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Abstract
We present a framework that will provide a highly efficient and scalable multi-display ray-tracing based rendering system
capable of utilizing multiple GPU devices to produce high-quality images. Our system integrates advanced technologies,
including MPI, CUDA, CUDA IPC, OptiX 7.6, and C++, resulting in a cutting-edge solution for interactive rendering.

CCS Concepts
• Computing methodologies → Ray tracing; Graphics processors;

1. Introduction

We have developed a framework for multi-display rendering us-
ing advanced technologies such as MPI (Message Passing Inter-
face), CUDA (Compute Unified Device Architecture), CUDA IPC
(Inter-Process Communication), OptiX 7.6, and the C++ program-
ming language.

Our framework has two main components: the ray tracing mod-
ule and the multi-display module. Any ray tracing algorithm im-
plements the ray tracing module, like a path tracing algorithm or
a simple ray-caster with only primary and shadow rays. Its imple-
mentation is independent of the multi-display module that cares
about synchronization across multiple nodes and handles multiple
GPUs as well as displays.

2. Related Work

We can divide the related work into rasterization and ray-
tracing based approaches. Among the latest rasterization works,
we find [DP22], which extend [DP19] to handle load balancing
and LOD compared to Equalizer [ESP20]. Equalizer [ESP20] is a
framework for scalable, parallel rendering and data distribution for
large scale visualizations. Another relevant work is [DK11], which
extends OpenGL to implement a distributed framework for high-
performance visualization systems.

Our framework belongs to the second group of ray-tracing based
approaches. In this group, we find [HWU∗20] that presents a
framework for rendering large tiled display walls as a display ser-
vice. [UWA∗19] proposed a distributed frame buffer approach and
extended the API from OSPRay [WJA∗17]. Finally, not related
to multi-display rendering but in the scope of distributed render-
ing, in [JvSv21] a data-distributed solution to path-tracing massive
scenes across multiple GPUs has been proposed.

3. Our Framework

Our framework contains two independent components: the
multi-display and the ray-tracing modules. Figure 1 shows an
overview of a running process configured for two nodes and two
GPUs per node. The Display processes run the multi-display mod-
ule. Its implementation extends the OpenGL-based viewer from the

gproshan framework [RF] to handle multi-display configurations
using MPI to communicate and synchronize the processes and us-
ing CUDA IPC to allow access to the GPU buffer from a ray-tracing
(RT) process.
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Figure 1: Framework architecture.

An RT & Display process initialize and run a ray-tracer imple-
mentation per GPU, which defines the ray-tracing module of our
framework, independent of the multi-display module. It handles all
the render tasks for the process running on the same GPU and their
respective displays. In the following section, we introduce a Vari-
able Rate Path Tracer as a specific implementation of a ray-tracing
module.

The first setup to run some basic experiments for the general
framework consists of two nodes with an Intel Core i7-10700K
processor, 32GB of RAM, and NVIDIA GeForce RTX 3090 with
24GB of memory and a GeForce RTX 3080 with 10GB of mem-
ory, respectively in each node. The setup includes four monitors on
the first node and three on the second one, all with a resolution of
2160×1440 pixels.

Table 1 shows the results of our multi-display framework, which
has two configurations for per process and per GPU rendering.
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Per process means that all the processes are RT & Display pro-
cess pairs, while per GPU implies that only one Display process is
an RT process per GPU device.

Scene Triangles Monitors GPU Memory GPU usage % FPS Rendering
San Miguel 9980699 4 5719 MiB 72 % 68 per gpu
San Miguel 9980699 4 18171 MiB 70 % 73 per process

Sponza 262267 4 2410 MiB 66 % 67 per gpu
Sponza 262267 4 4933 MiB 67 % 72 per process

San Miguel 9980699 4, 3 3968 MiB, 3382 MiB 69 %, 55 % 74 per gpu
San Miguel 9980699 4, 3 exceeds memory on second node per process

Sponza 262267 4, 3 2411 MiB, 1825 MiB 64 %, 50 % 64 per gpu
Sponza 262267 4, 3 4939 MiB, 3375 MiB 66 %, 49 % 76 per process

Table 1: FPS for a ray tracer with primary and shadow rays.

4. Variable Rate Path Tracer

Path tracing [Kaj86] is one of the best-known algorithms for
high-end rendering. However, the long convergence times make
it infeasible for real-time applications. In this framework, besides
hardware acceleration, we exploit a space-variant human vision
constraint to limit the number of rays and make interactive path
tracing feasible. The human visual system has the highest vi-
sual acuity around 5.2◦ of the visual axis, also known as the
fovea [MIGS22]. From that fovea, the visual acuity abruptly de-
clines towards the periphery.

In this experiment, we contemplate a VRPT (variable-rate path
tracer) to limit the number of rays outside the foveated region.
First, we calculated the Euclidean distance from the gaze point
and divided the screen space (Figure. 2) into three regions. Next,
we derived a relationship to determine the foveated, intermediate,
and peripheral pixels using MAR (Minimum Angle of Resolution)
and Snell chart’s standard distance. Finally, we used a discriminant
function to limit the number of rays for each region.

Figure 2: We used a standard Snell distance (d= 60 cm) from the
eye position. Further, we measured the physical pixel size to define
the foveated (r1) and intermediate (r2) region’s radius concerning
the viewing angle θ1 and θ2, respectively. The peripheral region
covers the rest of the pixels outside the intermediate zone.

To test the performance of our VRPT, we used a 12th Gen In-
tel(R) Core(TM) i9-12900KS processor, with 2 NVIDIA GeForce
RTX 3090, 24GB of memory each, and we rendered 24.88 million
(3840×3×2160) pixel images. The user can interact with a static
scene using the framework’s mouse-based interface. We measured
the 100 conjugative seconds for the average framerate, see Fig-
ure 3. The average framerate for uniform path tracing is 3.72fps,
whereas the variable rate path tracing achieved framerates on aver-
age of 16.62fps, which is 4.45× faster.

5. Conclusions

The variable rate path tracing implementation is currently lim-
ited to diffuse shaders only. Furthermore, the simple pinhole cam-
era model has been used for ray generation, and the recursion depth
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Figure 3: Framerate for 100 conjugative seconds. The blue line
represents the uniform path tracing, and the brown line represents
our variable rate path tracing algorithm.

is with hard truncation. The future study involves a full feature path
tracing algorithm with robust variable sampling rate distribution.
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