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Abstract
Due to material properties, monocular depth estimation of transparent structures is inherently challenging. Recent advances
leverage additional knowledge that is not available in all contexts, i.e., known shape or depth information from a sensor.
General-purpose machine learning models, that do not utilize such additional knowledge, have not yet been explicitly evaluated
regarding their performance on transparent structures. In this work, we show that these models show poor performance on
the depth estimation of transparent structures. However, fine-tuning on suitable data sets, such as ClearGrasp, increases their
estimation performance on the task at hand. Our evaluations show that high performance on general-purpose benchmarks
translates well into performance on transparent objects after fine-tuning. Furthermore, our analysis suggests, that state-of-the-
art high-performing models are not able to capture a high grade of detail from both the image foreground and background at
the same time. This finding shows the demand for a combination of existing models to further enhance depth estimation quality.

CCS Concepts
• Computing methodologies → Computer vision; Shape inference;

1. Introduction

Monocular Depth Estimation (MDE) is closely linked to many
computer vision tasks like 3D Reconstruction, semantic segmen-
tation or object detection. With the rising popularity of Artificial
Neural Networks (ANN), multiple data sets and architectures have
been proposed to address this task. Transparent objects, due to their
reflective and refractive nature, pose a challenge in computer vision
in general and in MDE in particular.
Current research on transparent MDE leverages additional depth
information, like known shape, structured light or depth estimates
from an additional sensor. Since this information is not readily
available in most uncontrolled environments, we examine existing
techniques that do not require such additional information.
The main contribution of this work is a qualitative comparison of
the performance of state-of-the-art MDE models on small transpar-
ent objects like bottles and introducing the problematic that fine-
tuned models are unable to preserve details in the image foreground
and background at the same time on images that are captured in the
wild.

2. Related Work

Existing methods for MDE of transparent objects rely on addi-
tional information, such as an additional depth channel [SMP∗20,
ARS13, ZMX∗21], structured light [HWL15, QGY16], or known
object shape [KCB11, LR13, PLD16]. In contrast, multiple ANN

architectures for MDE use image data exclusively. These archi-
tectures focus on general-purpose MDE, i.e., opaque objects only.
Most of these approaches [AW18, GXSL18, CW19] leverage the
local feature processing of Convolutional Neural Networks (CNN).
Approaches using encoder-decoder architecture [AW18, FBAW21,
RBK21, AW18] have been shown to have good performance in
this context as well. Recent research [FBAW21, RBK21, YTD∗21,
CZHP21] applies model attention in terms of Vision Transformers
(ViT) and achieves superior results.

3. Methodology

Architectures. We examine architectures with high performance
on both the KITTI [GLSU13] and the NYUv2 [SHKF12] bench-
mark, i.e., LAPDepth [SLK21] and the attention-based architec-
tures AdaBins [FBAW21] and DPTHybird [RBK21]. DenseDepth
[AW18] is included as a reasonable baseline for our analysis being
an early-stage encoder-decoder architecture with comparably high
performance.

Data Sets. In this work, we employ the ClearGrasp [SMP∗20] data
set containing synthetic and real images depicting simple transpar-
ent and opaque objects with ground truth depth information. Their
synthetic data set is split into a training set (Syn-Train) containing
49,500 annotated images of 2-5 objects and a validation set (Syn-
known) with 500 images. Additionally they provide a synthetic test
set (Syn-novel) that consists of 407 images of 4 transparent objects,
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that have not been used in the other data sets.
They provide a real-world test set containing 113 images (Real-
novel). These images depict transparent objects which have not
been used in training and validation sets. Example images of the
test sets can be seen in Fig. 1 and Fig. 2.
In addition to the ClearGrasp data set we captured 30 images of
simple transparent and opaque objects, i.e., mugs and glassware,
on similar surfaces, i.e., tables. We refer to this data set as Real-
wild.

Training. We initialize pre-existing models in the state they
achieved their highest results on their respective benchmark. We
further refer to them as baseline models. These models are fine-
tuned using the Syn-train training set, further refered to as fine-
tuned models.
The architectures and the training and evaluation process are imple-
mented in PyTorch. For training we employ a learning rate accord-
ing to 1-cycle [ST19] with a maximum learning rate of 10−5. As a
loss function we use the pixel-wise Scale-Invariant loss (SI) [EF15]
with parameters chosen according to Bhat et al. [FBAW21] for all
models – partially deviating from the loss functions the models are
proposed with – in order to ensure a fair comparison.
The training process is terminated when the respective model’s loss
converges on the validation set consisting of Syn-known and Real-
known.

4. Evaluation

Baseline Model Performance. The baseline models differ in the
depth range they are trained to estimate from the ClearGrasp data
set. Therefore, a quantitative analysis of depth estimation quality
on the ClearGrasp test set is impractical. We employ a qualitative
comparison instead.
Figure 1 illustrates some exemplary depth estimations of the base-
line models on the ClearGrasp test sets. Note that the baseline ar-
chitectures have a different depth range and our experiment only
examines their near-field performance. Our investigations show,
that especially DenseDepth and LAPDepth, struggle with the depth
estimation of the transparent objects. In some cases, the baseline
models show reasonable results (Fig. 1a). In most cases however,
the objects are either not registered at all (Fig. 1a) or only the object
contours are reasonably estimated (Fig. 1b).
Overall, the presented results question the suitability of the baseline
models for the task at hand and therefore indicate that further fine-
tuning on a dedicated data set, i.e., ClearGrasp, might be beneficial
for their performance estimating the depth of transparent structures.

Fine-Tuned Model Performance. We compare the performance
of our models on the ClearGrasp Real-novel test set based on the
standard metrics used in previous work [EPF14]: percentages of
pixels with predicted depth within the intervals 1.05 (δ1), 1.10 (δ2)
and 1.25 (δ3), the median error relative to the depth (REL), root
mean squared error (RMS) and the logarithmic root mean squared
error(log10). Thereby, we distinguish between the performance on
the complete image (Table 1) and the performance on the regions
containing transparent objects (Table 2).
Our results indicate that the fine-tuned models’ performance shows
a similar tendency as their respective baseline models on the

NYUv2 and KITTI benchmark in both evaluated scenarios. This
indicates that performance on the general-purpose task is a good
predictor for the performance of the fine-tuned model. The superi-
ority of DPTHybrid and AdaBins suggest that ViT yield a relevant
performance overhead for MDE of transparent objects as well.
While the results are considerably worse on transparent regions
compared to the complete image, the comparative performance of
the evaluated models is similar in both scenarios. A qualitative
analysis (Fig. 2) further underlines the superiority of the fine-tuned
DPTHybrid model, which is the only model that preserves details
at the edges of transparent objects.

Real-novel δ1 ↑ δ2 ↑ δ3 ↑ REL↓ RMS↓ log10 ↓
DenseDepth [AW18] 0.661 0.852 0.946 0.260 0.189 0.094
LapDepth [SLK21] 0.575 0.918 0.989 0.203 0.163 0.096
AdaBins [FBAW21] 0.384 0.828 0.954 0.254 0.189 0.128

DPTHybrid [RBK21] 0.591 0.950 0.998 0.187 0.142 0.091

Table 1: Fine-tuned model performance on the ClearGrasp test set
for complete image.

Real-novel δ1 ↑ δ2 ↑ δ3 ↑ REL↓ RMS↓ log10 ↓
DenseDepth [AW18] 0.596 0.691 0.767 - 0.303 1.154
LapDepth [SLK21] 0.424 0.773 0.808 - 0.231 1.147
AdaBins [FBAW21] 0.296 0.690 0.777 - 0.229 1.162

DPTHybrid [RBK21] 0.416 0.781 0.811 - 0.219 1.143

Table 2: Fine-tuned model performance on the ClearGrasp test set
for transparent image areas.

In the Wild. Our Real-wild data set does not contain correspond-
ing depth information. Therefore, we conducted a qualitative anal-
ysis of the fine-tuned models. Exemplary images with their respec-
tive depth estimates are illustrated in Fig. 3.
Our analysis shows that DenseDepth and LAPDepth tend to gen-
erate noisy depth estimates in general. The fine-tuned DPTHybrid
model shows sharp estimates especially in the area of the objects’
edges. These results coincide with our previous findings.
We additionally observe, that fine-tuned DPTHybrid models are
not able to preserve details of the image background. In contrast
to that, our fine-tuned AdaBins model shows a high level of detail
in the image background, while its depiction of the objects in focus
is imprecise. While this finding is not supported by our analysis on
the ClearGrasp dataset, this could be caused by the relatively con-
trolled setup in which the ClearGrasp dataset is captured. Recent
research has shown the existence of a trade-off between consistent
scene structure and high-level details depending on the depth map
resolution [MDM∗21]. Our results indicate that this trade-off dif-
fers between different MDE architectures.

5. Conclusion

In our work, we evaluated the fitness of state-of-the-art MDE archi-
tectures for images including transparent objects. Models trained
on the KITTI and NYUv2 benchmark are not well suited for the
this task. Nevertheless, fine-tuning these models on data sets that
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Figure 1: Baseline models’ depth estimates on exemplary images of the ClearGrasp test sets.
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(c)

Image Ground Truth DenseDepth LAPDepth AdaBins DPTHybrid

Figure 2: Fine-tuned models’ depth estimates on exemplary images of the ClearGrasp test sets.
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Image DenseDepth LAPDepth AdaBins DPTHybrid

Figure 3: Fine-tuned models depth estimates for images from our Real-wild dataset
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explicitly contain transparent structures leads to significant perfor-
mance improvement. We found that a high performance on gen-
eral purpose benchmarks is a good predictor for high performance
of the performance of fine-tuned models for MDE of transparent
structures. Out of the examined architectures, a fine-tuned version
of DenseDepth showed highly superior performance.
Furthermore, our evaluation based on images captured in the
wild suggests, that the examined attention-based models (AdaBins,
DPTHybrid) are not able to generate depth estimates with a high
grade of detail in the image foreground as well as in the image
background. We therefore suggest a combination of these architec-
tures in order to further increase the performance for scenes that
include transparent structures.

Limitations and Future Work. Our examination is restricted by
the limited availability of data sets that offer reliable depth infor-
mation for transparent objects. Our results are restricted to a lim-
ited set of transparent objects, that are only captured in a relatively
small near-field distance range, due to the use of the ClearGrasp
dataset. Future research could investigate the merit of a combina-
tion of methods with high foreground and high background detail
preservation for the task at hand. Furthermore, the suitability of
state-of-the-art MDE models for special material properties such
as reflective or planar surfaces could be investigated in the future.
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