
EUROGRAPHICS 2024/ M. Averkiou and L. Liu Poster

Topological Data Structure for Computer Graphics

G. Fábián1

1 ELTE Eötvös Loránd University, Budapest, Hungary

Abstract
This research is motivated by the following well-known contradiction. In computer-aided design or modeling tasks, we generally
represent surfaces using edge-based data structures as winged edge [Bau75], half-edge [MP78] [CP98], or quad-edge [GS85].
In contrast, real-time computer graphics represents surfaces with face-vertex meshes, since for surface rendering, there is no
need for the explicit representation of edges. In this research we introduce a novel data structure for representation of triangle
meshes. Our representation is based on the concept of face-vertex meshes with adjacencies, but we use some extra information
and new ideas that greatly simplify the implementation of algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—

1. Introduction

In this research, we design a data structure for representing poly-
hedra that allows the efficient execution of global operations. In
most cases, when mainly local modifications are used (e.g. vertex
split, edge flip, face removal), traditional winged edge and half-
edge data structures perform well. However, for global operations
(affecting large number of vertices, edges, faces), the advantages
of edge-based data structures seem to diminish. In this research
we will show a novel data structure for representation of triangle
meshes. In our experiments we used the industry standard half-
edge data structure, and we implemented our proposed data struc-
ture. We have done several tests to measure time cost of some local
and global operations. We compared the performance of the data
structures for some complex operations as subdivision. Our results
confirmed, that many local and global operations can be easily im-
plemented and efficiently performed without explicit representa-
tion of edges. Moreover, our surface representation stores less data
than the half-edge data structure. We refer to our representation as
SolidMesh, emphasizing that it is suitable only for storing triangu-
lation of surfaces of solid geometries.

2. SolidMesh data structure

When designing our data structure, we formulated the following
requirements.

1. The representation should based on the vertex and index arrays
used by the GPU.

2. Edges should not be explicitly represented.
3. A fixed amount of data should be stored for faces and vertices.
4. Global operations should be performed quickly.

Condition 1. and 2. impliy, that the central elements of our data
structure are necessarily faces. Condition 3. can not be fulfilled, un-
less each face has a same number of vertices, therefore we choose
triangular faces. Efficient execution of local operations occurring
during modeling tasks was not a crucial consideration. We would
like to prepare the data structure for global operations where the en-
tire vertex and index arrays need to be traversed (detach, cut, split,
smooth, subdivide, etc.).

The half-edge data structure allows efficient execution of lo-
cal modifications, geometric information of a neighborhood of an
edge is encapsulated into half-edges. In the implementation of our
data structure, we did not create a new face class, which would
achieve similar encapsulation. Instead, we added some extra (one-
and multi-dimensional) arrays containing all the necessary geomet-
ric information to the vertex and index arrays, similarly to the ren-
der dynamic meshes [TM06], see Figure 1 for an example.

Figure 1: Example for SolidMesh data structure, a part of the rep-
resentation of a cube model.

Maybe the simplest approach is to define the SolidMesh data
structure using functions with finite domains. Consider a poly-
hedron with n vertices and m faces, and let us suppose, that

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egp.20241044 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-0255-5379
https://doi.org/10.2312/egp.20241044

2 of 2 G. Fábián / Topological Data Structure for CG

I = {0, . . . ,n−1}, J = {0, . . . ,m−1} and τ = {0,1,2}. Then a the
common representation of a mesh in CG is a (V,T) pair, where the
V vertex-array and the T index-array can be defined by the follow-
ing functions: V : I → R3 and T : J× τ→ I. The I, J sets refer
to the indices of the vertices and triangles, the τ set is responsi-
ble for storing the order of vertices within a triangle, i.e. T (i,k) = j
means: the k-th vertex of the i-th triangle is V (j). In SolidMesh data
structure a vertex stores its degree (d : I→ N), and a reference for
itself in an arbitrary triangle (B : I→ J, β : I→ τ). Edges are only
implicitly represented, any two circularly consecutive vertex of a
triangle define an edge. Using this convention, a face stores refer-
ences to its edge-adjacent triangles and endpoints of its own edges
(A : J× τ→ J,α : J× τ→ τ). A brief overview of this concept can
be seen in Figure 2.

Figure 2: Visualization of the of V,T,A,α,B,β,d functions with
their domain and range sets.

3. Results

In our experiments we used an efficient half-edge data structure
[MP78], and we implemented our proposed data structure in C#
language using Unity game engine. We have done several tests to
measure time cost of some local and global operations. We com-
pared the performance of the data structures for some complex
operations as subdivision. We give a representative example, the
application of the Loop subdivision scheme [Loo87]. Loop sub-
division is a global operation working on polyhedrons defined by
triangular faces. The subdivision operation is not trivial; we need
to break down each face of the polyhedron and compute the coor-
dinates of each vertex (new and old). By calculation of vertex posi-
tions the edge-adjacent triangle pairs play an important role, there-
fore the half-edge data structure is often chosen for implementing
this subdivision scheme.

Model Number of Subdivision time [ms]
name vertices Half-edge SolidMesh
Cube 8 0.10 0.02

Sphere 482 5.63 0.79
Torusknot 880 11.36 1.46

2-tori 1156 14.37 2.05
Bunny 2503 34.78 4.81
Ducky 5084 60.87 8.83
Mug 6390 71.99 11.12

Armadillo 15002 370.69 31.74

Table 1: Execution times for Loop subdivision.

Figure 3: Execution times for Loop subdivision (log-log plot).

Our results seem to support that, despite the lack of explicit edge
representation in our data structure, complex operations can be ex-
ecuted much faster with it. According to our measurements, Loop
subdivision implemented in SolidMesh data structure ran approxi-
mately 10 times faster than the half-edge implementation, see Ta-
ble 1 and Figure 3. Similar promising results have been obtained
for algorithms such as mesh smoothing and mesh slicing as well.
Although the computational complexity of these algorithms is lin-
ear in the number of faces, it can be proven in many cases that the
SolidMesh implementation utilizes significantly fewer operations
compared to other topological data structures.

Finally, let us discuss briefly storage requirements. The half-edge
data structure is often criticized for storing topological information
with high overhead. We examined the storage requirements of data
structures for low-genus polyhedra with n vertices. We found that
while the half-edge structure requires 30n floating point or integer
numbers to store the complete topological and geometric informa-
tion, SolidMesh requires only 24n.

References
[Bau75] BAUMGART B. G.: A polyhedron representation for computer

vision. In National Computer Conference and Exposition (AFIPS ’75)
(1975), pp. 589–596. doi:10.1145/1499949.1500071. 1

[CP98] CAMPAGNA S., PREPARATA F. P.: Directed edges – a scal-
able representation for triangle meshes. Journal of Graphics, GPU &
Game Tools 3 (1998), 1–11. doi:https://doi.org/10.1080/
10867651.1998.10487494. 1

[GS85] GUIBAS L., STOLFI J.: Primitives for the manipulation of gen-
eral subdivisions and the computation of voronoi diagrams. ACM Trans-
actions on Graphics 4, 2 (1985), 74–123. doi:10.1145/282918.
282923. 1

[Loo87] LOOP C. T.: Smooth Subdivision Surfaces based on Triangles.
PhD thesis, University of Utah, 1987. 2

[MP78] MÜLLER D. E., PREPARATA F. P.: Finding the intersection of
two convex polyhedra. Theoretical Computer Science 7, 2 (1978), 217–
236. doi:10.1016/0304-3975(78)90051-8. 1, 2

[TM06] TOBLER R. F., MAIERHOFER S.: A mesh data structure for
rendering and subdivision. In Proceedings of the January 30 - February
3, 2006, Winter School of Computer Graphics (Plzen, Czech Republic,
2006), WSCG ’2006. 1

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/1499949.1500071
https://doi.org/https://doi.org/10.1080/10867651.1998.10487494
https://doi.org/https://doi.org/10.1080/10867651.1998.10487494
https://doi.org/10.1145/282918.282923
https://doi.org/10.1145/282918.282923
https://doi.org/10.1016/0304-3975(78)90051-8

