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Abstract
In this paper, we address the problem of learning 3D human pose and body shape from 2D image dataset, without having to
use 3D supervisions (body shape and pose) which are in practice difficult to obtain. The idea is to use dense correspondences
between image points and a body surface, which can be annotated on in-the-wild 2D images, to extract, aggregate and learn 3D
information such as body shape and pose from them. To do so, we propose a training strategy called “deform-and-learn" where
we alternate deformable surface registration and training of deep convolutional neural networks (ConvNets). Experimental
results showed that our method is comparable to previous semi-supervised techniques that use 3D supervision.

1. Introduction

With the progress of deep learning, estimating 3D human body
shape and pose from a single image is now possible by regressing
the parameters of statistical body models. The main challenge in
this task is the lack of a large-scale 3D dataset that contains a wide
variety of people and background. Some dataset is captured in an
experimental room using a Motion Capture (MoCap) system and
RGB video cameras, which provides pairs of image and 3D pose,
but are limited to a small number of subjects. Extending these 3D
dataset to in-the-wild settings with a wide variety of body types
seems not straightforward.

“Can we learn 3D human body shape and pose directly from 2D
images?” In this paper, we tackle this challenging problem to by-
pass the 3D dataset scarcity problem by extracting and aggregating
3D information from dense correspondences annotated on 2D im-
ages. We propose a strategy called “deform-and-learn" where we
alternate deformable surface registration, which fits a 3D model to
2D images, and training of deep neural network, which predicts 3D
body shape/pose from a single image. These processes are iterated
to improve accuracy. Experiments showed that our method is com-
parable to semi-supervised techniques that use 3D supervision.

2. Related Work

A common way to predict 3D human body shape and pose from
an image is to employ pre-built statistical human models. The first
method to do this using deep ConvNets was proposed in SMPLify
[BKL∗16] where the human statistical model called SMPL was fit-
ted to the 2D key points estimated from an image using ConvNets
by an optimization technique. Lassner et al. [LRK∗17] proposed
a method to construct a 3D human body shape and pose dataset
by fitting a SMPL model to images. Compared to them, our ap-
proach does not require human interventions to validate shape and

pose fits. Tan et al. [TBC17] proposed an indirect approach to learn
body shape and pose by minimizing the estimated and real silhou-
ettes. Tung et al. [TWYF17] proposed a self-supervised learning
motion capture technique that optimizes SMPL body parameters
and Kanazawa et al. [KBJM18] proposed an end-to-end learning
system of human body and shape based on generative adversarial
networks (GANs). More recently, silhouettes [PZZD18, VCR∗18]
and part segmentations [OLPM∗18] are incorporated to improve
prediction accuracy. In DensePose [RNI18] uv parametrizations of
the segment parts are further provided and annotated on images to
establish image to surface dense correspondences.

Concurrently, HoloPose [GK19] is proposed to learn to esti-
mate human body shape and pose from dense correspondences.
Our method differs from them in that our approach further lever-
ages dense correspondences to recover 3D human shape from them
to supervise ConvNets, requiring no explicit 3D supervision such
as 3D joint positions from MoCap. Kolotouros et al. [KPBD19]
proposes a method that alternates body shape/pose learning and
SMPLify fitting [BKL∗16] which uses 3D pose and shape priors.
Compare to them, “deform-and-learn” does not rely on these priors
and learns them from dense correspondences and 2D key points.

3. Method

The goal of this work is to learn a neural network model that pre-
dicts 3D body shape and pose from a single image. To that end,
we use dense correspondence annotations [RNI18] between image
points and a body surface, which can be annotated on 2D images
in-the-wild and provides rich information about body shape and
pose. Compared to silhouettes and part segmentations, dense corre-
spondence annotations are less noisy around boundaries and can be
obtained with some more additional human efforts where its anno-
tation time is almost the same as that of part segmentation [RNI18].
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Deform-and-learn iterative training strategy We propose a
training strategy called “Deform-and-learn” that alternates de-
formable surface registration to fit a 3D model to 2D images and
training of deep neural network that predicts 3D body shape/pose
from a single image. As the first step of an iteration, we train a con-
ditional generative adversarial networks (cGANs) similar to Kudo
et al. [KOMO18] that predicts 3D joint positions from 2D joint po-
sitions, which guides the registration process. Given image-surface
dense correspondences, the registration step fits a template model
to images (Section 4). After registration, we obtain a collection of
body parameters which is then used as supervisional signals to train
deep ConvNets that predicts body parameters (Section 5). The body
parameter estimates are used as initial solutions for surface regis-
tration in the next round.This training process is iterated for several
times to get better results. Note that in the very beginning the initial
pose of registration is in the T-pose.

Body shape and pose model Previous approaches [BKL∗16,
KBJM18] for predicting body shape and pose typically regress
body parameters of a pre-built statistical model called SMPL. As
opposed to previous approaches using shape blendshapes to model
a body shape, we parametrize it by segment scales s ∈ R24. This
way, all we need is the mean shape, skeleton and skinning weight
from SMPL but they could also be coming from any human rigged
model. Optionally, pose blendshapes can be incorporated to model
complex nonlinear deformation around joints. Since our model
does not need the identity or shape parameters of SMPL, the re-
sulting body shape is not confined in the space of statistical models
which are constructed from young adult subjects.

The template mesh consists of n vertices, where n is 6980 in
this paper. The vertex positions of the template, v1 . . .vn, are de-
noted by a n× 3 vector, v = [v1 . . .vn]

T. The pose of the body is
defined by a skeleton rig with 23 joints where the pose parame-
ters a ∈ R23×3 is defined by the axis angle representation of the
relative rotation between segments. The body model is posed by
joint parameters a via forward kinematics. In our skinning formu-
lation we multiply a diagonal matrix containing a scaling for joint j,
S j = diag([s j,s j,s j,1]), with a homogeneous bone transformation
for A such that T j = A jS j. Then the body model is deformed by
blending T j, where we define a deformation function, v = X(S,a).

We use the weak-perspective camera model and solve for the
global rotation R∈R3×3, translation t∈R2 and global scale s∈R.
Rather than using other rotational representation such as axis an-
gle, we directly optimize for a rotation matrix with 9 parameters
due to its property to represent orientations uniquely in 3D space.
Since this approach makes a transformation deviating from a rota-
tion matrix, we applied the Gram Schmidt normalization to ortho-
normalize the matrix. With the body parameters θ, deformation and
projection of vertices into an image is achieved as:

x = sΠ(RX(S,a))+ t (1)

where Π is an orthogonal projection.

4. Image-surface deformable registration

We propose a deformable surface registration technique to fit a tem-
plate mesh model to images to obtain 3D body shape and pose

annotations for training deep ConvNets. Here deformable registra-
tion is formulated as a gradient-based method based on back prop-
agation, which can be implemented with a deep learning frame-
work and parallelized with GPUs. With the automatic differentia-
tion mechanisms provided with a deep learning framework, adding
and minimizing various kinds of losses have made easier. As a re-
sult, the proposed deformable registration technique thus incorpo-
rates kinematic, geometric and correspondence losses.

Given image-surface dense correspondences annotated on im-
ages, the template mesh is fitted to images by optimizing body pa-
rameters θ = [a,S,R,s, t] subject to kinematic and geometric con-
straints. In total, the overall loss function for our registration is of
the form:

Lregist = ωdenseLdense +ωKPLKP (2)

+ωscaleLscale +ωjointLjoint +ωdetLdet

where Ldense and LKP are the dense correspondence and key point
losses that penalize the alignment inconsistency of the body model
with images defined in terms of dense correspondences and key
points. The losses Lscale and Ljoint is the segment scaling smooth-
ness and kinematic loss for regularization. The transformation de-
terminant lossLdet makes the determinant of the global transforma-
tion positive. In addition, ωdense, ωKP, ωscale, ωjoint and ωdet are the
respective weights for the above defined losses. The initialization
of body parameters is provided from the predictions of deep Con-
vNets. For the very first iteration where the Convnet predictions are
not available, segment scale s is set to 1 for all segments and pose
a is set to 0 for all joints.

Dense correspondence loss Let us define a set of image-surface
correspondences C = {(p1,vidx(1)) . . .(pN ,vidx(N))}, where p is the
image points. In addition idx(i) is the index of the mesh vertex
that is matched with image point i. Now we can define the dense
correspondence loss as:

Ldense = ∑
i∈C
‖pi−xidx(i)‖

2 (3)

Here the mean squared error (MSE) between image point annota-
tions pi and the corresponding points on a surface projected to the
2D image xidx(i) is calculated.

Key point loss To produce 3D poses with statistically valid depths,
the results from cGANs are used to guide deformable registration.
Instead of attaching a discriminator to the registration framework,
the depth values from cGANs and the ground truth 2D joint coor-
dinates are provided as a soft constraint to constrain the position of
the 3D joints based on the MSE loss:

LKP = ∑
i∈J
‖xi− x̄i‖2 + ∑

i∈J
‖yi− ȳi‖2 + ∑

i∈J
‖zi− zGAN

i ‖2 (4)

where x̄i and ȳi are the ground truth of 2D key points. Also zGAN
i

is the depth at joint i predicted by cGANs. Other loss terms are
explained in the supplemental material.

5. Estimating 3D body shape and pose from a single image

Using the results obtained by deformable registration as annota-
tions for training deep ConvNets, we regress body shape and pose
parameters with an image. We also add the dense correspondence
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and key point losses for additional supervisions. In total, we mini-
mize the loss function of the form:

Lconv = αLregress +βLdense + γLKP (5)

where Lregress is the regression loss for body parameters. α, β and γ

are the respective weights. Let θi be the parameters for i-th sample,
the regression loss is defined as:

Lregress = ∑
i

smoothL1(θi− θ̄i) (6)

where θ̄ is the annotation provided from the registration step. Here
we use the smooth L1 loss because of its robustness to outliers.
This choice was more effective than the L2 loss in contributing
to decreasing the error during the iterative training strategy in the
presence of potential outliers and noisy annotations.

6. Experimental results

Our method is implemented using Pytorch. We use the Adam op-
timizer for all the steps in our approach. We use ResNet50 pre-
trained on the ImageNet as the base network of our body regres-
sor. Training takes 2-3 days using three NVIDIA Quadro P6000
GPUs. The body regressor is trained for 30 epochs with the batch
size of 30 and the learning late of 0.0001. We set the parameters
in the loss function to α = γ = 1 and β = 10. For deformable sur-
face registration, we use the learning rate of 0.1 and batch size of
10. We empirically determined the parameters to ωdense = 1000,
ωKP = 1, ωscale = 10, ωjoint = 0.001 and ωdet = 1. For the first
training iteration, we use ωscale = 100 and ωjoint = 1 to make the
body model stiff, which is a common strategy in deformable regis-
tration [ARV07] to recover a correct global orientation.

6.1. Dataset, protocol and metric

To train the model we use DensePose, [RNI18], DensePoseTrack
[NTG∗19] and Human 3.6M dataset dataset [IPOS14]. To obtain
dense annotations on Human 3.6M, we use two approaches: pro-
jecting 3D models obtained with Mosh [LMB14] and predicting
using the DensePose model [RNI18]. To obtain dense correspon-
dences to fit a template 3D model to images, we find the closest
points from image pixels to surface vertices in UV coordinates of
every part. The nearest neighbor search is done in this direction
because image pixels are usually coarser than surface vertices. We
were able to obtain approximately 100k annotated training images.

We followed the same evaluation protocol (Protocol #1
[IPOS14]) in Human 3.6M dataset as was used in previous ap-
proaches [PZDD16,ZHS∗17], where it uses 5 subjects (S1, S5, S6,
S7, S8) for training and the rest 2 subjects (S9, S11) for testing.
The error metric for evaluating 3D joint positions is called mean
per joint position error (MPJPE) in mm. Following [ZHS∗17] the
output joint positions from ConvNets is scaled so that the sum of
all 3D bone lengths is equal to that of a canonical average skeleton.

6.2. Results and comparisons

In Figs. 1, we show our results on body shape and pose estimation
before and after refinement. As we can see from the figure, our

technique can predict 3D body shape and pose from in-the-wild
images.

We compared our method with state-of-the-art techniques (Ta-
ble 1). Here we divide the methods into full 3D supervised ap-
proaches [KBJM18, GK19, SXLW17] which uses a large amount
of 3D pose annotations (and shape when available) paired with
images, semi-supervised techniques [RSF18, KBJM18] that uses a
limited amount of 3D supervisions and the approaches with no 3D
supervision ( [KOMO18] and ours). For our techniques, we tested
two models: the one trained with dense correspondences obtained
by projecting 3D body shapes obtained using Mosh [LMB14]
(Ours(Mosh)) and using DensePose predictions [RNI18] (Ours
(DensePose)).

From Table 1 we can see that full 3D supervision approaches
such as HoloPose [GK19] and Sun et al. [SXLW17] achieves the
best results. Rhodin et al. [RSF18] use an auto-encoder to com-
press visual features and reconstruct 3D pose from it, which does
not require a large amount of 3D human pose supervisions. HMR
(unpaired) uses 3D pose and body shape dataset only for training
GANs to provide 3D constraints without needing to have 3D poses
paired with images. Kudo et al. [KOMO18] uses conditional GANs
to predict depths from 2D joint coordinates, which learns a model
from 2D information only as ours. Our method outperforms Rhodin
et al. [RSF18] and Kudo et al. [KOMO18] in terms of MPJPE accu-
racy and is comparable to [KBJM18] in terms of MPJPE accuracy.

6.3. Is the iterative training strategy effective?

To show the effectiveness of our iterative training strategy, we show
a graph with the history of MPJPE errors for Ours(Mosh) in Fig. 2.
Here, MPJPE values after deformable registration are calculated on
training dataset. Our deform-and-learn strategy starts from image-
surface registration using the T-pose as the initial pose. After the
first registration phase, the train-set MPJPE for registration results
is approx. 110 mm. Then, ConvNets is trained based on these regis-
tration results as supervisions. After 1 iteration, the test-set MPJPE
of ConvNet predictions is 145 mm, which is slightly high. Next,
deformable surface registration is performed again using the results
of ConvNets as its initialization. These steps are iterated for several
times. This strategy was shown to be effective in gradually decreas-
ing the error. On the other hand, the long training of the regressor
(200 epoch) wihout iteration improved MPJPE slightly but not as
much as iterative deform-and-learn.

7. Conclusion

We presented a deep learning technique for estimating 3D human
body shape and pose from a single color image. To that end, we
propose an iterative training approach that alternates between de-
formable surface registration and training of deep ConvNets, which
gradually improves accuracy of predictions by extracting and ag-
gregating 3D information from dense correspondences provided on
2D images. This approach allows us to learn 3D body shapes and
pose from 2D dataset only without having to use 3D annotations
that are in general expensive to obtain. In future work, we would
like to extend our segment scale model to incorporate anisotropic
scales and use multi-view images in training to improve accuracy.
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Figure 1: Qualitative results before refinement. From left to right: original image, overlay, 3D reconstruction results viewing from the
front and side. Our technique is able to recover body shape and pose from in-the wild images. Note that the viewing distance of the 3D
reconstruction does not exactly match with that of an input image.

Table 1: Comparisons with state of the art. MPJPE [mm] is used for error metric.

Full 3D supervision Semi 3D supervision Use external 3D data No 3D training data
HMR HoloPose Sun et al. Rhodin et al. HMR (unpaired) Kudo et al. Ours Ours

[KBJM18] [GK19] [SXLW17] [RSF18] [KBJM18] [KOMO18] (Mosh) (DensePose)
87.97 60.27 49.6 131.7 106.84 173.2 96.99 115.3

Figure 2: History of MPJPE with respect to the number of iter-
ations. Blue: MPJPE of ConvNet predictions on testing images;
Orange: MPJPE of cGANs predictions for testing; Gray: MPJPE
evaluations of registration results on training dataset.
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