
EUROGRAPHICS 2019/ O. Bimber and A. Fusiello Poster

Visualization of Large Point Cloud in Unity

J.M. Santana1 , A. Trujillo1 and S. Ortega1

1Imaging Technology Center (CTIM), ULPGC, Spain

Abstract
Large point cloud rendering has become a very relevant topic on 3D graphics as scanners and other sources of 3D point data
are nowadays available to companies and the general public. In this project, we propose an implementation of a point cloud
viewer, designed for the full-detail visualization of virtually unlimited point clouds for their inspection on short ranges. This
work presents the data structure and the LoD technique to achieve a real-time rendering of the model, making emphasis on the
details of an initial prototype based on Unity.

CCS Concepts
• Human-centered computing → Scientific visualization; • Hardware → Scanners;

1. Introduction

Currently, we can find 3D scanners in all sort of novel applications
such as drones, autonomous vehicles, the game industry (Microsoft
Kinect), etc. The scientific and technical importance of datasets
generated by 3D scanners cannot be overstated as they provide
faithful models that do not rely on spatial interpolations. The data
produced by laser scanning hardware consists normally on a set of
XYZ points along with other punctual properties, such as reflection,
intensity and return number. The set of points does not warrant its
locality, continuity, or, more generally, any other characteristic that
eases the rendering process. The LAS file format was introduced
to store datasets with these raw scanner data along with per-point
classification, which segments the objects seen in the scene.

Several alternatives already exist for the display of large clas-
sified point clouds, being three of the most notable open-source
examples Potree [Sch16], Plas.Io † and the 3D tiles of the Ce-
sium world-engine, aimed at the visualization of point clouds on
the web. In that regard, a previous work [SWT∗17] already used
georeferenced point clouds to display simulation results on a GIS
environment. In the realm of proprietary applications, we find al-
ternatives like Fugro (analysis and visualization tool for geospatial
data) ‡ or the Point cloud scene layers of ArcGIS Pro for Desktop
§. However, these tools normally focus on the visual appearance of
the model, relying on decimated versions of the point clouds or on

† http://plas.io
‡ https://www.fugro.com/your-industry/power/
transmission-and-distribution
§ https://pro.arcgis.com/en/pro-app/
help/mapping/layer-properties/
point-cloud-scene-layer-in-arcgis-pro.htm

a view-dependent LoD strategy that shows coarser models of the
same, which can be problematic during a thorough inspection of
the model.

In contrast with these specialized viewers, many other scientific
and technical visualization tools rely on general purpose game en-
gines like Unity or Unreal. This trend is not only due to the relative
ease of use of these frameworks compared with low-level libraries,
but their capacity to deploy our visual experiences on multiple plat-
forms. In this work-in-progress, we are focusing on Unity as it is
commonly used by the technical community, that might be inter-
ested in point-cloud inspection, due to its ease of use and wide
community and support. In the first use case of this tool, our intent
is to obtain a point cloud viewer which can perform real-time ren-
dering of airborne LiDAR terrain scans on Unity. The developed
tool allows combining the complexity of 3D point cloud models
with the advantages and features of a state-of-the-art game engine.

2. Background and Motivation

The particular use case that motivated this project has been the vi-
sual inspection of airborne scans of long power line corridors, from
which automatic and manual classification has been produced. The
longitude of these corridors varies within a range of 100 - 200 km.,
with an average width of ~100 m. and a point density up to 50
p/m2. Hence, the multi-corridor models are usually encoded in sev-
eral LAS files, adding up to hundreds of GBs.

The final intention of the project is to accurately display the
point cloud within the range of view, enabling a seamless navi-
gation across the model, while allowing the inclusion of other 3D
elements and the use of tools provided by the Unity framework, as
seen in Figure 1. The use case imposes a local but holistic render-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/egp.20191050 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-5391-9964
https://orcid.org/0000-0001-6212-5317
https://orcid.org/0000-0001-5923-423X
http://plas.io
https://www.fugro.com/your-industry/power/transmission-and-distribution
https://www.fugro.com/your-industry/power/transmission-and-distribution
https://pro.arcgis.com/en/pro-app/help/mapping/layer-properties/point-cloud-scene-layer-in-arcgis-pro.htm
https://pro.arcgis.com/en/pro-app/help/mapping/layer-properties/point-cloud-scene-layer-in-arcgis-pro.htm
https://pro.arcgis.com/en/pro-app/help/mapping/layer-properties/point-cloud-scene-layer-in-arcgis-pro.htm
https://doi.org/10.2312/egp.20191050


J.M. Santana, A. Trujillo & S. Ortega / Visualization of Large Point Cloud in Unity

ing of the point cloud, facilitating the spotting of undesired noise
generated by the LiDAR scanner, as well as misclassified points.

Figure 1: Final view of the point cloud rendering. Other compo-
nents as the Sky-Box or the camera navigation are provided by the
Unity engine.

3. Model preparation

The main concern when dealing with these datasets is their massive
sizes, where literally millions of points are required to represent a
scenario or object with an acceptable degree of fidelity. The com-
plexity of these models imposes a hierarchical partitioning that en-
ables out-of-core rendering. The literature [Fra17] covers a series
of possible subdivisions of the point cloud model in order to serve
manageable chunks to the GPU. In this project, we have opted to
use a binary tree partition of the space, similar to the one proposed
by Gobbetti and Marton [GM04]. However, as our model must be
rendered with all its points at any distance, no coarser levels of de-
tail have been generated in upper levels of the tree.

All the nodes of the tree are contained within a tight axis-
aligned box, which is precomputed and serves the LoD test and
point-picking strategies. Different bipartition strategies were im-
plemented and tested. Dividing the nodes at the mean value along
their longest axis offered the best results, minimizing the overall
bounding volume of the nodes. The final model is stored in an un-
compressed folder which contains a JSON index of the tree, point-
ing to binary files. Each node file stores the offset relative to the
node center and the class of each point, all encoded in single preci-
sion. Our current Matlab implementation generates models at a rate
of ~2.15 sec. per million points on desktop hardware. In Unity, the
whole binary tree forms a hierarchy of GameObjects, and the LoD
test uses the precomputed bounding boxes (as Bounds instances).

4. Discrete Level Of Detail Strategy

In order to keep a high-performance rendering without removing
points from the visible model, a strategy for the rendering at differ-
ent distances was devised. At a short distance, the goal is to show
the points as rounded objects with a fixed physical size. At long
distances, points must preserve a minimum screen-space size to re-
main visible and to avoid undesirable aliasing problems. However,
Unity does not enable the user to establish a screen point size to
preserve DirectX 11 as a target platform.

Our solution consists in using two different materials that are
interchanged depending on the distance of the node to the viewer.

• Far Distance Material (FDM): The mesh is rendered by setting
Points as the mesh topology. This generates pixel size points dur-
ing rasterization and the vertex color is used as fragment output.

• Near Distance Material (NDM): When points need to maintain
a physical size on screen, we make use of the geometry stage,
which requires at least OpenGL 4.1 or DirectX 11.0 Shader
Level 5 on desktop (the OpenGL Core Rendering Platform). In
our implementation, this shader stage takes each one of the ver-
tices V in our mesh as input and outputs a single equilateral tri-
angle. The screen-aligned triangles are generated based on the
camera vector (Camup and Camle f t ), including texture coordi-
nates TC that allow the fragment shader to cut off the embedded
circle (as depicted in Figure 2), following the Expressions 1.

V1 =V +2S ·−−−−→CamU p TC1 =
{

0, 1
Sin(π/6)

}
V2 =V +S · (−−−−→CamU p +

−−−−−→
CamLe f t) TC2 =

{
1

Tan(π/6) ,−1
}

V3 =V +S · (−−−−→CamU p−
−−−−−→
CamLe f t) TC3 =

{
− 1

Tan(π/6) ,−1
} (1)

Figure 2: Circle symbol of radius S generated from the texture
coordinates of the GPU-generated triangles.

By considering the vertical screen resolution W and the cam-
era field of view FV provided by Unity, we establish the distance
threshold DT = S

Tan(FV /W )
at which the projected size of a NDM

point equals one pixel. For any given node i we can compute the
distance to the furthest and closest point of its bounding box, which
constrains the distance to any point within it. Our rendering algo-
rithm applies the FDM to any node in which DMini > DT and the
NDM if DMaxi < DT . For any other node in between, it performs a
double pass rendering with both materials, ensuring a smooth tran-
sition between levels of detail.

References
[Fra17] FRAISS S. M.: Rendering large point clouds in unity,

2017. URL: https://www.cg.tuwien.ac.at/research/
publications/2017/FRAISS-2017-PCU/. 2

[GM04] GOBBETTI E., MARTON F.: Layered point clouds: a simple and
efficient multiresolution structure for distributing and rendering gigantic
point-sampled models. Computers & Graphics 28, 6 (2004), 815–826. 2

[Sch16] SCHÜTZ M.: Potree: Rendering large point clouds in web
browsers. Technische Universität Wien, Wiedeń (2016). 1

[SWT∗17] SANTANA J., WENDEL J., TRUJILLO A., SUÁREZ J., SI-
MONS A., KOCH A.: Multimodal location based services - Semantic 3D
city data as virtual and augmented reality. 2017. 1

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

24

https://www.cg.tuwien.ac.at/research/publications/2017/FRAISS-2017-PCU/
https://www.cg.tuwien.ac.at/research/publications/2017/FRAISS-2017-PCU/

