EUROGRAPHICS 2019/ E. Galin and M. Tarini

Teaching Computer Graphics Based on a Commercial Product

Gregory Smith"® and Kelvin Sung

Computing & Software Systems
University of Washington Bothell

Abstract

The challenges in designing an introductory Computer Graphics (CG) course include selecting an appropriate and coherent
set of topics, keeping up-to-date with the rapidly evolving industry, and aligning with the many students’ fascinations that
tend to stem from flashy popular media. This paper analyzes and classifies existing introductory CG classes according to
their approaches in trading-off between covering foundation algorithms and focusing on application-level knowledge. The
paper then observes that many application-level courses challenge students in learning and applying relevant CG concepts
by building familiar graphical applications. Within this context, the paper points out that many modern commercial graphical
applications, including popular game engines and 3D modeling systems, support well-defined and robust run-time scripting
interfaces that allow modification and/or replacement of default system functional modules. These observations suggest the
potentials of delivering an introductory CG class based on one of these commercial graphical systems. This paper proposes a
set of guidelines to ensure such a class will educate CG practitioners rather than commercial product users. Based on these
guidelines and an existing application-based introductory CG course, a new set of learning outcomes is derived which is
independent of any specific commercial product. The paper continues to describe the implementation of a new course using the
Unity3D game engine as the delivery vehicle. This paper then describes the associated teaching materials, details the hands-on
programming assignments, and discusses student learning from the Unity3D-based introductory CG class. The results from two
consecutive batches of students demonstrated that a commercial graphical product-based approach to teaching an introductory
CG class could be effective, welcomed by students, and supply students the concepts to build practical graphical applications

Education Paper

after the class.
CCS Concepts

o Social and professional topics — Computer science education; e Computing methodologies — Computer graphics;

1. Introduction

Designing an introductory Computer Graphics (CG) class can be
challenging: CG is a vast field [BWF17] that is driven by a highly
competitive and rapidly changing industry, and CG is appealing
to many young students because of their experience with popular
software, e.g., Maya [May19] or Unity3D [Unil9], or media, e.g.,
animated movies or video games [CHV*02]. Since undergraduates
in a typical Computer Science (CS) degree program [ACM19] can
only take one elective class in CG, this class should cover essen-
tial concepts to facilitate continuous student self-learning, and, at
the same time, attempt to align with students’ fascination with CG
applications.

Educators continuously identify and evolve the set of essen-
tial concepts in CG [BWF17], and selectively cover these topics
with varying degrees of depth based on the philosophy of their
classes. Some CG classes attract and engage students based on ex-
otic devices [Werl2] or by associating relevant concepts and algo-
rithms with exciting modern application areas, e.g., video games
[SSRRO7], or visualization [Cun07].

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

DOI: 10.2312/eged.20191031

Many of the popular commercial CG software systems in these
areas have been available for more than a decade (e.g., Maya
was first released in 1998, and Unity3D in 2005); and have been
and continue to be under constant and continuous refinement.
These systems are considered mature because they are industry and
customer-tested over a long period; and they allow dynamic behav-
ior modifications and customizations via runtime scripting support.
Due to these qualities, these sophisticated commercial CG soft-
ware systems present an exciting potential for teaching CG con-
cepts/algorithms because they allow students to learn by building
and replacing default functional modules.

At the University of Washington Bothell, we have redesigned our
introductory CG class based on learning and practicing concepts
by implementing and replacing some of the functional modules
of a commercial product. This paper details that design and im-
plementation, presents example teaching materials, and discusses
learning outcomes by examining sample student projects. Surveys
of students from two consecutive offerings indicated that they have
enjoyed learning the many concepts related to and based on the
commercial product, appreciated the modern, sophisticated devel-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0003-1714-3262
https://orcid.org/0000-0002-1202-6086
https://doi.org/10.2312/eged.20191031

64 Gregory Smith & Kelvin Sung / Teaching Computer Graphics Based on a Commercial Product

opment settings, and welcomed the opportunity of hands-on expe-
rience in modifying and replacing functional modules of a familiar
system.

2. Background and Motivation

The classical approach to introductory CG typically iterates
through each of the topics in relative isolation, e.g., [CBBOSS,
HCGW99]. More recent approaches recognize students’ fascina-
tion with CG applications [AB15] and engage them by organiz-
ing and relating the topics to actual familiar applications, e.g.,
[SSRRO7, Hul0]. Based on the general philosophical approaches
to covering CG concepts, most of the introductory CG classes can
be classified broadly into three categories.

Concept-Based. Focusing on the fundamentals, these ap-
proaches typically examine concepts and challenge students to im-
plement without any specific API support, e.g., [Hul0, CXR18].
In this way, students gain hands-on experience in developing low-
level graphics algorithms. However, due to time constraints, these
classes typically trade off application-level knowledge, such as
color models, transformations, or event-driven interactions, with
supplementary readings [Hul0]. Additionally, students from these
classes may lack an overall system-level understanding of CG con-
cepts. For example, a student may know how to trace a ray to com-
pute visibility and yet may not appreciate how grouping behaviors
are based on the transformations they learned [ACSS06].

Graphics API- Based. These classes focus on covering the con-
cepts based on tools adopted by the industry—OpenGL [BWF17],
Vulkan [Vol19],or GLSL for shading computations [Cli15]. These
approaches have demonstrated effective learning outcomes with
many suitable popular textbooks, e.g., [HB03, AS12]. However, a
significant challenge with these types of courses is that, with the
competitive and fast-moving CG industry, the associated tools are
continuously and rapidly evolving where educators must constantly
play catch-up—modifying and updating their teaching materials or
risk being left behind with obsolete tools [Wol12]. Compounding
this problem is the fact that the APIs are designed and evolving
based on specific industrial needs, often driven by stringent per-
formance requirements, which may not align with the educational
goals of introductory classes. For example, the deprecation of fixed
function pipeline from OpenGL was a substantial challenge for
many educators [Woll2]. More significantly, the recent evolution
to Vulkan-API, besides the impact on the many highly effective and
popular OpenGL-based textbooks, reflects the motivation for sup-
porting hardware performance requirements and does not attempt
to reflect the fundamental concepts in CG. While these can serve as
excellent tools for advanced studies, they present significant chal-
lenges for learning the basic concepts in an introductory course.

Application-Based. These classes cover and focus on how the
essential concepts support and implement the end-user functional-
ity of CG applications [ACSS06, AP10]. One particular approach is
to examine CG concepts in the context of and proceed to base the
entire class on the building of a "moderately complex" interactive
graphical application. Such a class analyzes large scale interactive
graphical applications, identifies requirements, derives the compo-
sition modules, relates the modules to CG concepts/algorithms, and

leads students to build the corresponding modules towards the CG
application [SS04,Lew12]. These classes trade-off algorithmic- for
application-level CG knowledge. For example, students from these
classes will be able to design and implement a mesh manipulation
system but may be challenged when attempting to describe how
triangles are scan converted in the GPU.

2.1. Summary and Opportunity

While designed to teach a similar set of concepts, the outcomes
from these classes are significantly different. The concept-based
methodology teaches under the API-hood, the API-based classes
examine the concepts using CG APIs, while the application-based
technique examines and builds end-user functionality based on the
concepts. Educators design and customize among these approaches
to align students’ needs with their own philosophies in learning.

At the University of Washington Bothell, more than 40% of
incoming first-year students are first-generation college students.
Many of these students pursue their degrees with the primary pur-
pose of securing quality employment with the vibrant regional
high-tech industry to improve their lives. Balancing the students’
near-term employability needs is the faculty’s fundamental belief
in educating practitioners rather than users of CG.

Our previous application-based approach to introductory CG
class [SS04,SSRRO07] aligns well with both students’ and faculty’s
needs by challenging students to work with and develop a moder-
ately complex interactive application from scratch. While success-
ful, the approach involved substantial investments in building the
necessary software infrastructure and required students to quickly
comprehend and work with the large and complex source code
base. As a direct result in compromising the investment require-
ment and managing the complexity of the system, this class was
restricted to 2D.

With many modern matured graphical applications supporting
straightforward extension definition and/or run-time behavior mod-
ification via scripting, a potentially useful alternative would be to
replace the custom toy framework with a real commercial prod-
uct. With such an approach, instead of being distracted by a large
custom source code base, students can work with well-defined and
well-documented interfaces. In such a class, more time can be dedi-
cated to focus on CG-related concepts and the new concepts learned
can be practiced and implemented in the context of much more so-
phisticated and complete real-life commercial system.

3. Course Design Guidelines

Our goal is an effective application-based introductory CG class
based on an existing commercial software application. Such a class
can easily degenerate into one that educates users for the com-
mercial product rather than general practitioners of the CG field.
The following guidelines are derived to ensure proper and desir-
able learning outcomes can be achieved.

e Choice of concept coverage: the topic coverage must apply to
any introductory CG classes and must be agnostic to any specific
commercial product(s).

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Gregory Smith & Kelvin Sung / Teaching Computer Graphics Based on a Commercial Product 65

e Implementation of concepts: students must be able to examine
and learn CG concepts and then implement and replace the cor-
responding functional module in the product.

e Programming language and environment: the chosen product
must support proper object orientated abstraction with a modern
programming language in a typical IDE with general debugging
support ensuring students are exposed to contemporary and rel-
evant hands-on development experience.

e Ease of working with the system: the chosen product must allow
students to learn and work with within days with readily acces-
sible functionality that features relevant CG concepts.

Following this guideline, a course would cover common intro-
ductory CG topics, where students will learn and practice imple-
menting the concepts in a typical software development environ-
ment, and a minimum or negligible time will be spent on learning
the commercial software system itself. The ultimate goal is for the
outcome of such a class to be similar to any application-based in-
troductory CG-class.

4. Course Design

Our course is an undergraduate upper-division or graduate
introductory-level CG class with a maximum enrollment of 45 stu-
dents. Our academic terms are 10 weeks with twice-weekly 2-hour
lectures for a total of 40 contact hours.

Concerned with and to avoid training users of a product, a con-
scious decision was made early on that the class must be designed
entirely independent from and before any decisions on the final
chosen commercial product.

We approached this task by modifying the student learning out-
comes of our previous 2D version in the context of supporting 3D
interactive graphical applications. The design guideline is followed
to firmly define the topic coverage and technical requirements of
programming assignments. These results are then used to derive the
requirements of the commercial platform for instruction. The teach-
ing materials and assignment implementations proceeded only after
the above steps are completed.

4.1. Student Learning Outcomes

Rather encouragingly, during the redesigning process, we did not
find the need to modify our original course objectives. Instead, we
were able to replace software development related goals with 3D
and GPU-related topics in a straightforward manner. Updated stu-
dent learning outcomes are listed below.

e [earning Objective 1 (LO1): Describe popular interactive graph-
ical software systems in the context of Model-View-Controller
architecture.

e [earning Objective 2 (LO2): Design and implement 3D interac-
tive graphical applications that support: real-time user manipu-
lation of graphical scenes; multiple camera views; scene graphs
with multiple animate-able components; and custom vertex and
pixel shaders with basic effects including textures and simple il-
lumination.

e [earning Objective 3 (LO3): Discuss the programming model of
contemporary graphics APL.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

4.2. Course Topic Coverage

In following the Choice of concept coverage design guideline (as
specified in Section 3), the only topics removed from the original
class were those related to the software library infrastructure de-
velopment and evolution [SSRRO7]. Those topics were replaced
with polygonal modeling and GPU vertex/fragment programming.
Other 2D topics were generalized into the corresponding 3D ver-
sions, e.g., windows and viewport were replaced by 3D cameras
and the view transformation. The following is the approximated
schedule:

Week 1: Learning Tools and Event Driven Programming

Week 2: MVC Architecture and GUI Programming

Week 3: Vectors, Matrices, and Transforms

Week 4: Coordinate Spaces and Transformations

Week 5: Scene Node, Hierarchy, and Simple Animation

Week 6: 3D Viewing and Interactive Camera Manipulation

Week 7: Mesh and Polygonal Modeling

Week 8: Texture Mapping and Shading

Week 9: Illumination Model and Final Project

Week 10: Shaders and Final Project

The first two weeks are dedicated to the fundamentals of in-
teractive systems: the understanding of event-driven programming
and explaining interactive systems based on the MVC architecture
(LOT1). Weeks 3 to 5 are the essential mathematics and data struc-
tures, while week 6 covers 3D viewing and camera manipulations
(LO2). The second half of the academic term examines model-
ing, rendering, and the corresponding GPU support in these areas
(LO3).

4.3. Programming Assignments

The learning objectives for the course, as expected, are centered on
students’ ability in designing and building interactive graphic ap-
plications. The assessment of these abilities is crucial. Inheriting
the results from and mirroring the topic changes from our previ-
ous class offering, and following the Implementation of concepts
and the Programming language and environment guidelines, the
hands-on programming assignments were specified and used as re-
quirements for identifying the instructional commercial platform.
The following are the high-level assignment specifications.

Warm-up: system and environment familiarization.

GUI programming: re-usable components in MVC-framework.
Mathematics fundamentals: implementation and interaction.

3D application I: camera and scene graph manipulation.

3D application II: 3D modeling editor.

Final 2 or 3 person-group project: propose/design/build a "use-
ful" interactive 3D graphical application.

When compared with those from the 2D version of the course
the only substantive changes are in the two 3D application assign-
ments: working with 3D cameras instead of 2D windows and view-
ports, and, 3D polygonal modeling instead of 2D interactions of
multiple scene hierarchies.

4.4. Choice of Commercial Platform

The assignment specifications, together with the topics listed in
Section 4.2, define the requirements for the instructional commer-

66 Gregory Smith & Kelvin Sung / Teaching Computer Graphics Based on a Commercial Product

cial system. The Implementation of concepts design guideline dic-
tates that the commercial system must support interactive exami-
nation of the functionality listed in Section 4.2, and, at the same
time, allow the implementation of the assignment specifications to
replace the default system functional modules. Very importantly,
with less than a week dedicated to the learning and familiarization,
the commercial system must be easy to learn and straightforward
to use.

Many of the modern 3D graphical applications [Wik19], in-
cluding Unity3D, satisfy the above requirements. Our choice of
Unity3D as the instructional commercial platform is based on the
following additional reasons. First, being a game engine, the appli-
cation domain aligns with many of our students’ interests. Second,
this system is designed for hobbyist and designers who are often not
software developers and thus is relatively straightforward to learn,
satisfying the Ease of working design guideline. Finally, and very
importantly, the system is free for educators and students.

4.5. Discussion

The details of our course design as presented, all except Section 4.4,
are rather unremarkable and is similar to any application-based in-
troductory CG class. That this is so should not be surprising. We
followed our design guidelines and the explicit goal of delivering a
typical introductory CG class. The specific commercial product for
content delivery is but an example of implementation.

5. Course Implementation

Implementing a course design requires an appropriate textbook, in-
structional materials for students to interact with and explore the
topics, and assessment instruments to verify the learning outcomes.

5.1. Reading Materials

A relevant textbook is convenient for students to prepare for class,
review for topics, and refer to when working on assignments. In
general, it can be challenging to find appropriate textbooks for
the application-based approach. An effective textbook must clearly
separate the coverage of concepts into sections that are indepen-
dent of those that apply specifically to the target application. The
effectiveness of this separation governs the outcome of educating
designers and developers rather than users of the application. To
the best of our knowledge, such a book does not exist for teaching
introductory CG concepts based on Unity3D.

In order to accomplish the effective separation of concepts from
Unity3D, we have purposely avoided tutorial-like trade-books. In-
stead, we take the approach of mapping topic coverage to rele-
vant chapters of existing concept-based textbooks: interactive sys-
tems [SSBOS8], vectors and matrices [DP11], general 3D topics
[MS16,AS12], and GPU and shaders [BC11].

A potential pitfall of disjoint book chapter references is the pos-
sibility of inconsistent topic presentations resulting in students un-
able to relate to concepts holistically. Fortunately, from our experi-
ence [SS04], this problem can be avoided with a set of coherent and
interactive content delivery materials, as detailed in the following.

Fie bl fasets

eObject Cormponers iundom _ Helo
&3) L1t [@ Giosal]

A: Plane nnl'mal-.._)

B: The plane __ C: End point

Ay
D: Intersection
position

Figure 1: Example of concept demonstration program (CDP)

5.2. Course Content Delivery

Complementing the abstract explanations found in the different
textbook chapters is a coherent and elaborate set of concept demon-
stration programs (CDPs) and accompanied lecture notes. The lec-
ture notes describe how the CDPs relate to and demonstrate the ab-
stract concepts while explaining the implementation source code.
In this way, students can examine the implementation source code
while interactively exploring the CDPs.

More than 55 CDPs are developed. These CDPs, as well as the
accompanying lecture notes, are organized according to the corre-
sponding topics. The following illustrates these materials by detail-
ing an example from the coverage of vector math topics.

Essential Vector Math. As discussed in Section 4.2, this topic
is covered around the third week of class. By this point, students
are comfortable working with and developing in the environment.
Additionally, they have hands-on experience designing and imple-
menting MVC-based interactive applications. The goals from cov-
ering this topic are for students to understand and be able to im-
plement functionality using vectors in interactive graphics applica-
tions. Essential concepts in vectors are organized into the following
examples: speed and parametric lines, point to line distance, rota-
tion with quaternions, plane equation and normal, point to plane
distance, line to plane intersection, and reflecting a vector.

Figure 1 shows the CDP that accompanies the line to plane inter-
section lecture notes. The grey cylinder (A) through the green plane
(B) represents the plane normal; the two black spheres are the end-
points (C) of the line segment to be intersected, and the red sphere
(D) is the intersection position. With this CDP, students can inter-
actively select and manipulate the position, orientation, and size
on the green plane and the two black spheres and then observe the
computation results in the grey cylinder and red sphere. The accom-
panying lecture notes focus on explaining the 20+ lines of imple-
mentation, relate relevant source code to vector concepts covered,
and encourages students to modify the implementation to observe
the corresponding effects.

Discussions. Our course is primarily an iteration over the CDPs
and the accompanying lecture notes. Each CDP focuses on demon-
strating one concept. This simplicity ensures that students can con-
fidently understand the entire implementation as well as examine

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Gregory Smith & Kelvin Sung / Teaching Computer Graphics Based on a Commercial Product 67

Al: Traveling spheres B1: Barrier plane
",

1 A2: Guide-line
\\ N
A
/’1 N * &
A3: guide line control s -

C1: Cylinder

1
i B2: Projections
Y% on the barrier

eflections off
e barrier A

/ ‘\ C2: Projections on
v<--- & Sihe cylinder
C3: Cylinder

control 5

y

Figure 2: Assignment 3. Credit: Bryan Veneruso.

and extensively interact with all aspects of that implementation.
In this way, although the reading materials are from different refer-
ences, students can experiment with concepts described in the same
familiar environment. The overall system-level contextual under-
standing and the synthesis of the concepts are delivered through
the programming assignments. All CDPs and the accompanying
lecture notes are available to the general public [Sun19].

5.3. Assignment Implementation

For all the assignments and the final project, students are only al-
lowed to work with the simple matrix methods such as translate,
rotate, scale, concatenate, and transform points; and the underly-
ing vector library functions like add, dot, cross, and normalize. The
more advanced composited functions that are Unity3D specific are
off-limits. The following illustrates the types of work involved by
detailing two of the five assignments. All screenshots are based on
student implementations.

Assignment 3: Fun with Vectors. This two-week assignment
is due after the coverage of essential vector math. As illustrated in
Figure 2, students must build an interactive application that sup-
ports users controlling the generation interval and speed of blue
traveling spheres (label-Al in the top-left corner), these spheres
travel along the direction defined by a guide-line (A2) that is under
the user’s control via the two red buttons that are constrained to the
side walls (A3).

In the top-right, the barrier plane (B1) displays the projection
of the blue traveling balls as black shadows (B2) on the plane and
reflects the balls upon contact (B3). The Cl-label in the bottom-
left points to the brown cylinder that displays the projections of the
traveling balls as small white spheres (C2). Similar to the guide-
line, the endpoints of the cylinder can be manipulated by the user
via the two red buttons that are constrained to the back wall and the
front floor (C3). The GUI gadgets in the lower-right are for con-
trolling the traveling balls and manipulating the barrier plane. The
non-trivial user interactions are designed to encourage students to
follow the MVC architecture in their implementation. All mathe-
matics requirements and implementations are covered in CDPs.

Assignment 5: Polygonal Modeling. This is a group (two- or

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

n Control: View Vertices

A: Control vertices Shift: Multiple Select
'S Alt: Adjust Camera
[
1

N \ \ Mesh

M Vertices

N Vertices

Figure 3: Assignment 5 (Part 1). Credit: Aaron Holloway, Nicholas
Lewis, and Kyla NeSmith.

three-person) two-week assignment challenging students with im-
plementing direct object manipulation (instead of via GUI widgets)
and simple polygonal modeling. Students must implement a sim-
ple polygonal mesh modeler that supports texture placements, di-
rect per-vertex user manipulation, and algorithmic modeling such
as rotational sweep.

Figure 3 shows the first part of the assignment. In the middle is a
6x5 polygonal mesh with the black spheres (A) indicating the con-
trol vertex positions and narrow white cylinders (B) showing the
directions of the vertex normal vectors. Label-C shows that when
the user clicks on one of the control vertices, a Direct Manipula-
tor object will appear giving the user the option to drag on one
of the colored cylinders to move the selected control vertex in the
corresponding direction and thus manipulating the polygonal mesh
object.

On the lower-left corner of Figure 3 is a GUI widget that con-
trols the texture placement on the polygonal mesh. In this case, the
simple pattern is tiled 3.26x1.95 times in the u and v directions.
Students must process the GUI values, construct a texture place-
ment matrix, and forward the matrix to their own vertex shader to
transform the texture coordinate defined on each vertex to accom-
plish the placement functionality.

5.4. Discussion

Through the CDPs and the programming assignments, students im-
plement functional modules that could potentially replace those in
the Unity3D system. For example, in Assignment 5 the texture
transform module resembles the default texture placement func-
tionality on Unity3D’s shaders, and the Direct Manipulator object
provides valuable insights into the default object manipulator in the
editor. Although none of these implementations are as complete or
user-friendly as the default ones, the experience allows students to
begin to understand how they too can implement similar modules
if given the time.

The programming assignments are rather extensive and chal-
lenging. However, it is also true that much of the implementation
source code is provided in relevant CDPs. The assignments serve
the important purpose of assessing student understanding and their

68 Gregory Smith & Kelvin Sung / Teaching Computer Graphics Based on a Commercial Product

HES
A
B: Object
camera view manipulator

A: Second

Figure 4: Escape the Room game. Credit: Shaikh Amaan, Matt
Johnson and Henry Nguyen

ability to synthesize coherent solutions based on individual con-
cepts and implementations.

6. Results

The following presents the results of this class from two perspec-
tives: students’ capabilities through final work and their anonymous
feedback at the end of the class.

6.1. Students’ Capabilities

The class final project requires students to reflect upon, propose,
and build a meaningful application based on all topics learned.
Through this process, students must understand the individual con-
cepts learned, synthesize a solution, and apply their knowledge by
building a usable system. In this way, this final application repre-
sents the culmination of students’ understanding and can be ana-
lyzed to verify the learning outcomes.

Video game Final Projects. With the game engine delivery ve-
hicle, it is not surprising that student final projects can be broadly
categorized into games and non-games. Figure 4 shows a typ-
ical video game final project. In this game, the player can se-
lect/manipulate objects to solve puzzles to escape the room. The
technical details of this type of project include multiple objects
based on custom scene node hierarchies, object interaction based
on vector math, multiple camera views under both user and scene
node transform controls, and simple shading and textures.

In this case, since the students are not allowed to use any of the
Unity3D specific functions, this type of project demonstrates that
students are on their way to developing video games independent
from many of the relevant Unity3D functionality. Ironically, the
simple video game projects are often constrained by the technical
requirements resulting in awkward gameplay. For example, in the
middle of Figure 4 is a second camera view (A), and an object
manipulator (B). These items are present to satisfy the technical
requirements and do not facilitate the Escape the Room gameplay.

Figure 5 shows that some of the video game attempts are ex-
ploratory projects and can be exciting and fascinating. This is a
two-person Augmented Reality (AR) game developed based on the

PC Player: Add an Axe

Figure 5: AR Obstacle Course game. Credit: Anjal Doshi and
Nikhil Grandhi

Augmented Space Library [TYC*17] from the Cross Reality Col-
laboration Sandbox Research group [CRC19]. The first player is on
the PC in a scanned environment adding obstacles for the second
AR player in the actual environment to navigate. Figure 5 is com-
posited based on three separate camera views: on the left is the PC
player’s view, notice that the white sphere (A) is the current posi-
tion of the AR player. The top-right is the AR player’s view, and
bottom right is a photograph of the AR player playing the game.
In this case, the PC player has added a swinging axe (B) into the
room and the AR player, through the AR device (a mobile phone),
is observing and must navigate the room while avoiding the axe.

As illustrated by these two projects, the actual technical spec-
ifications of final projects can vary. Straightforward video games
must demonstrate a particular set of functionality, while more ex-
ploratory projects have less prescribed requirements. In the case of
the AR game, due to the many unknown issues that must be re-
solved in the three weeks’ period, the project has no defined tech-
nical requirements. The AR project represents students applying
CG-related concepts in exploring a problem space. These projects
demonstrate the understanding and application of CG knowledge
and concepts beyond the typical artificially defined class assign-
ments.

Non-video game Final Projects. The non-game projects are
typically either some sort of editor or simulator. Figure 6 shows
a keyframe animation editor. In this editor, the user can select and
directly manipulate the transforms of one of the four generations of
the desk lamp, save the transform state and time as a keyframe, and
scroll the timeline. After defining the animation, the user can scrub
the timeline to replay/edit the animation and save and retrieve the
results into and from a file. This project demonstrates the exempli-
fied outcomes of the class. All of the learning outcomes listed in
Section 4.1 can be observed: a functional MVC-based interactive
system that includes hierarchical models, multiple camera views
under user control, and simple, but, custom GPU shaders.

Figure 7 shows an exploratory simulator where the students were
interested in visualizing the propagation of waves in a water tank.
This system allows the manipulation of a three-level crane system
(not visible in the screenshot) to pick up different geometric shapes
and drop the shapes into the water tank. The geometric shapes
would sink to the bottom of the tank and generate waves. Due to the
three-week time limit, the 100x100 mesh wave-display is relatively
elementary. However, wave simulation and water displacement-
level are diligently computed.

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Gregory Smith & Kelvin Sung / Teaching Computer Graphics Based on a Commercial Product 69

Figure 6: Keyframe Animation Editor. Credit: Bryan Castillo and
Timothy Elmer

Discussion. The final projects demonstrated learning outcomes
that straddle a significant range: from the straightforward simple
video games based on a custom defined functionality (Figure 4), to
the exemplified learning outcomes functional keyframe animation
editor (Figure 6), to the exploration based on CG-concepts projects
(Figures 5 and 7). In summary, these projects demonstrated stu-
dents were able to digest the individual concepts and synthesize
solutions in building non-trivial CG applications.

6.2. Student’s Anonymous Feedback

After each of the two offerings, students were encouraged to
participate in an anonymous survey polling for their opinion
on the course (content, organization, instructor contribution) and
their own engagements (involvement, intellectual challenge, hours
spent). The surveys are typical Likert Scale questions with 5 being
the highest. The following are aggregated results from both years.

A total of slightly more than 74% (52 of 70) of the students par-
ticipated in the anonymous online survey. Overall the students gave
the class a satisfactory ranking of 4.6 out of 5 and a challenge and
engagement index (CEI) of 5.8 out of 7. CEI provides an estimate
of how challenging students found the class and how engaged they
were in it [[AS19]. When asked explicitly if they will recommend
this elective class to a friend, the result was a 4.2 out of 5.

In agreement with the numeric feedback, students’ written com-
ments are also overwhelmingly positive in general. For example,
when asked if the class is intellectually stimulating and why, stu-
dent answers are typically along the line with this response: "Yes, it
offered new concepts in Computer Graphics ranging from learning
the Unity game engine, applied vector mathematics, transforma-
tions, shaders, and meshes. Being able to apply these concepts to
the assignments helped tremendously to grasp the concepts.".

Although students did not explicitly comment on the CDPs (they
are unaware of the term), evidence of their appreciation for the ma-
terials can be clearly observed. For example, when asked what as-
pect contributed most to their learning, many responded similarly
to: "The source code of examples used in class was most helpful in
understanding how to apply the concepts taught in class." or "The
different Unity and programming examples given for each of the

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Figure 7: Tank Wave Simulator. Credit: Archit Gupta and Nasser
Alghamdi

topics covered were invaluable to my learning and understanding
of the subject matter.".

The way we deployed Unity3D as a delivery vehicle turns out
to be a double-edged sword. Although there were plenty of posi-
tive comments like: "it was cool to implement what Unity already
provides for us" or, [the factors that contributed most to my learn-
ing are:] "the use of unity, the way to construct projects in MVC".
However, it is also true that almost all negative comments about
the class are around how we approach using Unity3D, including:
"There weren’t any aspects that detracted from my learning. The
initial 1-2 weeks are just struggling with Unity itself." or "Model,
view controller can be hard while initially learning Unity.".

Clearly, more time should be spent covering Unity3D. However,
the dedication of class time may lead to the confusion that the class
is about the commercial system. We plan to remedy this by offering
tutorial sessions outside of class time. In general, students’ numeric
and written feedback convey a consistent message: they are satis-
fied with the course as a whole, they appreciate the technical topic
coverage, they find the teaching materials useful, and they enjoy
learning the concepts in the context of a commercial product.

7. Conclusions

Our game-themed 2D CG class went through exciting evolution
cycles [SSRRO7], [SS04], was welcomed by students, and had led
to rewarding work with students and colleagues [SPH*11]. How-
ever, it is also true that we were frustrated by the constraint of 2D
space. Our attempts at expanding the custom infrastructure to sup-
port moderately complex 3D CG applications proved to be over-
whelming for both the faculty and more importantly the students.

The described course was developed over multiple years before
it was first offered in 2017. We have defined a clear guideline for
designing a commercial product based introductory CG class, fol-
lowed the guideline and designed a product independent course.
Our course materials, both the CDPs and programming assign-
ments, are effective tools and can be ported to any viable commer-
cial product. Students enjoyed the class and appreciated the learn-
ing platform. Most importantly, although the class was delivered

70 Gregory Smith & Kelvin Sung / Teaching Computer Graphics Based on a Commercial Product

based on Unity3D, we have successfully educated practitioners of
CG. We are encouraged and excited by these initial results.

However, we have also learned that there are many aspects of
the course that can be improved. This improvement includes im-
plementation details like the messy and potentially labor-intensive
logistics in enforcing which commercial application specific func-
tions students can use. Other improvements are typical continuous
refinements of courseware materials, e.g., though effective, the lec-
ture notes for the CDPs can be improved with more precise 3D
illustrations. There are also longer-term issues without immediate
solutions. For example, it would be greatly beneficial if there was
a coherent textbook that effectively integrates concepts and imple-
mentations based on the commercial product.

The final and just as important perspective of a class outcome is
from the viewpoint of the faculty. It is encouraging and rewarding
that after the class, many students contacted the faculty and con-
tinued to engage in CG-related exploratory projects. Among these
include results that are presented at international conferences in-
cluding: collaboration in video games [FCS18], locomotion in Vir-
tual Reality [AS18], and multi-view in AR applications [HS18].

Acknowledgements

Thank you to the students from both years for helping with the
refinement process, Yusuf Pisan and Lesley Kalmin for providing
feedback on the initial draft of the paper, and the reviewers, whose
detailed comments significantly improved the quality of this paper.

References

[AB15] ACKERMANN P., BACH T.: Redesign of an Introductory Com-
puter Graphics Course. In EG 2015-Education Paper (2015). 2

[ACM19] ACM: Curriculum Recommendations, Last Access:
3/2019. URL: https://www.acm.org/education/
curricula{-}recommendations. 1

[ACSS06] ANGEL E., CUNNINGHAM S., SHIRLEY P., SUNG K.: Teach-
ing computer graphics without raster-level algorithms. In SIGCSE’06
(2006), pp. 266-267. 2

[AP10] ANDERSON E. F., PETERS C. E.: No More Reinventing the
Virtual Wheel: Middleware for Use in Computer Games and Interactive
Computer Graphics Education. In EG 2010-Education Paper (2010),
Kjelldahl L., Baronoski G., (Eds.). 2

[AS12] ANGEL E., SHREINER D.: [Interactive Computer Graphics - a
Top-Down Approach using OpenGL, 6th ed. Addison Wesley, 2012. 2, 4

[AS18] ALBERTJ., SUNG K.: User-centric classification of virtual real-
ity locomotion. In ACM VRST (2018), pp. 127:1-127:2. 8

[BC11] BAILEY M., CUNNINGHAM S.: Graphics Shaders: Theory and
Practice, 2nd edition ed. A.K. Peters, 2011. 4

[BWF17] BALREIRA D. G., WALTER M., FELLNER D. W.: What
we are teaching in Introduction to Computer Graphics. In EG 2017-
Education Paper (2017). 1,2

[CBBO88] CUNNINGHAM S., BROWN J. R., BURTON R. P., OHLSON
M.: Varieties of computer graphics courses in computer science. In
SIGCSE’88 (1988), pp. 313-313. 2

[CHV*02] CARROLL J., HOWARD S., VETERE F., PECK J., MURPHY
J.: Just What Do the Youth of Today Want? Technology Appropriation
by Young People. In HICSS’ 02 (2002), pp. 1777-1785. 1

[Clil15] CLIBURN D. C.: Teaching Shader Programming Through Team-
based Learning in a Computer Graphics Course. J. Comput. Sci. Coll.
31,2 (2015), 11-17. 2

[CRC19] CRCS: The Cross Reality Collaboration Sandbox Group,
Last Access: 3/2019. URL: http://depts.washington.edu/
csscts/CRCS/. 6

[Cun07] CUNNINGHAM S.: Computer Graphics: Programming in
OpenGL for Visual Communication. Prentice Hall, 2007. 1

[CXR18] CHEN M., XU Z., RIPPIN W.: On the Pedagogy of Teaching
Introductory Computer Graphics without Rendering APIs. In EG 2018-
Education Paper (2018). 2

[DP11] DUNN F., PARBERRY 1.: 3D Math Primer for Graphics and
Game Development, second edition ed. CRC Press, 2011. 4

[FCS18] FIEBELKORN N., CLARK B., SUNG K.: Would Gamers Col-
laborate Given the Opportunity? In FDG’18 (2018), pp. 47:1-47:4. 8

[HBO3] HEARN D., BAKER P.: Computer Graphics with OpenGL,
third ed. Prentice-Hall, 2003. 2

[HCGW99] HITCHNER L., CUNNINGHAM S., GRISSOM S., WOLFE
R.: Computer graphics: the introductory course grows up. In SIGCSE’99
(1999), pp. 341-342. 2

[HS18] HITCHCOCK A., SUNG K.: Multi-view augmented reality with
a drone. In ACM VRST (2018), pp. 108:1-108:2. 8

[Hul0] Hu H. H.: Teaching Introductory Computer Graphics via Ray
Tracing. J. Comput. Sci. Coll. 26, 2 (2010), 30-38. 2

[IAS19] TASYSTEM: Interpreting Reports, Last Access: 3/2019. URL:
http://iasystem.org/wp-content/uploads/2015/05/
IASystem—Interpreting-Reports.pdf. 7

[Lew12] LEwis R. R.: Coaster: Teaching Computer Graphics with a
Comprehensive Project AAS Work in Progress. J. Comput. Sci. Coll. 28,
1(2012), 192-199. 2

[Mayl9] MAYA: Maya Animation System, Last Access: 3/2019. URL:
https://www.autodesk.com/products/maya. 1

[MS16] MARSCHNER S., SHIRLEY P.: Fundamentals of Computer
Graphics, 4th edition ed. CRC Press, 2016. 4

[SPH*11] SUNG K., PANITZ M., HILLYARD C., ANGOTTI R., GOLD-
STEIN D., NORDLINGER J.: Game-Themed Programming Assignment
Modules: A Pathway for Gradual Integration of Gaming Context into
Existing Introductory Programming Courses. IEEE Transactions on Ed-
ucation 54,3 (2011), 416 —427. 7

[SS04] SUNG K., SHIRLEY P.: A Top-Down Approach to Teaching In-
troductory Computer Graphics. Computer & Graphics 28, 3 (2004),
383-391. 2,4,7

[SSBO8] SUNG K., SHIRLEY P., BAER S.: Essentials of Interactive
Computer Graphics. A.K. Peters, 2008. 4

[SSRRO7] SUNG K., SHIRLEY P., REED-ROSENBERG R.: Experienc-
ing aspects of games programming in an introductory computer graphics
class. In SIGCSE ’07 (2007), pp. 249-253. 1,2,3,7

[Sun19] SUNG K.: 3D Computer Graphics, Last Access: 3/2019. URL:
http://courses.washington.edu/css451. 5

[TYC*17] TANAYA M., YANG K., CHRISTENSEN T., L1 S., O’ KEEFE
M., FRIDLEY J., SUNG K.: A Framework for analyzing AR/VR Col-
laborations. In CIVEMSA’17) (June 2017), pp. 111-116. 6

[Unil9] UNITY3D: Unity: Game Development Tool, Last Access:
3/2019. URL: http://unity3d.com/. 1

[Vol19] VOLKAN: Volkan api, Last Access: 3/2019. URL: https://
www.khronos.org/vulkan. 2

[Werl2] WERNER M.: Graphics Programming on Android. J. Comput.
Sci. Coll. 27, 6 (2012), 76-77. 1

[Wik19] WIKIPEDIA CONTRIBUTORS: List of 3d computer graphics
software — Wikipedia, the free encyclopedia, 2019. [Online; accessed
7-March-2019]. URL: https://en.wikipedia.org/?title=
List_of_3D_computer_graphics_software. 4

[Wol12] WOLFF D.: How Do We Teach Graphics with OpenGL? J.
Comput. Sci. Coll. 28,1 (2012), 185-191. 2

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

https://www.acm.org/education/curricula{-}recommendations
https://www.acm.org/education/curricula{-}recommendations
http://depts.washington.edu/csscts/CRCS/
http://depts.washington.edu/csscts/CRCS/
http://iasystem.org/wp-content/uploads/2015/05/IASystem-Interpreting-Reports.pdf
http://iasystem.org/wp-content/uploads/2015/05/IASystem-Interpreting-Reports.pdf
https://www.autodesk.com/products/maya
http://courses.washington.edu/css451
http://unity3d.com/
https://www.khronos.org/vulkan
https://www.khronos.org/vulkan
https://en.wikipedia.org/?title=List_of_3D_computer_graphics_software
https://en.wikipedia.org/?title=List_of_3D_computer_graphics_software

