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ShapeVerse: Physics-based Characters with Varied Body Shapes
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Figure 1: Human body representations with motion variations based on individual body shape parameters

Abstract
Computer animation of realistic human characters remains a significant challenge. This work used deep reinforcement learning
to generate physics-based characters with diverse body shapes. We aimed to replicate reference motions like walking or jogging
while considering individual variations in body shape and mass. Reference motions served as training targets, accounting for
differences in shape parameters to accommodate mass variations. This method produced animations that accurately capture
human motion details, leading to diverse and lifelike character performances.

CCS Concepts
• Computing methodologies → Physical simulation; Procedural animation; Motion capture;

1. Introduction

To animate varied virtual characters, the motion of multiple human
actors of different body shapes is redundantly motion-captured. In
this work, we used deep reinforcement learning (DRL) to gener-
ate physics-based characters with varying body shapes that closely
resemble real humans. Our objective was to create a diverse popu-
lation of characters capable of mimicking reference motions, such
as walking or jogging, where the effects of individual body shape
parameters and mass are simulated. The reference motion served
as a sequence of poses, providing a target for the generated charac-
ters to mimic. We employed Proximal Policy Optimization (PPO)
[SWD∗17], a popular DRL algorithm, to optimize the characters’
motions and ensure a close match between their shape parameters
and those of the reference motion actor.

A key feature of our approach was the variation of body
shape parameters (β parameters), based on the SMPL body model
[LMR∗15], to create a diverse population of characters. We used
shape parameters for the characters’ bodies and proposed a reward
system that is dependent on these parameters. We further controlled
these rewards using a parameter, thereby allowing for flexibility in
achieving the desired motion characteristics.

2. Framework for Motion Variation

To formulate our problem as a Deep Reinforcement Learning
(DRL) task, we imitated a reference motion represented by a se-
quence of target poses (qt ), where the objective of our policy was
to replicate this desired motion using physics-based simulation.

The state s captured the configuration of the character in the en-
vironment. It encompassed the joint angles (q) that define the pos-
ture, as well as their corresponding velocities (q̇). Additionally, we
incorporated the body shape state (sb), which includes the length
and width of the rigid bodies used to represent the character’s body.
All features were computed relative to the character’s local coordi-
nate frame, with the root at the origin and the x-axis aligned with
the root link’s facing direction.

The action a generated by the policy deviates the generated
motion from the reference motion’s posture (∆q). We utilized a
Proportional-Derivative (PD) controller to drive the character’s
joints by applying torque. The action space served as the target
input for this PD controller. Joints with three degrees of freedom
(DOF) or spherical joints are represented using axis-angle nota-
tion, while joints with one DOF or revolute joints were represented
using scalar values denoting joint angles.
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Figure 2: Biomechanical metrics for the average, small, and large
bodies, for one complete gait cycle: normalized root COM (Center
Of Mass) displacement (top); and normalized values of knee flexion
angle (bottom).

We trained our policy using common reward terms from imi-
tation learning [PALvdP18, WL19], including an imitation reward
(Ri) and a regularization (energy) reward.

The imitation reward (Ri) consists of several components:

Ri = wprp +wvrv +were +wcrc (1)

where rp encourages joint orientations alignment with the refer-
ence motion, rv promotes matching joint velocities, re enforces cor-
respondence between the character’s end-effectors and their posi-
tions in the reference motion, and rc accounts for the difference in
center-of-mass deviation.

The regularization reward (Re) focuses on energy efficiency by
minimizing joint torques:

Re = weexp(−∑∥mJτi∥2) (2)

where mJ represents the total mass of the rigid bodies connected to
the Jth joint, and τi is the joint torque for the ith joint. The relative
weights (w∗) for these reward terms were manually tuned during
the policy training process.

Body shape variations were introduced using b parameters to
transform the base character (B) via the SMPL body model’s first
two Principal Components (β(0) and β(1)). This created diverse
body shapes through a set of "capsules" representing body surfaces,
preserving stability and structure.

The total reward (R) combined imitation (Ri) and regularization
(Re) rewards, controlled by θ. At θ = 0, imitation got prioritized,
while increasing θ emphasizes energy-efficient and smoother mo-
tions. θ enabled trade-offs between motion fidelity and energy op-
timization. It was set based on beta parameter deviations between
the base character B and the newly generated character B′, ranging
from 0 to 1.

3. Results & Discussion

We trained our policy (πθ) using Proximal Policy Optimization
(PPO) on the Isaac Gym physics simulation platform [MWG∗21].
This policy-controlled character operated at a frequency of 60 Hz
through a proportional-derivative (PD) controller.

For our evaluation, we used motions from a motion-captured
dataset and extracted corresponding beta parameters for actors’
body shapes using MoSh [LMB14]. This dataset included actors
with varying Body Mass Index (BMI) values, categorized into

"Large" (high BMI) and "Small" (low BMI) groups. For our base
character B, we selected an actor with an average BMI and trained a
policy for four additional actors’ body shapes. Notably, our frame-
work effectively handled variations in body shape within a single
trained policy.

To assess the impact of body shape on generated motion, we ex-
amined specific lower-body biological parameters, as prior studies
have demonstrated the accuracy of lower limb and trunk models in
capturing center of mass (CoM) kinematics. We analyzed the same
dataset for actors with different BMI values. Our findings revealed
distinctive pelvis trajectories for each character, highlighting the
role of total body mass in determining CoM displacement. More-
over, we analyzed the normalized knee flexion values (◦) of the left
leg, which revealed variations in knee joint motion between charac-
ters with larger and smaller body shapes as shown in figure 2. These
results aligned with observations in medical studies by Browning &
Kram [BK07] and MacLean et al. [MCM16].

In summary, we presented a deep reinforcement learning (DRL)
framework for simulating physics-based characters with diverse
body shapes and sizes, based on real human body data. We high-
lighted the influence of physics parameters, particularly mass, on
motion styles and patterns. Our results demonstrated the impact of
body dimensions on motion metrics and the effectiveness of our
framework in generating realistic character animations.
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