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Abstract
We investigate Hermite interpolation in the context of discrete signed distance field filtering. Our method uses tricubic Hermite
interpolation to generate a C1 continuous approximation to the signed distance function of the input scene. Our representation
is kept purely first order by setting the mixed partial derivatives to zero, similarly to how Ferguson constructed bicubic Hermite
patches. Our scheme stores four scalars at each sample, the value of the signed distance function and its first three partial
derivatives. We optimize storage by only storing voxels that enclose a volume boundary. We show that this provides both
a significant reduction in storage and render times compared to a dense grid of Ferguson-Hermite samples. Moreover, our
construct requires smaller storage than traditional zero order trilinearly filtered fields of the same visual quality, at the expense
of performance.

CCS Concepts
• Computing methodologies → Rendering; Shape modeling; • Mathematics of computing → Continuous functions;

1. Introduction

Implicit functions are flexible representations of objects. Surfaces
are defined by the zero level sets of f : E3 →R scalar-valued func-
tions in 3D space. In most high-performance real-time graphics
applications, these implicit surfaces are discretized. Traditionally,
these are represented as simple function value samples stored in 3D
textures. The texture is then sampled using trilinear interpolation,
resulting in a C0-continuous approximation. However, if a visually
smooth output is desired, higher resolution textures are required.

It was shown that one can achieve a visually higher quality re-
construction or smaller storage by using higher order data, even
on regular grids [VB23]. By only storing the cells that contain
parts of the surface, storage can be further reduced. This work

Figure 1: Dense, regular grid around a model, and the cells used
for rendering.

presents a method for detecting empty cells that a guaranteed not
to contain volume boundaries, and a simple yet accurate and high-
performance ray intersection algorithm for rendering a sparse struc-
ture of tricubic Ferguson-Hermite cells enclosed in boxes. These
boxes correspond to 2×2×2 samples of a dense 3D texture.

2. Dense Hermite fields

Our aim is to improve the smoothness of the result without sig-
nificantly increasing storage, such as in Figure 3. To achieve this,
we extend the traditional representation by incorporating the partial
derivatives of the function along with the function values. By using
tensor product Hermite interpolation in reconstruction, the gradi-
ent information is taken into account, resulting in a C1-continuous
approximation. Although more data needs to be stored per sample,
the resolution of the texture can be reduced as Hermite interpola-
tion provides a higher order accurate approximation to the sampled
function [VB23]. As a rule of thumb, a Ferguson-Hermite field of
resolution K3 offers at least the same visual quality as a trilinearly
filtered (2K)3 field. Practically, this halves the required number of
scalars, however, we found that the Ferguson-Hermite field resolu-
tion may be often lowered even more, as illustrated in Figure 2.

3. Hermite cell rendering

Naive Hermite interpolation is computationally more expensive
than trilinear filtering, especially since the latter may be hardware
accelerated on GPUs while the former necessitates manual sample
interpolation. As such, we employ empty space skipping by sepa-
rately rendering the voxel boxes of the dense grid but only those
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Figure 2: Top row: trilinear (top half: normal with central differ-
ences, bottom half: exact normal), bottom row: Hermite interpola-
tion. Resolution left to right: 163, 323, 643.

cells that contain volume boundaries. Moreover, this allows us to
only read the field sample values at the start of the search or even
obtaining them as vertex attributes.

The search process is straightforward. We subdivide the Hermite
approximation of the cell at several equidistant points along the ray
and look for a sign change, indicating an intersection point between
the evaluated positions. We assume a linear change between the
points and approximate the solution accordingly, without the need
for additional evaluations. Root refinement may be also added.

4. Empty cell detection

In our rendering algorithm, we only need to process the non-empty
cells, making the detection of such an important task. The simplest
case is when a cell has two vertices with function values of different
signs, as this guarantees that the surface crosses the cell.

To detect empty cells, we transform the Hermite polynomial into
the Bernstein basis and leverage its properties [Far01]. The Bern-
stein coefficients can be calculated directly from the function val-
ues and gradients at the sample positions. If all coefficients have
the same sign, the cell is guaranteed to be empty due to the convex
hull property of the Bernstein basis. This is illustrated in Figure 1.

5. Results

Table 1 summarizes performance measurements tested on the
bunny model. The tests were run on a desktop AMD RX 5700 at
full HD resolution. The Trilinear and Hermite cases used sphere
tracing, with a maximal error of ε = 10−4. The Hermite Cell col-
umn describes the proposed method; the number of subdivisions
were set so the rendered result is visually indistinguishable from
the former methods (2 or 3 subdivisions).

Figure 3: Comparison of low resolution approximations of an im-
plicit curve in red: f (x,y) = (x2 + y2)2 − 2(x2 − y2)− 0.1255, bi-
linear interpolation in blue, and Hermite interpolation in green.

Res. Trilinear Hermite Hermite Cell
163 0.72 ms (4k) 2.90 ms (16k) 1.48 ms (20k)
323 0.76 ms (32k) 2.80 ms (130k) 1.47 ms (80k)
643 0.90 ms (260k) 2.95 ms (1M) 1.69 ms (310k)

1283 1.06 ms (2M) 2.96 ms (8.4M) 3.45 ms (1.3M)

Table 1: Performance measurements on the bunny model.

The parentheses contain the approximate number of stored
scalars for each test case (k = thousand, M = million). The per-
formance drop in the last test case is caused by the small size of the
triangles and arithmetically heavy manual Hermite computations.

6. Conclusions

Our discrete implicit representation is well-suited for smooth sur-
faces, but the evaluation of the approximation requires manual fil-
tering of the data. We reduce the number of evaluations by render-
ing each interpolation cell individually, thus limiting the intersec-
tion search space. Furthermore, the representation used for direct
rendering requires less storage space, as the amount of stored data
is proportional to the square of the resolution, rather than its cube.
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