
EG UK Computer Graphics & Visual Computing (2019)
G. K. L. Tam and J. C. Roberts (Editors)

Towards a tool for the creation of micro-visualisations

J. R. Jackson†1 and P. D. Ritsos‡1 and J. C. Roberts§1

1Bangor University, UK

Abstract
As the every day use of mobile and small screen devices becomes more common, it is necessary to explore how we can visualise
data effectively in small design spaces. These screens are often used in situations where it is necessary to convey information in
a concise, readable, reliable and visually appealing way. Our work focuses on the design and development of a tool to facilitate
the creation and manipulation of new micro-visualisations. The results show that the tool is suitable for creating large number
of outputs quickly and efficiently.

CCS Concepts
• Human-centered computing → Visualization;

1. Introduction

In many settings users want to see a summary view of their in-
formation. For example, sports users with smart watches, desktop
users who wish to receive announcement summaries of systems
they monitor, or notifications on a smart phone, are all situations
which involve small screens and the user needs to see summary
information. Glyphs provide an ideal structure to summarise multi-
variate data. Glyphs are small, compact, graphical pictures, which
can demonstrate quantitative data, and encode many variables, in
a small area. For instance, weather map glyphs encode a range of
parameters including wind direction, speed, temperature etc in one
multifaceted arrow.

Most maps used for navigation employ glyphs. In addition, some
of the glyphs share similar design features to another other. Where,
for instance, several glyphs can share similar design traits. For
instance, churches have similar designs; those with spires have a
slightly adapted design to those without. Consequently, it is useful
to create several glyph designs for different data parameters. Much
like human children look similar to their parents, or siblings, so we
could create glyphs that appear similar to each other. Glyphs that
have similar design traits (yet are different by some means) may
then display data that has some overlap or share similar properties.

We have been working with a health care provider who has re-
quested that the summary information is displayed differently for
several purposes. For example, a nurse may want to have a glyph
design for self care, a different one for minimal care patients and

† email: j.r.jackson@bangor.ac.uk
‡ email: p.ritsos@bangor.ac.uk
§ email: j.c.roberts@bangor.ac.uk

another for severe patient care. Potentially every patient has a dif-
ferent glyph pattern, but all the self caring patients would be easily
recognisable because their design traits are similar. In other situa-
tions, users may wish to create their own personalised glyph. Much
like a logo is created specifically for a company, so a user would
want to create their own glyph design.

But designing a glyph is not an easy task for a user to achieve.
If requires a user to construct the geometry, ascertain how to map
the data into individual parts, and then decide how to render it.
Consequently, we have been investigating how we can create tools
and methods, to help users more easily create glyphs and unit-based
visualisations.

In this short paper we introduce a tool which implements a path-
based algorithm for generating deterministic glyph visualisations
and present several results of the algorithm. We focus on the tool,
explaining our requirements (Section 3), different prototype imple-
mentations (Section 4), how to use the tool (Section 5) and evalua-
tion and results of using our tool (Section 6).

2. Background Related Work

Micro-visualisations are a type of glyph, according to Borgo et
al. [BKC∗13] glyphs can depict data attributes using a collection
of visual elements in a standalone context, this is included in a va-
riety of definitions. Our use of the term micro-visualisation allows
for less ambiguity in our output type as well as being more descrip-
tive in terms of their small screen or design space usage.

Currently there are many methods for the production of visuali-
sations. These methods range from declarative tools (such as Vega
Lite [SMWH17], D3 [BOH11] and ProtoVis [BH09]) to interface
based applications such as (Polaris [STH02], Tableau). Users are

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

Short Paper

DOI: 10.2312/cgvc.20191270 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-9383-5888
https://orcid.org/0000-0001-9308-3885
https://orcid.org/0000-0001-7718-3181
https://doi.org/10.2312/cgvc.20191270


J.R. Jackson, P.D. Ritsos & J.c. Roberts / Towards a tool for the creation of micro-visualisations

also able to create visualisations using vector based software such
as Adobe Illustrator and Data Illustator [LTW∗18]. Including visu-
alisations designed by sketching [RHR16], there are a wide variety
of options available. These options tend to put the user at the cen-
tre of the process and lead to one off visualisations which are often
predesigned and prepackaged. We introduce a design centric tool
which is closer to glyph generation strategies [BKC∗13] than user-
centric visualisation design.

In order to facilitate the easy generation of visualisations we
look to the world of simple programming with applications such as
Scratch [RMMH∗09] and Geenfoot [Köl10]. These systems adopt
drag and drop interaction which obfuscates any code and gives
novice users a better understanding of building an application. We
use a similar design principle in our interface design.

3. Usage Requirements

With the discussed ubiquity of data both personal and other it is
necessary to create a wide range of usable and desirable visualisa-
tions. Creating these visualisations can be a slow, drawn-out and
difficult process. As such we define a series of requirements which
will allow for the rapid prototyping and creation of such designs:

• Rapid prototyping. Design of novel and interesting visualisa-
tions often requires the creation of a large number of prototypes.
Using traditional methods, such as sketching or using graphics
tools can be a limiting process which takes a long time. We pro-
pose that any tool which aims to aid visualisation design and
which must have an emphasis on rapid prototyping.
• Ease of use. Many tools exist for the creation of visualisations,

using tools such as D3.js, Photoshop and Vega often requires a
steep learning curve. The tool which we create must be simple
and easy to use without prior knowledge of design or formal
visualisation methods. We can aid this by looking at the world
of visual programming [RMMH∗09].
• Sensible constraints. We aim to provide users with a blank can-

vas, such that their designs are not overly limited or directed.
We do, however, recognise that a complete sand-box for design
would not necessarily allow for a quick and creative process.
The application must tread the fine line between constraint and
freedom. This boundary will allow users a very large scope for
design and iteration while ensuring that the process is finite and
that the outputs are sensible.
• Easy refinement. Once visualisations are created we aim to al-

low users to easily refine those that have been created. Often
termed tweaking, the act of refining and making small adjust-
ments is essential to the design process.
• Creation of usable visualisations. While the main point of the

application is to aid the design and development of visualisa-
tions, we must ensure that said visualisations are usable when
data is applied. Ensuring that the sensible constraints discussed
above and allowing users to easily apply data to generated visu-
alisations will ensure that the vast majority of created graphics
are fit for purpose.
• Usable output. The visualisations are intended for use on mo-

bile phones or smart watches as well as within desktop appli-
cations. As such it is important that the output from the tool is
usable in these contexts. We propose to output Scalable Vector

Graphics (SVG) from the tool. These are easily placed within
target applications and their features can be adjusted using sim-
ple properties or external styles. Further to this simple output the
tool will allow output of properties which can be used directly
with an implementation library.

These requirements allowed us to create a usable and reliable
tool which aids in the creation of interesting, usable and useful vi-
sualisations. The rest of this paper we (1) explain how have de-
signed and created a browser based application using modern stan-
dards such that it can be used on a wide range of modern browsers.
(2) Describe how we have created an underlying library, which is
also be deployable across a wide variety of systems and architec-
tures, to implement the path-model. And (3) describe how users
can use the tool, and present an evaluation of the micro visualisa-
tion creator.

4. Implementing the tool

The tool has been developed as a browser based application using
ReactJS and employing SVG technology. In order to create visu-
alisations we employ a path-model [JRR18]. This model describes
visualisations using a path. The path is defined as a finite collec-
tion of point pairs representing each data point. Within each pair
of points visualisation elements are placed. These elements are ad-
justed according to the data value within. These adjustments can be
using any of Bertin’s visual variables [BB73]. This model uses five
stages in generating each design:

1. We generate a path, where each data point is represented by a
pair of points (path section). The path defines the principle shape
of the micro-visualisation.

2. We define individual objects, constraining them by an envelope.
3. Visual elements are placed along the path, within the envelope;
4. Data is mapped onto retinal variables [BB73] (e.g., shape,

colour, orientation), are adjusted according to input data, placed
on the path.

5. The visualisation output (in SVG), rendered on the design space.

In the case of this implementation, scale, colour and rotation are
the aspects of the elements which can be adjusted by the tool, these
constraints allow users to create a wide variety of visualisations
without getting overwhelmed.

4.1. Implementation

We used an Agile method to design the tool; we started by sketch-
ing the ideas and then developed several prototypes. We explain our
process below.

Sketching In order to design the tool an extensive Five Design
Sheet method was used [RHR17]. With this method five sheets of
large paper are used to explore and record different design ideas.
The first sheet allows many ideas to be investigated; the middle
three sheets allow three ideas to be further developed, and the
final sheet provides a space for the realisation design to be elab-
orated. Throughout this process we focused on the user require-
ments of rapid prototyping, easy of use etc. We wanted a design
that required little to no keyboard input, and subsequently we
concluded with a design that uses drag-and-drop, based around
the path-model, as described above.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

142



J.R. Jackson, P.D. Ritsos & J.c. Roberts / Towards a tool for the creation of micro-visualisations

Figure 1: The MicroVis Builder, this web based application allows users to drag properties from the left column onto genes in the centre,
then the visualisation can be rendered on the right.

Prototype One The first prototype was a point and click inter-
face which allowed users to select visualisation properties us-
ing checkboxes. Visualisations were created by importing JSON
which contained image space properties and data. Once defined
each visualisation was created by drawing to an HTML canvas
context. Each visualisation could be exported as an SVG, PNG
or JPEG. This first prototype proved problematic as the selection
of properties was far from intuitive, the requirement of JSON
did not meet the ease of use standard previously discussed. The
major issue with the first prototype was the output as it did not
output files that could be further manipulated in another context.
Work was done to try and make more usable SVG outputs but
this proved difficult and highlighted the limitation of the cur-
rent implementation. This first prototype was constructed with
HTML5 Elements, CSS and Vanilla JavaScript.

Prototype Two We performed in-house testing of the first proto-
type. The evaluation demonstrated that the current interface was
too complex, and users did not understand what parameters they
could change to alter the shapes of a micro visualisation. Sub-
sequently, we conducted a further design and sketching period,
with the goal to simplify the interface, and improve the usability
of the final output. We also realised that the current implementa-
tion language restricted us from simplifying the interface. Con-
sequently, we implemented the next prototype tool using Reac-
tJS. We chose ReactJS because it allows for the streamlining of
web application development as well has having native support
of SVGs. The intention was to allow users to quickly and easily
create a large number of visualisations, this virtual DOM man-
agement will allow the tool to only update the necessary DOM
nodes. We separated the prototype into two discrete parts, first
the path visualisation library, and second the MicroVis builder,
as follows.

The path visualisation library. We have developed a visualisa-

tion library that implements the path-model. The library can be
used to develop micro visualisations. The developer can use it to
take properties and data and render SVG elements into a page
or application. The library can be used independently of the Mi-
croVis builder. One of the outputs of the MicroVis builder is to
save configuration files (genes) that describe the design of spe-
cific visualisations. The library creates visualisations based on a
path. There are four parts to the visualisation creation within the
library, 1) Path generation – a series of point pairs are generated
inline with the number of data points; 2) Object selection and
placement – Objects types are selected and placed on the path;
3) Object adjustment – Objects are adjusted to represent the data
using any of Bertin’s visual variables; 4) Visualisation Realisa-
tion – The visualisation is rendered as an SVG to be used within
another context such as an app or web page.

The MicroVis Builder is an interface which allows the creation
of visualisations using property collections described as Genes.
This interfaces uses drag and drop commands to create and ren-
der visualisations. Data used in the visualisations can be selected
from a collection of pre-installed datasets as well as being able
to upload data in JSON format. The application exports SVG,
PNG and/or JSON configuration data for the Path Visualisation
Library. The tool uses the Local Storage API to save details of
users’ visualisation. The intention is to allow completely anony-
mous use of the tool to avoid unnecessary Data privacy and
GDPR concerns.

5. Using the Tool

This tool is hosted as an online application and available to all
modern browsers. There is no login or registration requirement for
users. They simply visit the URL and create visualisations. The tool
has a memory such that it saves created visualisation information

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

143



J.R. Jackson, P.D. Ritsos & J.c. Roberts / Towards a tool for the creation of micro-visualisations

to the user’s browser. An overview of the tool can be seen in Fig-
ure 1. The MicroVis Builder uses drag and drop and properties are
dragged onto genes and genes are dragged to the rendering stage.

A visualisation is created by selecting properties from the left
section (Figure 1 left column). These properties are a small set of
the properties available within the Path Visualisation Library. Users
first select a Path Mode, this is the underlying path that the visual-
isation will be created along. To simplify the user-interface in this
prototype we predefine six paths, including straight line, ring and
random paths. Once a path is chosen users can choose from a se-
ries of properties for the visualisation elements. These properties
are the shape of the visualisation elements such as circles, triangles
and squares; the colour of the elements, based on value, random,
monotone, single colour or as prescribed by the dataset; the dis-
tance between each path point these can be uniform, random or as
a function of the value; rotation of the objects including none, ran-
dom, value based or mean based. After the visualisation properties
have been chosen the user can now select a dataset from the presets
or upload their own. Property types are colour coded to give visu-
alisations a colour identity. Each of these properties can be dragged
across to the gene area (Figure 1 centre column) where new genes
are built or existing ones updated. The gene builder section allows
users to create, update and delete genes as well as inspect them.
Each gene can be clicked to give the user more readable informa-
tion. Genes can be copied to allow users to make small adjustments
while maintaining the original settings. The Gene builder panel is
also able to generate random genes to help to give users a new per-
spective or starting point.

6. Evaluation and Results

In order to evaluate the tool we asked participants to spend five min-
utes creating visualisations with the tool. Participants were sourced
through social media and each participant was asked to watch an
instructional video prior to starting. Users created visualisations
using one of three datasets of varying sizes (4, 8, 20 data points)
once created they were also asked to like or dislike their creations.
Users could only progress to the next part of the study one five min-
utes had elapsed (they were not forced to move on and were able to
continue once the timer had elapsed). The second part of the study
involved a System Usability Scale survey as well as a survey of
three open ended questions.

A selection of user results can be seen in Figure 2. The 18 partic-
ipants created a total of 163 visualisations. The minimum number
of visualisations created was 4 and the maximum 15. This means
that, on average, just over 9 visualisations were created per partic-
ipant within five minutes. The average time spent designing was
356.5 seconds with a minimum of 302.2 seconds and a maximum
of 689.3 seconds. Using this data we can infer that users of the
model are able to create a visualisation every 39.37 seconds. Of the
163 visualisations that were created 89 were liked and the remain-
ing 74 disliked. Due to the nature of the design process we expect
to see a high number of disliked visualisations as a decision is made
when updating and re rendering genes. The binary choice between
like and dislike forced participants to make clear decisions over the
rendered visualisation and whether amendments of the gene were

Figure 2: A selection of user outputs from the user study.

needed. 157 of the visualisations were created using a unique com-
bination of gene parameters.

The SUS resulted in a mean score of 75.42 indicating a ‘good’
score according to Bangor et al. [BKM09]. In the open ended ques-
tions, users were largely complementary stating that the tool was
“simple to use” or “very easy to use” and that it could “could
create some interesting designs very fast”. Some critical feedback
was also registered one participant stated “I would like visual de-
scription of what each property would do to my visualisation.” and
“when there were many visualisations, knowing which gene corre-
sponded to which visualisation was tricky”.

7. Conclusion

We have designed and implemented library and a tool (MicroVis
builder) to allow users to quickly and easily create micro visualisa-
tions. This tool uses drag and drop interaction to build path based
genes which are then able to be rendered and tweaked. Once the vi-
sualisations are created they can be downloaded in three format, as
JSON properties, as SVG or as high DPI PNG files. Overall feed-
back of the tool was positive as it received a good rated SUS score
as well as receiving positive comments.

This work is part of ongoing research, and indeed further work is
also needed to explore the effectiveness and suitability of the out-
puts in their intended contexts. In the future we would like to extend
the functionality of the tool to allow users to input their own data
and use the visualisations in-situ such as on mobile applications or
smartwatch faces.

Acknowledgements

Knowledge Economy Skills Scholarships (KESS 2) is a pan-Wales
higher level skills initiative led by Bangor University on behalf of
the HE sector in Wales. It is part funded by the Welsh Govern-
ment‘s European Social Fund (ESF) convergence programme for
West Wales and the Valleys.

References

[BB73] BERTIN J., BARBUT M.: Sémiologie graphique: les dia-
grammes, les réseaux, les cartes. Gauthier Villars, 1973. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

144



J.R. Jackson, P.D. Ritsos & J.c. Roberts / Towards a tool for the creation of micro-visualisations

[BH09] BOSTOCK M., HEER J.: Protovis: A graphical toolkit for visual-
ization. IEEE Transactions on Visualization and Computer Graphics 15,
6 (Nov 2009), 1121–1128. doi:10.1109/TVCG.2009.174. 1

[BKC∗13] BORGO R., KEHRER J., CHUNG D. H., MAGUIRE E.,
LARAMEE R. S., HAUSER H., WARD M., CHEN M.: Glyph-based vi-
sualization: Foundations, design guidelines, techniques and applications.
In Eurographics (STARs) (2013), pp. 39–63. doi:10.2312/conf/
EG2013/stars/039-063. 1, 2

[BKM09] BANGOR A., KORTUM P., MILLER J.: Determining what in-
dividual sus scores mean: Adding an adjective rating scale. J. Usability
Studies 4, 3 (May 2009), 114–123. 4

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: DÂş data-driven
documents. IEEE Transactions on Visualization and Computer Graphics
17, 12 (Dec 2011), 2301–2309. doi:10.1109/TVCG.2011.185. 1

[JRR18] JACKSON J., RITSOS P. D., ROBERTS J. C.: Creating Small
Unit Based Glyph Visualisations. In Posters presented at the IEEE Con-
ference on Visualization (IEEE VIS 2018), Berlin, Germany (Oct. 2018).
2

[Köl10] KÖLLING M.: The greenfoot programming environment. ACM
Transactions on Computing Education (TOCE) 10, 4 (2010), 14. doi:
10.1145/1868358.1868361. 2

[LTW∗18] LIU Z., THOMPSON J., WILSON A., DONTCHEVA M., DE-
LOREY J., GRIGG S., KERR B., STASKO J.: Data illustrator: Augment-
ing vector design tools with lazy data binding for expressive visualization
authoring. In Proceedings of the 2018 CHI Conference on Human Fac-
tors in Computing Systems (New York, NY, USA, 2018), CHI ’18, ACM,
pp. 123:1–123:13. doi:10.1145/3173574.3173697. 2

[RHR16] ROBERTS J. C., HEADLEAND C., RITSOS P. D.: Sketching
designs using the five design-sheet methodology. IEEE Transactions on
Visualization and Computer Graphics 22, 1 (Jan 2016), 419–428. doi:
10.1109/TVCG.2015.2467271. 2

[RHR17] ROBERTS J. C., HEADLEAND C. J., RITSOS P. D.: Five
Design-Sheets: Creative Design and Sketching for Computing and Vi-
sualisation. Springer, 2017. 2

[RMMH∗09] RESNICK M., MALONEY J., MONROY-HERNÁNDEZ A.,
RUSK N., EASTMOND E., BRENNAN K., MILLNER A., ROSENBAUM
E., SILVER J. S., SILVERMAN B., ET AL.: Scratch: Programming for
all. Commun. Acm 52, 11 (2009), 60–67. 2

[SMWH17] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-lite: A grammar of interactive graphics. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (Jan 2017), 341–
350. doi:10.1109/TVCG.2016.2599030. 1

[STH02] STOLTE C., TANG D., HANRAHAN P.: Polaris: a system
for query, analysis, and visualization of multidimensional relational
databases. IEEE Transactions on Visualization and Computer Graph-
ics 8, 1 (Jan 2002), 52–65. doi:10.1109/2945.981851. 1

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

145

https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.2312/conf/EG2013/stars/039-063
https://doi.org/10.2312/conf/EG2013/stars/039-063
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1109/TVCG.2015.2467271
https://doi.org/10.1109/TVCG.2015.2467271
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/2945.981851



