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Abstract
In this paper, we present Rayground; an online, interactive education tool for richer in-class teaching and gradual self-study,
which provides a convenient introduction into practical ray tracing through a standard shader-based programming interface.
Setting up a basic ray tracing framework via modern graphics APIs, such as DirectX 12 and Vulkan, results in complex and
verbose code that can be intimidating even for very competent students. On the other hand, Rayground aims to demystify ray
tracing fundamentals, by providing a well-defined WebGL-based programmable graphics pipeline of configurable distinct ray
tracing stages coupled with a simple scene description format. An extensive discussion is further offered describing how both
undergraduate and postgraduate computer graphics theoretical lectures and laboratory sessions can be enhanced by our work,
to achieve a broad understanding of the underlying concepts. Rayground is open, cross-platform, and available to everyone.

CCS Concepts
• Social and professional topics → Computer science education; • Computing methodologies → Ray tracing; • Software
and its engineering → Software prototyping;

1. Introduction

While ray tracing is one of the most common teaching subjects for
both introductory and advanced computer graphics courses from
around the world [BWF17], specialised educational tools to im-
prove the learning curve on this topic in a way that attracts and
engages students are still missing. Typical undergraduate graphics
syllabi, build the structure of the courses around the rasterization
pipeline and in the best case, devote a limited number of lectures
to explain the basic paradigm of ray tracing, usually as the last part
of the course. However, in recent years, ray tracing has gained sig-
nificant momentum as a compelling alternative for achieving both
the desired level of photorealism in production and interactive ren-
dering and as the means to study shading algorithms [KVBB∗19].
The advent of mass-produced, consumer grade hardware with ray
tracing acceleration capabilities has significantly boosted the inter-
est of the graphics community and has led to the introduction of
related methods to interactive applications, thus demonstrating its
wide applicability to students. Unfortunately, this turn of interest
to ray-tracing-based techniques is not sufficiently backed by proper
educational tools to assist students in becoming familiar with the
basic concepts and help them become practically engaged in build-
ing their own projects. Moreover, modern low-level graphics APIs,
either dedicated to ray tracing like NVIDIA OptiX [PBD∗10] or
supporting it, such as Microsoft DirectX 12 [WM19] and Khronos
Group Vulkan [Sub18], pose high entry barriers to students and re-
quire a very daunting and long learning process, riddled with many
distracting technicalities.

The World Wide Web is undoubtedly the medium with the
biggest global outreach. The sandboxed environment in modern
Web browsers offers one of the best platforms for the deploy-
ment of educational tools. Web-based applications like Jupyter
Notebook [KRKP∗16] have revolutionised interactive data science
and scientific computing across many programming languages by
giving the ability to edit, execute and preview code from the
browser. Following this trend, computer graphics and visualisa-
tion have greatly benefited from similar solutions [MKRE16]. Cur-
rently, hardware accelerated computer graphics on the Web are
only possible through the WebGL W3C standards. Aside from the
fact that these are fairly low level APIs, there is no functional-
ity exposed that accommodates ray tracing solutions. Web-based
API solutions like the BabylonJS [CRLR14] and Three.js [Cab10]
frameworks are very well designed libraries that make graphics
programming easier by taking care of low-level details. However,
these frameworks focus on game/application development making
them too abstract to facilitate learning about the underlying prin-
ciples of computer graphics. Last but not least, ShaderToy [JQ14]
is a well-known and highly successful online tool for creating and
sharing fragment shaders through WebGL, used both for learning
and teaching 3D computer graphics. However, these solutions have
been explicitly designed for rasterization-based development leav-
ing no room for ray tracing experimental prototyping.

We introduce Rayground, an interactive education tool for richer
in-class teaching and gradual self-study that provides a convenient
introduction into ray tracing programming. Rayground abstracts
the functionality of the underlying ray tracing stages to an extent
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that still preserves the main concepts taught in a computer graphics
course as well as eases the development of advanced visual effects
in student projects. This work aims to demystify ray tracing funda-
mentals while relying on the established GLSL shading language
for code development and the underlying WebGL pipeline for its
hidden execution model. It is intended for students who are al-
ready familiar with the basics of computer graphics theory (geome-
try representation, transformations, basic shading, etc.) and shader-
based programming. It has not been designed and developed to be
a complete replacement of teaching computer graphics with mod-
ern shader-based programming, e.g. OpenGL/WebGL [Ang17], but
rather as a complementary educational resource that harmoniously
enriches the teaching environment. Rayground does not rely on any
browser plugins and thus runs on any platform that has a modern
standards compliant browser.

2. Related Work

Teaching computer graphics can be challenging due their depen-
dence on a wide range of theoretical knowledge and practical skills,
such as mathematics, physics and programming. As such, vari-
ous approaches to teaching introductory computer graphics have
been documented in the literature over the years in order to trans-
form teaching from a passive knowledge transmission to a more
active and engaging process. For example, in-class interactive il-
lustrations [SÅAM17] and rapid exercises [WD15] could result in a
more effective understanding of the course material and the under-
lying mathematics. While the theoretical goals of the main course
in computer graphics remain largely unchanged, graphics software
technology has significantly evolved to support the tremendous ad-
vances in hardware [Ang17].

In today’s typical computer graphics syllabi, most subjects are
presented through the rasterization pipeline [RME14], which is
both approximate by nature and limited due to its strictly isolated
local computations, making topics like visibility determination for
light sources and environment sampling more complex to intro-
duce. Ideally, shifting the practical example implementation to ray
tracing would facilitate better presentation of topics such as para-
metric, procedural and analytic geometry visualisation, including
constructive solid geometry operations and volume graphics. Al-
though ray tracing is one of the most common teaching subjects for
both introductory and advanced computer graphics courses from
around the world [BWF17], Ray tracing in one weekend book se-
ries [Shi19] is the only valuable resource available to help novice
students start coding the very basics. On the other hand, a myr-
iad of education solutions have been developed by the academia
for teaching the traditional rasterization pipeline paradigm, using
shader-based programming.

Learning computer graphics techniques through plugin devel-
opment has multiple advantages: it allows for very focused, self-
contained, independent exercises, it enforces modularity and fa-
cilitates code reusability. Fink et al. [FWW12] presented a syl-
labus for an introductory computer graphics course using Java
that emphasises the use of programmable shaders, while teach-
ing rasterisation-related algorithms. Shaders are implemented as
classes and interact with the software rasteriser pipeline through
polymorphism, in order to help novice students adopt the mod-

ern approach of shader-based programming patterns. Reina et
al. [RME14] designed a GPU-accelerated educational framework
that enables students to write code targeting modern OpenGL,
exclusively. Each assignment is developed as a plug-in for this
framework. In a similar fashion, Andujar et al. developed GL-
socket [ACFV18], a flexible plugin-based C++ framework that of-
fers four types of modules depending on their main purpose and
the subset of methods they override including Effect, Draw, Render
and Action.

A project-based learning direction can provide a constructive and
motivational learning platform for computer graphics [Rom13]. Pa-
pagiannakis et al. [PPGT14] introduced glGA, a simple, thin-layer,
open-source framework that curbs the computer graphics complex-
ity by easily allowing students to grasp the basics through four sim-
ple examples and six sample assignments. Driven by this trend,
the FUSEE [MG14] and bRenderer [BSP17] educational render-
ing frameworks hide non-graphics-related functionality to an extent
that still allows students to easily grasp the concepts and techniques
being taught.

Several computer graphics courses have moved to a Web-based
educational programming environment in order to keep students
with very different backgrounds engaged [FP13], by shifting the
focus from low-level OpenGL API to object-oriented 3D graphics
frameworks [AB15, RT19]. From a teaching perspective, WebGL
offers a number of attractive features [Ang17] including among
others, multi-platform support, easy integration with other Web
APIs and strong student familiarity with Web technology.

Following ShaderToy’s design [JQ14], Toisoul et al. [TRK17]
introduced ShaderLabFramework, an integrated desktop develop-
ment environment for a fast, programmable shading pipeline on a
comprehensive lab exercise for undergraduate students. While two
GPU ray tracing tasks were included in their course, they can only
handle simple procedural objects that are easy to describe inside a
fragment shader.

3. The Online Platform

Rayground is an online integrated development environment (IDE)
for interactive demonstration and/or prototyping of ray tracing al-
gorithms. Rayground, hosted at https://rayground.com, is free for
everyone, on any platform that has a WebGL2-compliant browser
(no special plugins are required). In general, the user has the ability
to create any number of new projects from scratch or copy an exist-
ing one from a variety of ray tracing projects made available from
other users. Since Rayground IDE is web-based and online, users
can work on it from anywhere, anytime.

The graphical user interface of Rayground is designed to have
two discrete parts, the preview window and the shader editor
(Fig. 1), similar to the layout of ShaderToy [JQ14], which many
shader developers are already familiar with. Visual feedback is in-
teractively provided in the WebGL rendering context of the preview
canvas, while the user performs live source code modifications.

Rayground follows a programmable GPU-accelerated ray-
tracing pipeline (Sec. 3.1) in order to give developers direct and
flexible control of five ray tracing stages through a simple, high-
level shader-based programming model (Sec. 3.2). Thus, the shader
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Figure 1: Left: The Rayground interface, with the preview window and the shader editor, showing the Generate stage. Middle and Right: Hit
and Miss event shaders for the same project, where the Cornell Box scene is rendered using a simple path tracer described in Sec. 3.3.

editor consists of five tabs, corresponding to five customisable
shader stages. A detailed documentation of the Rayground’s pro-
gramming interface is available on-site, while a summary of the
basic functions and variables exposed by the Rayground API are
accessible via the editor (see ‘?’ tab in Fig. 1). The documentation,
coupled with the many demo and tutorial projects, eases the way of
newcomers and promotes self-study.

3.1. Ray Tracing Pipeline

At the core of Rayground there is a traditional ray tracing image
synthesis pipeline, with several programmable stages via event han-
dling shaders. It was designed with the aim to help users gradually
understand how a ray tracer works, without getting distracted by the
particular implementation of the framework or platform-specific
characteristics. Since ray tracing is now tightly integrated into mod-
ern real-time rendering APIs [PBD∗10,Sub18,WM19], we follow a
similar programming model. Rayground’s pipeline has five distinct
configurable stages, namely Scene, Generate, Hit, Miss and Post
Process, which are explained below, focusing on function rather
than implementation.

The geometric objects of the scene are initially specified in the
input Scene declaration stage. These objects are used to build ray
intersection acceleration data structures, which in our case, are not
programmable. Primary rays, which, in the simplest case corre-
spond to a virtual camera, are generated and submitted for intersec-
tion in the Generate stage. Depending on the intersection results,
execution switches to the closest Hit or Miss stage. Both events can
generate a new ray which, in turn, may be intersected with the scene
to trigger new events.

Users are provided with several built-in and user-controlled
properties that ease the data transmission between events (Sec. 3.2).
For each iteration of the pipeline, or frame, a pixel colour is com-
puted and blended with the previous values stored in an Accumula-
tion Buffer. All code segments execute in parallel for each pixel of
the Canvas, i.e. the preview window and, in every frame, the exe-
cuted code directly corresponds to the one iteration event, i.e. one
ray path. The intermediate image is finally filtered through a Post
Process stage, a common step prior to image presentation, handy
for tone mapping and filtering operations. A graphical illustration
of the pipeline is shown in Figure 2.

3.2. Application Programming Interface (API)

Thr Rayground API is implemented using the WebGL2 standard,
supporting shader programming via GLSL, thus providing a con-
venient and familiar code development interface. The user is en-
couraged to use built-in GLSL functions (e.g. dot, cross) and types
(e.g. vec4, mat4). However, any use of the standard input and
output variables of the GLSL programmable pipeline stages (e.g.
gl_FragCoord) as well as samplers (e.g. sampler2D) may result in
undefined behaviour and should be avoided. While certain func-
tionality is common to all stages, there are also stage-specific input
and output variables, which are described below in more detail. The
basic functionality of Rayground API is listed in Table 1.

A ray is defined with an origin point and a direction by setting
the rg_RayOrigin and rg_RayDirection variables respectively. The
ray is marked as active when RG_ACTIVE_RAY_FLAG is set at
the fourth coordinate of the rg_RayOrigin vector. Note that the
recursive ray shooting of each pixel can be terminated either by
exceeding the maximum ray path (defined at the previous stage)
or by submitting an inactive ray in any of Generate, Hit or Miss
stages. The term ray depth, accessible by rg_Depth, is used to in-
dicate the number of rays that have been shot recursively along a
ray path. A maximum intersection distance is also required and is
set using the fourth component of rg_RayDirection. The constant
value RG_RAY_MAX_DISTANCE can be used instead, in order to
use an unbounded ray. Subsequent stages depend on those output
values and the user must be careful to initialise them for all pix-
els and all paths. Neglecting to do so, can result in undefined be-
haviour. The user can optionally add a payload to the ray via the
rg_Payload0 variable. This is a data structure that is used for re-
laying data between different stages. Last, rg_Accumulation car-
ries the final colour of the ray, where the alpha channel holds the
blending factor. Upon ray termination or after the maximum ray re-
cursion is reached, the final ray colour is combined with the results
from the previous frames in rg_AccumulatedImage, using additive
blending. By manipulating the blending factor on the alpha channel
of the ray colour, different results can be achieved such as simple
value replacement or averaging of the values over all frames.

Scene stage. Specifying the geometry of a scene is one of the most
basic tasks related to 3D visualisation. Rayground uses a simple
custom JSON format, which is easy to manage and extend. A valid
scene description contains settings and objects entities. The set-
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Figure 2: High level overview of the Rayground pipeline. Shaded polygons correspond to programmable stages. Rays are submitted as waves
and intersection results are provided to the next stages through appropriate API calls.

tings object is used to configure pipeline options. In particular, the
mandatory depth property sets the ray-tracing maximum recursion
level. The objects entity specifies the scene’s geometry. Most of
the properties for each object are straightforward. The type field
indicates the geometric type of the object. Several fundamental ge-
ometric types are supported including quad, cube, sphere, and tri-
angle meshes. The translate, rotate and scale properties are used
to position and orient an object in 3D space using a translation-
rotation-scale transformation matrix. If a model matrix is present,
it is used instead. In the special case of (analytical) spheres, trans-
late is used to position the sphere in world coordinates and radius to
change its scaling. Material properties for each object are supplied
using material_property entries per object. Rayground supports up
to eight generic material properties of float[4] storage type. These
values can be used for various purposes from defining BRDF val-
ues to distinguishing between different material types. Their values
are available to the user, when a ray-object intersection occurs.

Generate stage. This stage is responsible for the generation of pri-
mary rays, typically from a virtual camera and is the entry point
for every project. Rays are spawned in parallel for each pixel of the
image using a custom ray generation function called rg_generate().

Hit stage. This stage is triggered when a ray hits a geomet-
ric object. Here, the closest hit point along the cast ray is pro-
vided in rg_Hitpoint and several of the geometric properties at
the intersection point are accessible through special API calls (e.g.
rg_Normal). Payload value of the ray is also available and the
user can shoot a new ray in the scene using a custom ray-object
function called rg_hit(). Local shading commonly takes place in
this stage using the material properties of the intersected object,
rg_MaterialPropertyI(rg_MaterialID), I = [0,7], as defined in the
Scene stage. Note that a new ray can be spawned similar to the
Generate stage, while access to the previous ray values are also
provided using the rg_Prev... prefix. Last but not least, visibil-
ity queries between any two points can be performed using the
rg_TraceOcclusion() function.

Miss stage. A ray that does not hit any geometric object triggers a
custom ray miss function named ray_miss(). Although it does not
have access to any information regarding geometric properties, it is
allowed to generate new rays. This is useful for simulating light
propagation in participating media or for interacting with other
forms of procedurally modelled geometry. Most of the time, this
stage is used for calculating the background colour.

Post Process stage. Modifying the image after rendering is as im-
portant in ray tracing as in every other image synthesis pipeline.
Users may apply a number of full-screen filters and effects to
the accumulated off-screen buffer, named rg_AccumulatedImage,
before the image appears on screen. The rg_PixelColor variable,
when defined in the rg_post_process() function, updates the final
colour that is presented in the canvas.

3.3. Basic Example

We provide here a basic example, in order to present the pipeline
and demonstrate Rayground’s API mechanisms. It implements
a simple unidirectional path tracer for diffuse surfaces in only
a few lines of code. For clarity, the code of certain functions,

Table 1: Summary of basic Rayground API functionality.

Type Name Description
All stages
vec2 rg_Canvas canvas resolution in pixels
vec2 rg_Pixel pixel coordinates
int rg_Frame frame counter
Generate/Hit/Miss stages
vec4 rg_[Prev]Accumulation ray (prev) accumulation color
vec4 rg_[Prev]Payload0 ray (prev) payload
vec4 rg_[Prev]RayDirection ray (prev) direction
vec4 rg_[Prev]RayOrigin ray (prev) origin
int rg_Depth ray depth
bool rg_TraceOcclusion(...) ray occlusion query
Generate stage
void rg_generate() entry point signature
Hit stage
void rg_hit() entry point signature
vec3 rg_Hitpoint hit in world space coordinates
vec3 rg_Normal primitive’s geometric normal
int rg_MaterialID primitive’s material ID
vec4 rg_MaterialPropertyI(...) material properties, I = [0,7]
Miss stage
void rg_miss() entry point signature
Post Process stage
void rg_post_process() entry point signature
vec4 rg_PixelColor final pixel colour
rg_Image2D rg_AccumulatedImage 2D accumulation image handle
vec4 rg_ImageFetch2D(...) retrieve texels from 2D image
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commonly encountered in a typical path tracer, has been omit-
ted (highlighted in light blue in the code listings below). Fig-
ure 1 illustrates how the Cornell Box scene is illuminated using
this code after 500 samples per pixel. For more details, the inter-
ested reader can find the complete working example in the URL:
https://rayground.com/view/dExaQa67tqI.

In the Scene stage, the Cornell Box scene is trivially represented
using five quads and two cubes for the diffuse geometry. The ma-
terial properties are configured accordingly to set the colour for
diffuse surfaces. The maximum iteration depth of the scene is set
to five since additional bounces will add negligible radiance con-
tribution. Due to paper length limits, we omit the corresponding
JSON code. After the scene description, the Generate stage is used
to implement a simple pinhole perspective camera. The rg_Pixel
and rg_Canvas attributes are used to calculate a ray going through
the centre of each pixel for a perspective camera with a 45◦ field of
view. The generated rays are then submitted for intersection after
preparing their rg_RayOrigin and rg_RayDirection variables. Ad-
ditionally, the rg_Accumulation and rg_Payload0 values are also
initialised for each generated ray at this step. In a following fixed
stage, the intersection of the primary rays with the scene entities
is performed by the core ray tracing engine and the corresponding
events for each event (hit or miss) are subsequently triggered.
void rg_generate() {

/* Set Camera Parameters */
vec3 eye = vec3(0.0, 0.5, 3.0);
vec3 target = vec3(0.0, 0.5, 0.0);
float fov = 45.0;
bool jitter = true;

/* Generate a Ray based on a Pinhole Perspective Camera */
vec3 dir = get_camera_ray_dir(eye, target, fov, jitter,

rg_Pixel, rg_Canvas);

/* Submit Primary Ray */
rg_RayOrigin = vec4(eye, RG_RAY_ACTIVE_FLAG);
rg_RayDirection = vec4(dir, RG_RAY_MAX_DISTANCE);

/* Initialize Accumulation and Payload */
rg_Accumulation = vec4(0.0, 0.0, 0.0, 1.0/float(rg_Frame));
rg_Payload0 = vec4(1.0);

}

The Hit stage, called upon valid ray-object intersections, demon-
strates the radiance accumulation process for the diffuse Monte
Carlo path tracer using next event estimation; the direct illumina-
tion of each ray path is estimated by testing the intersected point for
visibility with a punctual light source, using a shadow ray, and ac-
counting for its contribution to the incident radiance. The important
steps at this stage are the computation of the incoming illumination
at the intersected point, the generation of a new ray and the storage
of the light throughput at the current ray path. These computations
can be trivially accomplished using the provided Rayground vari-
ables. For example, information about the intersected point can be
obtained using rg_Hitpoint, rg_Normal and rg_MaterialProperty.
To check for visibility, the rg_TraceOcclusion() casts a shadow
ray between the intersection point and the light source posi-
tion. Two final operations are necessary to complete the shader.
First, new rays are submitted for intersection by writing the ap-
propriate values to rg_RayOrigin and rg_RayDirection and mak-
ing sure the RG_ACTIVE_FLAG is set in the fourth coordinate
of rg_RayOrigin. Second, the rg_Accumulation and rg_Payload0
variables are updated to store the gathered radiance and the accu-
mulated light throughput, recursively.

void rg_hit() {
/* Set Light Parameters */
vec3 light_pos = vec3(0,0.999,0);
vec3 light_intensity = vec3(1.5);

/* Connect Hit Point to Light Source */
float offset = 0.001;
vec3 dir_to_light = normalize(light_pos - rg_Hitpoint);
float dist = distance (light_pos, rg_Hitpoint);
vec3 shadow_ray = rg_Hitpoint + offset*dir_to_light;

/* Send Shadow Ray */
float dist_bias = dist - offset*2.0;
float visibility = rg_TraceOcclusion(shadow_ray, dir_to_light,

dist_bias) ? 0.0 : 1.0;

/* Get the NdotL Factor */
float NdotL = get_ndotl(rg_Normal, dir_to_light);

/* Get the Material Value */
vec3 diffuse_mat = rg_MaterialProperty0(rg_MaterialID).rgb;
vec3 bsdf = get_diffuse_bsdf(diffuse_mat);

/* Compute the New Colour Value */
vec3 Li = light_intensity*visibility;

Li /= (dist*dist+0.001);
vec3 radiance = Li*bsdf*NdotL;

/* Create the New Ray */
vec3 pos = rg_Hitpoint + offset*rg_Normal;
vec3 dir = get_new_ray_direction();
rg_RayOrigin = vec4(pos, RG_RAY_ACTIVE_FLAG);
rg_RayDirection = vec4(dir, RG_RAY_MAX_DISTANCE);

/* Update Colour and Throughput Values */
rg_Accumulation = rg_PrevAccumulation;
rg_Accumulation.rgb += rg_PrevPayload0.rgb*radiance.rgb;

float pdf = get_pdf(rg_Normal, dir);
float NdotI = max(0.0, dot(rg_Normal, dir));
vec3 throughput = bsdf*NdotI/pdf;
rg_Payload0 = rg_PrevPayload0;
rg_Payload0.rgb *= throughput.rgb;

}

The Miss stage is called when an intersection with the scene
is not found. In this example, the shader simply terminates
the ray shooting and sets the incoming colour value to the
rg_Accumulation buffer.

void rg_miss() {
/* Terminate Ray Shooting */
rg_RayOrigin = vec4(0.0, 0.0, 0.0, RG_RAY_INACTIVE_FLAG);
rg_RayDirection = vec4(0.0);

/* Set Accumulation Colour and Blending Factor */
rg_Accumulation = rg_PrevAccumulation;

}

Finally, the Post Process stage applies a basic gamma correc-
tion filter to each cell of the accumulated buffer and assigns the
resulting values to the corresponding output canvas pixel through
rg_PixelColor.

void rg_post_process() {
/* Get Accumulation Buffer */
vec4 image = rg_ImageFetch2D(rg_AccumulatedImage,

ivec2(rg_Pixel));
/* Perform Gamma Correction */
rg_PixelColor = gamma_correction(image, 2.2));

}

4. Teaching with Rayground

For us, the need to implement a platform that would enable the de-
velopment of ray tracing-based algorithms arose primarily in the
context of the graduate courses in advanced computer graphics,
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where the majority of the lectures addressed photorealistic render-
ing. Developing a decent code base for the student projects with
an API that could be quickly picked up was really a problem; stu-
dents typically come from slightly different undergraduate studies
and one could not expect the same level of competence in a pro-
gramming language like C++, let alone delve into the details of the
currently available ray tracing APIs. We have tried to abstract ray
traversal details by introducing a high-level hybrid CPU/GPU API
in C++ and used it for a single semester to let students develop
a photon mapping method. It turned out that, although most stu-
dents had no difficulty mapping the required concepts to the event
handles offered by the API, they invariably experienced difficulties
with the general application development and debugging.

Rayground solved this problem very effectively, by eliminating
the need for the students to familiarise themselves with a) the de-
tails of application development for their projects and b) another
elaborate, platform-specific ray tracing API. Furthermore, it solved
common issues of development inconsistencies between lab equip-
ment and student development machines and software. It ensured
that a steady, commonly available and highly accessible develop-
ment platform was provided to the students. The use of a sim-
ple, event-driven coding paradigm with a GLSL API, levelled the
ground for most students, who typically become familiar in shader
development either through OpenGL- or, more recently, Vulkan-
based lab coursework.

4.1. Undergraduate Syllabus Restructuring

Ray tracing is an important topic in computer graphics but, due to
its complexity and lack of tools to demonstrate its functionality,
it is usually discussed briefly during the last couple of lectures in
an undergraduate computer graphics course. As ray tracing-based
production rendering algorithms and real-time illumination tech-
niques gradually establish themselves as a viable and more accu-
rate replacement for approximate methods, in our lectures we have
elevated the importance of ray tracing. Specifically, we have in-
troduced the notion of pipeline abstraction for most of the topics
related to rendering and have dedicated more class hours to teach-
ing the basics of ray tracing, simplified data acceleration structures
and a comparative study of ray tracing and rasterisation.

We divided the rendering pipeline into four generic stages: a)
geometry setup, b) sampling/token generation, c) shading and d)
compositing, with a specific note on the re-entrant nature of any
of these stages. This allowed us to independently map rasterisation
or ray tracing and clearly separate common topics from the spe-
cific pipeline, such as material properties, local shading, geometry
representation, texturing, image-domain sampling and antialiasing.
Rayground assisted in this abstraction process by offering an ac-
cessible alternative platform for in-class algorithms and principles
demonstration (see below), while providing a simpler solution for
the practical and accurate experimentation with certain concepts,
such as visibility testing and material properties. Conversely, top-
ics like texture anti-aliasing filtering are best explained through the
rasterisation pipeline (here, the mip-mapping mechanism). Having
a choice of paradigm, helps the students focus on the problem and
gain access to easy to grasp solutions.

4.2. In-class Lectures

Rayground can be used to interactively demonstrate the concepts
of ray tracing during lectures, to enrich and complement the the-
ory presented in static slides. Allowing students to actively exper-
iment using their laptops in class further transformed the learning
process into a more active and engaging one. As reported by the
students themselves, the learning experience was highly enhanced
since most of them successfully correlated the presented concepts
with their practical implementation and results. In an immersive
fashion, students clarified with ease the recursive nature of ray
tracing and how rays are generated and scattered though the vir-
tual environment. Furthermore, complex mathematical models for
physically-based lighting were effectively explained by previewing
the effect when dynamically interacting with a specific parameter
(e.g. roughness, index of refraction) inside a programmable stage.

4.3. Lab Coursework

As is very frequently the case, our computer graphics lectures are
supported by a series of practical exercises in a lab, where students
are able to apply the theory and experiment using simple frame-
works. The contents of the lab sessions are aligned with the corre-
sponding week’s lectures. Sessions start with an introduction to the
topics that will be discussed, followed by an exercise that is per-
formed during the rest of the course. The lab assistant is present
during the exercise, guiding each student when necessary and pre-
senting an indicative solution, at the end.

Undergraduate lab sessions. In our undergraduate course, we sup-
plement the theoretical lectures with eight weekly two-hour lab ses-
sions. The first five lab sessions focus on the rasterisation pipeline
and cover topics such as transformations, illumination and shad-
ing, textures and render to textures. We exploit a modern C++
framework with OpenGL 3.3, similar to GL-Socket [ACFV18], that
utilises live shader reloading to let students experiment faster with
shader programming and graphics prototyping. The next two lab
sessions utilise Rayground to efficiently explain the basic concepts
of ray tracing. The final lab slot is reserved for assignment-related
topics, such as 3D model loading and resource indexing.

In the first ray tracing lab session, students get familiar with the
online framework. We start by explaining the four programmable
stages of the framework (Fig. 2) and how they can be configured
to generate rays and handle ray intersections with geometric ob-
jects. Then, by providing a simple template example, where rays
are spawned from an orthographic camera and output the colour of
the intersected object to the screen, students can experiment with
the scene description by placing and parameterising the various
provided geometric primitives (Fig. 3, a). As students get more con-
fident with the mechanisms of primitive declaration, we modify the
Hit shader and output the world coordinate normal of the object at
the ray hit point (Fig. 3, b). Next, in the Generate shader, we convert
the camera to a perspective one, using the theory and mechanisms
learned from the corresponding lecture. Using live coding demon-
stration, by the lab assistant, a Cornell Box scene is created, illumi-
nated from a single point light source and shaded using a Lambert
BRDF (Fig. 3, c). As a task, students are requested to use the Phong
model and respond to the Miss event by colouring the background
with a gradient.
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(a) (b)

(c) (d)

Figure 3: Output of the first (a-c) and second (d) undergraduate
lab sessions. a) Unlit shading of supported primitives. b) Cornell
Box using normal vector colouring and c) Lambertian shading. d)
Whitted-style ray tracer [Whi80].

In the first part of the second lab session, students extend the
code from the previous lab and experiment with sampling tech-
niques. First, they perform anti-aliasing by casting rays from mul-
tiple sample locations inside each pixel. Then, they replace the sim-
ple point light source with an area light, which is appropriately
sampled for radiance and visibility. This way, they can preview soft
shadows generated by the occluders of the scene. After an explana-
tion of the recursive nature of ray tracing and connection with the
theory from the corresponding lecture, as a task, students create a
Whitted-style ray tracer (Fig. 3, d), similar to the classic scene in
the original paper [Whi80].

Graduate lab sessions. In graduate computer graphics courses,
syllabi tend to cover more diverse topics than the focused intro-
ductory undergraduate ones. This means that not much effort can
be spent on learning an API or development platform for ray trac-
ing in much depth, as other subjects, such as VR-related technolo-
gies and visualisation principles and tools, also occupy the avail-
able lectures and study time. In our case, a revision of basic ray
tracing, light transport theory and path space sampling techniques
must be covered within four three-hour lectures and the corre-
sponding lab exercises need to follow that pace. For this reason,
and considering the different background of the students, for the
first two lab sessions we go over the undergraduate exercises, let-
ting the students familiarise themselves with Rayground and the
ray tracing basics. The next sessions expands on visibility deter-
mination, including ambient occlusion (Fig.4, a), as well as intro-
duces physically-based BRDFs and path tracing with importance
sampling (cosine-weighted and BRDF-driven - Fig. 4, b, c), pro-
viding the hook for the study of multiple importance sampling as a
homework assignment. In the final lab sessions, we expose students
to volumetric light transport (Fig. 4, d), explaining the scattering
events and phase functions and use this session as a bridge to other
visualisation techniques, discussed afterwards in class.

(a) (b)

(c) (d)

Figure 4: Output of the graduate lab session tasks. a) Ambient oc-
clusion. b) Unidirectional path tracer using importance sampling.
c) Comparison of BRDF versus light importance sampling. d) Vol-
umetric rendering.

4.4. Evaluation

We evaluated both immersive lectures and the undergraduate lab
sessions during the past semester. The introductory lesson to com-
puter graphics is an elective course (7th semester - 6 ECTS) with
an average corpus of 20 students. The prerequisites for the course
includes calculus, linear algebra and C++ programming and com-
puter systems architecture, all of which are compulsory courses in
the first four semesters. 15 of those students actively participated
and contributed to the evaluation of the lessons. Students were
given a questionnaire to fill with a series of questions that aimed
to assess the usefulness and practicality of Rayground as an inter-
active tool for teaching computer graphics and more specifically,
ray tracing. Questions had a linear rating ranging from not at all
(1) to very much (5).

The majority of students (80%) found Rayground very intuitive.
Students quickly grasped the role of each programmable stage and,
using the API, were able to quickly match previously learned con-
cepts to the new paradigm. More than 80% commented on the
very positive effect it had on their understanding of the ray tracing
pipeline. The interactive nature and accessibility of the tool inspired
more than 73% to further work and experiment with ray tracing in
their spare time. On average, more than 80% of students welcomed
the addition of Rayground as an companion tool for augmenting
theoretical lessons. Also, an average of 73% of users indicated that
they would rather experiment with ray tracing in the future than
with rasterisation. As a side note, the concepts that troubled stu-
dents the most were the recursive spawn of rays, implemented in
the Hit stage, as well as the incremental average of the accumula-
tion process. In conclusion, the whole experience was exciting and
productive for both students and teaching assistants and we expect
further improvements and better reception in future iterations of the
course.
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5. Discussion & Conclusions

We have introduced Rayground, a novel framework primarily trig-
gered by the need to incorporate instructive ray tracing media in
classroom and online lectures as well as to offer attractive lab as-
signments in an engaging manner. This work aims to set the ground
for the online development of ray tracing algorithms in an accessi-
ble manner, stripping off the mechanics that get in the way of cre-
ativity and the understanding of the core concepts. Furthermore, its
shader-like structure, for responding to the key events of ray gener-
ation and traversal, promotes the seamless teaching of subjects that
are mostly pipeline-independent.

However, Rayground cannot yet accommodate certain funda-
mental computer graphics concepts limited by the current status
of web-based graphics technology. Two of our major concerns in-
clude animation systems and bidirectional methods, as animation
through rigid body transformations or key-frame animation is in-
strumental to image synthesis. Nevertheless, even desktop frame-
works struggle to support animation systems that are easy to pro-
gram and teach, mainly due to the high complexity required in or-
der to maintain and expose efficient data structures in real time.
Furthermore, bidirectional path tracing or photon mapping global
illumination solutions are difficult to support in a simple and intu-
itive way with Rayground’s current form. The inherent complex-
ity of such methods would require additional components in the
framework’s core design, which would lead to a bloated program-
ming interface, as well as to a steeper learning curve for the entire
system. To this end, we believe that future advances on Web-based
accelerated graphics [GPU19] could shape the future research in-
vestigation on this field.
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