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Figure 1: From sparse, noisy point cloud and corresponding text, our method generates high-quality stylized output.

Abstract
We present Text2PointCloud, a method to process sparse, noisy point cloud input and generate high-quality stylized output.
Given point cloud data, our iterative pipeline stylizes and deforms points guided by a text description and gradually densifies
the point cloud. As our framework utilizes the existing resources of image and text embedding, it does not require dedicated
3D datasets with high-quality textures, which are produced by skillful artists or high-resolution colored 3D models. Also, since
we represent 3D shapes as a point cloud, we can visualize fine-grained geometric variations with a complex topology such
as flowers or fire. To the best of our knowledge, it is the first approach for directly stylizing the uncolored, sparse point cloud
input without converting it into a mesh or implicit representation, which might fail to express the original information in the
measurements, especially when the object exhibits complex topology.

CCS Concepts
• Imaging and Video → Computational Photography; Multi-View and 3D; Paint Systems;

1. Introduction

In this paper, we present a method to stylize 3D objects provided
as point cloud representation. 3D measurements of real-world are
provided in a point cloud format, including LiDAR, RGB-D cam-
eras, and multi-view stereo. Despite such accessibility, there are
few practical frameworks to directly edit the representation with
additional geometric or textural details on point cloud data. Point
clouds often have to be transformed into other representations (e.g.,
mesh, implicit representation) to allow high-quality visualization or
further geometric edits as it lacks structure or neighborhood infor-
mation. However, there still exist cases where it is hard to faith-
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fully retrieve a manifold representation of a scanned object. For ex-
ample, when the object exhibits complex topologies, such as flow-
ers, wrinkled clothes, or flames of fire, the conversion assuming a
water-tight surface often fails to express and visualize the objects.

Inspired by the remarkable results of recent text-driven manipu-
lations, we suggest a text-based tool to directly stylize point clouds
which can eventually visualize complicated topology with real-
istic colors. Leveraging the powerful joint embeddings of large-
scale images and texts provided by CLIP [RKH∗21], some pioneer
works [WCH∗22, MBOL∗22] successfully transform mesh or im-
plicit geometries into stylized objects without requiring 3D datasets
for training. We similarly stylize a noisy and sparse scan of an ob-
ject without manual inputs or transforming points into other rep-
resentations. Additionally, as point cloud can deform to detailed
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Figure 2: Overview of our framework.

structure variations free from manifold assumptions, our formula-
tion can further extend the stylization into objects exhibiting com-
plex topologies or entangled with narrow parts.

To improve the quality of style and geometry, we iterate between
stylization and upsampling processes. In every iteration, the upsam-
pling process densifies point samples and the stylization process
gradually improves style by concurrently denoising possible ran-
dom perturbations or upsampling artifacts of the unstructured point
clouds. To briefly elaborate, we represent the style as displacement
vectors and colors for individual points, which are queried from
neural style fields. The neural style fields are trained to enforce
style information with CLIP loss, which minimizes the feature-
space distance between the input style text and rendered images.
Additionally, it is trained to weakly bind the neighborhood infor-
mation using additional losses, such that the results prefer regular
point distribution forming locally coherent surfaces. Nonetheless,
the point clouds are free from fixed topology and our framework al-
lows non-manifold structures when preferred for the desired style.

In summary, we propose a method for the detailed stylization
of point cloud scans without converting the representations. Using
the large-scale language model, our method practically and easily
stylizes the given point cloud and does not require a dedicated 3D
dataset. Our framework can express fine-grained ornaments with
complex topology thanks to the property of point cloud, and stably
converges to high-quality geometry by an iterative method despite
sparse and noisy input.

2. Method

Given an uncolored point cloud Pin ∈ RN×3 and a simple text de-
scription of the desired style T , our approach stylizes the 3D point
cloud such that it can be rendered into colorful objects with fine-
grained details. The pipeline iterates between stylization and up-
sampling, as described in Fig. 2. The stylization utilizes StyleNet,
which is trained to deform and add colors to individual points such
that together they can be visualized with style defined in the in-
put text (Sec. 2.1). While StyleNet is updated in each iteration,
the subsequent upsampling is a pre-defined procedure. Upsampling
adds points respecting the current geometry of the object such that
the final results eventually produce a dense rendering of the object

(Sec. 2.2). After M iterations of learning StyleNet and upsampling,
we finally obtain a stylized, dense geometry derived from the input.

2.1. StyleNet
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Figure 3: Architecture of StyleNet

StyleNet is a neural network composed of two branches, where
they generate the color and displacement of each point, respec-
tively. The overall architecture is illustrated in Fig. 3. It first applies
the positional encoding of the xyz coordinates of the input points to
capture high-frequency details. Similar to Text2Mesh [MBOL∗22],
each point p passes through a shared network Ns and then goes
through separate branches that predict color Nc and displacement
Nd . We assume that the input color is neutral grey (0.5,0.5,0.5)
and the displacement is initialized as zero. The output of the net-
work adds an estimated color cp ∈ [−0.5,0.5]3 to the initial gray
color. Also, the displacement vector dp ∈ [−d,d]3 shifts the cur-
rent position. At each iteration step, the range of displacement d
gradually decreases to half from the initial range d0. Together the
entire point cloud is deformed with vivid colors.

2.1.1. Training Objective

For each iteration, StyleNet is trained with the combined loss
Lstyle +Lshape, where each term is the style loss Lstyle and the
shape regularization loss Lshape, respectively. The style loss lever-
ages the powerful CLIP feature space [RKH∗21] to induce the point
cloud to exhibit the desired style. Specifically, we render the point
cloud P with a differentiable renderer and obtain multi-view im-
ages I. The style loss compares the similarity in the joint embed-
ding space of the image I and text T

Lstyle (I,T ) = 1− sim(E1 (I) ,E2 (T )), (1)
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where E1 and E2 denote the pre-trained encoders for image and

text, respectively, and sim(x,y) = x⊤y
∥x∥2 ∥y∥2

is the cosine simi-

larity. We boost capturing details of various scales by generating
multiple images with random perspective transformation and crop
augmentation. The final Lstyle is calculated by the mean of clip
similarities of the input text compared against various images, in-
cluding the multi-view renderings and augmentation.

Additionally, we apply shape regularization, which holds the
points together into a coherent shape. The individual displace-
ments, as well as the subsequent stage of upsampling, result in
noisy distribution of points rather than a clean manifold surface.
While we intentionally allow independent displacements to visual-
ize shapes with complex topology, the loss eventually results in a
more realistic visualization of the stylized object by encouraging
the neighboring points to form a locally smooth surface. The shape
regularization loss is composed of three terms:

Lshape (P,Pin) = λuniLuni(P)+λproLpro(P)+λinLin(P,Pin). (2)

The first two terms, the uniform loss Luni and the projection loss
Lpro analyze the quality of the current point cloud being stylized P.
The uniform loss encourages the point cloud to be uniformly dis-
tributed and avoids irregular or sparse samples of points [LLF∗19].
Specifically, it minimizes the variation of the local point density,
which is estimated by comparing the numbers of points within
patches with the same projected area. The projection loss mini-
mizes the distance from a point to the estimated local surface such
that the points form a manifold-like distribution [YSW∗19]. The
last term of the shape regularization loss is the input loss, which
maintains the deformed points close to the original input measure-
ment. Specifically, it compares the Hausdorff distance [BLN∗13],
which calculates the distance of closest points between the de-
formed point cloud P and the input point cloud Pin.

Together, the shape regularization loss in Eq. (2) encourages reg-
ular samples of points that can be locally approximated as manifold
surfaces such that the rendering of the points is visually pleasing.
At the same time, the resulting shape does not severely deviate from
the original input shape. In the result section, we demonstrate that
the loss plays a critical role in faithfully stylizing the fine details
using unstructured point clouds.

2.2. Non-learnable Upsampling

The upsampling module creates additional points that preserve the
current distribution of points to further enhance the capacity for the
subsequent stylization step. The number of points is proportional
to the degree of freedom, and at the same time, it is the resolution
that decides the level of expressiveness for rendering geometric de-
tails. Orthogonal to our approach, we can obtain dense and com-
plete point samples of clean geometry by incorporating abundant
previous works on point cloud upsampling or shape completion [].

For upsampling, we first sample uniform points from the current
set of point P using the farthest point sampling. For each sampled
point, we find the K nearest points and create new points at the cen-
ters of the K points. Although this upsampling method may gener-
ate a spray of points with noise, the subsequent StyleNet effectively

corrects the distribution by modifying the displacements of points
with shape regularization loss. Our upsampling method mixes the
current point locations to generate additional points around them,
which is very fast. However, the naïve method can deteriorate the
quality of approximated geometry beyond the level that StyleNet
can handle when a significant number of new points are added.
Therefore, we progressively increase the number of points by γ

ratio at each iteration. We demonstrate the effect of our iterative
upsampling in the result.

3. Experiments

Our method can stylize and densify various sparse point cloud. For
all of our experiments, we render a stylized point cloud with point
cloud differentiable renderer [JRR∗20]. The point cloud P is scaled
to fit a unit box and is observed from a camera on a hemisphere with
a radius 2.0. The viewing angles are sampled from Gaussian distri-
bution with σ = π/4 around the front view of objects within the el-
evation angle of [10◦,80◦] and the azimuth angle of [0◦,360◦]. We
set M = 5,γ = 0.3,d0 = 0.05 and λuni = 1.0,λpro = 0.001,λin=0.1
as default. The hyperparameters can be set differently depending on
the degree of change desired. For all experiments, a text description
is set as “a 3D rendering of the [object] in unreal engine", where
[object] is replaced into the word specifying the input point cloud,
as shown in Fig. 2.
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Figure 4: Multi-view rendering results.

Figure 1 shows samples of stylization results of diverse objects
using our method. The input point cloud and the specified objects
of the text prompt are in the figure for reference. The input point
cloud is 4000 uncolored points sampled from meshes collected
from existing 3D datasets [Tur22, ZJ16]. Our method is capable
of generating fine-grained geometric variations that possess com-
plex topologies. Concurrently, we densify point cloud and generate
local details which reflect text descriptions while preserving orig-
inal geometric information. Our final output contains about 15000
colored points, which can be rendered to show a stylized 3D object.
Figure 4 shows multi-view renderings of the stylized outputs.

The benefits of using the point cloud are prominent when we
stylize objects to exhibit complicated topology. We compare our
stylization result against [MBOL∗22] where the initial 3D model
is in mesh representation in Fig. 5. While the fixed connectivity of
mesh inherently results in the predefined manifold structure, our
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Figure 5: Visual comparison with Text2Mesh [MBOL∗22].

representation is free to exhibit diverse topology of the surface de-
tails while maintaining locally smooth surfaces. Additionally, our
explicit point cloud representation enables faster rendering com-
pared to implicit representations.

3.1. Ablation Study
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Figure 6: Results of ablation study.

While it is difficult to faithfully generate object geometry from
unordered point cloud, our pipeline adapts iterative upsampling and
shape regularization for simple yet effective edits on the point cloud
without converting the representation. We compare the visual qual-
ity of stylized objects against ablated versions in Fig. 6. By com-
paring against the results without the iterative upsampling pipeline
(-iter.), we can deduce that our progressive upsampling module ef-
fectively creates dense points of the sparse input, which improves
the visual quality. Also, without the shape regularization loss for
StyleNet (-shape reg.), the overall shape of the object is severally
deteriorated as the points largely deviate from plausible geometry.

3.2. Results on Incomplete Data

Candy Chair Astronaut

Figure 7: Experiments on incomplete data.

Because our method directly stylizes point cloud input, it can be

applied to real-world 3D measurements. Figure 7 contains the styl-
ization results on real scanned data and manually mangled incom-
plete data. The input data for the left consists of noisy, sparse real
scanned points [UPH∗19], and the right consists of partial points
from the front side of the human [VRM∗17]. Starting from the
corrupted data, our method can still generate faithful styles. Note
that our upsampling module merely creates spurious points near the
boundaries of the missing parts, and we largely rely on the shape
regularization loss for high-fidelity details.

4. Conclusions

In this paper, we introduce Text2Pointcloud, a framework to styl-
ize and upsample the uncolored, sparse point cloud such that we
can render high-quality 3D rendering of the given text description.
While the point cloud can handle a wide variety of geometric de-
tails without connectivity constraints, it is challenging to maintain
a geometrically plausible structure. Our pipeline iterates between
gradually adding points and stylizing the object with the shape reg-
ularization loss. As a result, we can easily create dense samples of
objects that exhibit diverse and sophisticated decorations.
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