top right whereas they are
spread out in the CIELab embedding. Particular hues are also better
grouped (e.g., the blue theme of Fig. 5). We also plot the embed-
dings with the mean user ratings in Fig. 6 (bottom). This shows that
similarly rated themes are being placed closer together using the la-
tent vectors; with CIELab distances, poorly rated themes are spread
throughout.

We can also use t-SNE to visualize users. Fig. 7 show 2D embed-
dings of users’ latent vectors, coloured by demographic features.
The figure does show some degree of clustering, indicating users
with similar preferences. Some clusters are predominately of one
country, though the map fails to show a clear separation between
users of different countries. There is also little separation of users
based on their gender. We also tried labelling the users by their age,

but there was similar degree of inter-group variation. These findings
reinforce the claim that differences in color preferences between de-
mographic groups are lower than differences within the groups.

7 Conclusion

Modeling aesthetic preferences is an exciting new area with many
potential applications from music, to image processing, to fash-
ion and design. Large-scale datasets also offer the opportunity for
greater understanding of aesthetic preferences. To our knowledge,
collaborative filtering approaches have not been explored previ-
ously for modeling aesthetic ratings. Previous approaches average
over all ratings to measure an overall aesthetic score. This ap-
proach is appropriate when no information is available about a new
user. However, when previous information is available, modeling
individual user preferences can achieve significantly better perfor-
mance than average aesthetic models.

In our work, we use a feature-based probabilistic matrix factoriza-
tion (FPMF) model to predict individual user ratings. We introduce
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Lab: d: 2.13/o: 0.99 FPMF: d: 1.27/o :0.0003

Lab: d: 1.58/o: 0.88 FPMF: d: 0.93/o: 0.0001

Lab: d: 2.27/o: 0.98 FPMF: d: 1.22/o: 0.0003

Lab: d: 0.14/o: 0.0001 FPMF: d: 4.34/o: 0.35

Lab: d: 0.2/o: 0.0006 FPMF: d: 4.77/o: 0.31

Lab: d: 0.24/o: 0.0008 FPMF: d: 5.44/o: 0.73

Figure 5: Distances Between Themes. Top: themes with a large
CIELab distance but small FPMF latent distance. Bottom: themes
with a small CIELab distance but large latent distance. The
(d)istances are computed in CIELab and FPMF. Note that dis-
tances in CIELab and FPMF are not directly comparable as they
are different spaces (i.e., a distance of 1 is not equivalent in both
spaces). To compare the different spaces, we report the sorted dis-
tance (o)rder for all themes. 0 indicates no other theme is closer, 1
indicates no theme is farther away. These results indicate the latent
features are better for measuring visual similarity.

two simple extensions to the original PMF framework. First, instead
of solving for a latent vector for each color theme, we solve for a
transformation from theme features to the latent space. Second, we
propose a non-linear transformation within the factorization using
a neural network. We show a feature-based approach significantly

Figure 7: t-SNE embedding of users with country-of-origin and
gender labels. While there is some clustering of user preferences,
there is substantial variation within the demographic groups.

outperforms one which ignore features. We also show the model’s
usefulness for understanding and visualizing color themes. Latent
factor transformations can measure the aesthetic distance between
visual stimuli which can be difficult to specify directly. We also use
this representation to visualize the space of color themes. Given the
vast datasets of color themes and images available online, building
interfaces which use aesthetic models to help navigate these spaces
is an exciting area of research.

One important application of our model is in improved design and
photography tools. Color themes are commonly used to describe the
color palettes of graphic designs, ranging from websites to posters,
as well as photographs. Our approach could be used to make re-
coloring suggestions for designs or photographs which match user
preferences. Finally, while this work examines color aesthetics
specifically, our approach could easily be applied to making recom-
mendations beyond colors, to photographs, videos, or graphic de-
signs. These domains have large datasets and rich feature sets, and
are therefore applicable to our FPMF model. Personalized recom-
mendations for photographs or graphic designs have the potential
to greatly improve numerous industries, such as online advertising
and search.
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