
EUROGRAPHICS 2023/ V. Babaei and M. Skouras Short Paper

Tight Bounding Boxes for Voxels and Bricks in a
Signed Distance Field Ray Tracer

H. Hansson-Söderlund and T. Akenine-Möller

Figure 1: The cubes in black outlines are the voxel extents and the blue regions are the trilinearly interpolated surfaces (Equation 1) inside the
voxels. With our novel method for computing tight bounding boxes (shown in red), we have measured substantial performance improvements
for ray tracing of signed distance field grids.

Abstract
We present simple methods to compute tight axis-aligned bounding boxes for voxels and for bricks of voxels in a signed distance
function renderer based on ray tracing. Our results show total frame time reductions of 20–31% in a real-time path tracer.

CCS Concepts
• Computing methodologies → Ray tracing; Volumetric models;

1. Introduction

Signed distance functions (SDFs) can be used to model impressive
scenes with simple geometrical objects as building blocks and us-
ing operators, such as union, intersection, smooth subtraction, and
smooth union [BBB∗97], on them. Several games have used SDFs
extensively, e.g., Claybook [Aal18] and Dreams [Eva15], but SDFs
are also used in game engines, such as Unreal Engine, to speed up
rendering. In this short paper, we focus on accelerating ray tracing
of the SDF grid, which consists of a collection of voxels with a
trilinearly interpolated surface in each.

In a single voxel with 2×2×2 signed distance values, si jk with
i, j,k ∈ {0,1}, the standard equation for trilinear interpolation is

f (x,y,z) = (1)

(1− z)
(
(1− y)

(
(1− x)s000 + xs100

)
+ y

(
(1− x)s010 + xs110

))
+z

(
(1− y)

(
(1− x)s001 + xs101

)
+ y

(
(1− x)s011 + xs111

))
,

where x,y,z ∈ [0,1]. Note that the surface f (x,y,z) = 0, which is
a third-order polynomial, inside a voxel is most often the one that
is desired, as can be seen in Figure 2. In a recent method for ray
tracing of SDF grids, the voxel extents were used as the bound-

x

y

z

s000

s111

s100

s010

s110

s001

s011

s101

Figure 2: A three-dimensional voxel with signed distances si jk at
the 2×2×2 voxel corners. A possible surface formed by trilinear
interpolation of the signed distances si jk is shown in blue.

ing box for a single voxel or brick of voxels in, e.g., the sparse
voxel set (SVS) and sparse brick set (SBS) data structures respec-
tively [HEAM22]. Reducing the size of a bounding volume (BV)
is an important performance optimization since the number of rays
likely to intersect it, is roughly proportional to the surface area of
the BV [MB90]. We present two improvements over previous work.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20231013 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6226-3170
https://doi.org/10.2312/egs.20231013

H. Hansson-Söderlund and T. Akenine-Möller / Tight Bounding Boxes for Voxels and Bricks in a Signed Distance Field Ray Tracer

The first is a novel technique to compute a tight axis-aligned bound-
ing box (AABB) around just the surface extents inside a voxel. See
Figure 1 for some examples. The second is to compute a tight box
around the surface inside a brick, where a brick is a group of, e.g.,
73 voxels. Our results show significant performance boosts.

2. Voxel Box Computation

Since the surface in Equation 1 is located in [0,1]3, we seek to
compute a tight bounding box defined by bmin ∈ [0,1]3 and bmax ∈
[0,1]3, such that bmin

i ≤ bmax
i , where i ∈ {x,y,z}. Scaling and trans-

lation can be applied to set the size and position afterward by e.g.,
transforming the intersecting ray. Note that there is a surface inside
the voxel only if at least one si jk ≥ 0 and one si jk ≤ 0.† We start by
describing how to compute the intersection point between the tri-
linearly interpolated surface inside a voxel and a voxel edge. Since
the surface reverts to linear interpolation in one variable along each
edge (set x = 0 and y = 0 in Equation 1, for example), there can
be at most one intersection along an edge. If the three-dimensional
point at the start of a voxel edge is p0 with signed distance s0 and
the end of the edge is p1 with signed distance s1, then the surface
(Equation 1) intersects the edge at

p = p0 + t(p1 −p0), where t =
s0

s0 − s1
∈ [0,1], (2)

if s0 ·s1 ≤ 0, i.e., they have the different signs or at least one of them
is zero. To avoid divisions by zero in Equation 2, i.e., when s0 is
equal to s1, we first perform careful initialization of bmin and bmax,
and do not evaluate Equation 2 when s0 == s1. This includes the
case where s0 = 0 and s1 = 0, which indicates that there is surface
along the entire edge, and as a consequence, that edge should be
included in the box.

For box initialization, we note that if either of the four signed dis-
tances on a quadrilateral face, e.g., x = 0 or x = 1, on the unit cube
is zero, then the corresponding bounding box coordinate should be
0 or 1 depending on which face it is. For the x-coordinate of the
tight bounding box, we express this efficiently as

bmin
x =

(
Z(s000) |Z(s001) |Z(s010) |Z(s011) == 1

)
? 0 : 1,

bmax
x =

(
Z(s100) |Z(s101) |Z(s110) |Z(s111) == 1

)
? 1 : 0,

(3)

where Z(t) is 1 if t is zero and otherwise it is 0, and | is binary OR.
Note that if bmin

x = 1 and bmax
x = 0 then that indicates an invalid

box. Similar computations are done for the y- and z-coordinates.

When the initialization of bmin and bmax has been taken care of,
they can be used in conjunction with the edge intersection points
to compute a tight axis-aligned bounding box (AABB) around only
the surface inside the voxel. This box can be found as the smallest
AABB around the initialized bmin & bmax, and all the existing edge
intersection points (Equation 2) between the surface (Equation 1)
and the 12 edges of the voxel. Next, follows a sketch of a proof of
this statement.

† We include the 0 in this comparison, because f (x,y, z) = 0 indicates that
(x,y, z) lies on the surface.

Proof Sketch

To start with, let us focus on a curve that is generated on a specific
voxel face, e.g., z = 0. The curve on that face is defined as

f (x,y) = (1− y)
(
(1− x)s000 + xs100

)
+ y

(
(1− x)s010 + xs110

)
= s000 + x(s100 − s000)+ y(s010 − s000 + kx) (4)

where x,y ∈ [0,1] and k = s110−s010−s100+s000. Some examples
are shown in Figure 3. Note that one can rewrite Equation 4 for
f (x,y) = 0 as

y =
−s000 − x(s100 − s000)

s010 − s000 + kx
. (5)

As can be seen in Figure 3, this curve is often split into two parts.
However, when s110 − s010 − s100 + s000 = 0, it reverts to a single
straight line.

Differentiating Equation 4 gives(
∂ f (x,y)

∂x
,

∂ f (x,y)
∂y

)
= (s100 − s000 + ky,s010 − s000 + kx) , (6)

i.e., both ∂ f/∂x and ∂ f/∂y are lines in y and x, respectively, with
the same coefficient k for y and x. This means that the curve f (x,y)
is monotonic, but it can be discontinuous (unless it is a straight line)
since the denominator in Equation 5 is a linear function in x and the
denominator will be equal to 0 for x = (s000 − s010)/k.

We argue that a tight two-dimensional axis-aligned bounding
box (AABB) of the curve on a voxel face is the smallest AABB
around the intersection points between the curve and the four voxel
edges. In the case of a straight line, it is definitely so. If only one
curved segment is inside the unit square (left and middle curves
in Figure 3), then that part of the curve must be bounded by the
intersection points between the curve and the voxel edges, since
the curve is monotonic (Equation 6). Two curved segments inside
the unit square can only occur when two opposite corners have the
same signs for their signed distances (si jk), while the other two cor-
ners have opposite signs compared to these first distances. In this
case, the tightest AABB on that voxel face is the entire voxel face,
i.e., an AABB around the intersection points between the curve and
voxel edges (right case in Figure 3).

Since any two-dimensional, axis-aligned slice of the voxel has
this behavior and since the curves are monotonic, it follows that a
tight three-dimensional AABB around the surface inside the voxel
can be found as the smallest AABB around the intersection points
between the surface and the voxel edges. Imagine, for example, all
the slices from z = 0 to z = 1. For this set of slices, all the intersec-
tion points will occur on the faces of the voxel box. However, as we
have seen, the extreme points on a voxel box occurs on the voxel
edges. This concludes our sketch for a proof.

3. Brick Box Computation

In the sparse brick set (SBS) data structure [HEAM22], an AABB
around each “brick” of voxels were used, and a bounding volume
hierarchy (BVH) [MOB∗21] built around those AABBs. A brick of
voxels could be, e.g., 7× 7× 7 voxels. The bounding box around
the entire brick was used, which was an oversight, since a sim-
ple improvement would be to compute the smallest AABB around

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

54

H. Hansson-Söderlund and T. Akenine-Möller / Tight Bounding Boxes for Voxels and Bricks in a Signed Distance Field Ray Tracer

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

y

−1.0

0.4

0.8

1.0

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

y

0.1

−0.4

1.0

−0.1

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

y

−0.5

−1.0

0.8

1.0

Figure 3: Examples of curves, generated using bilinear interpolation, on square voxel faces. The signed distances, which were used to
generate the curves in blue and gray are shown at the corners of the gray square. Note that the red bounding boxes can be found as the
smallest axis-aligned bounding box around the purple circles, which are intersection points between voxel face edges and the curve. The
asymptotes are drawn as dashed horizontal and vertical lines.

Figure 4: Here we show a two-dimensional brick consisting of
4 × 4 voxels containing a black curve. Previously, the box (red)
around the entire brick was used when building the bounding
volume hierarchy. One improvement is to instead compute a box
(green) around the non-empty voxels. We propose an even tighter
alternative shown as a dashed blue box. This is computed as the
smallest AABB around the tight voxel boxes (gray, dashed) from
Section 2.

the non-empty voxels. We improve upon this further by proposing
to compute tight bounding boxes for each non-empty voxel in the
brick using the method from Section 2. The final brick box is then
the smallest AABB around all these tight voxel boxes. This is il-
lustrated in Figure 4, and as can be seen, this has the potential to
generate even smaller bounding boxes.

4. Results

We have implemented our algorithm in the Falcor [KCK∗21] ren-
dering framework and compared to the methods by Hansson Söder-
lund et al. [HEAM22]. In particular, we compare to the sparse voxel
set (SVS) and the sparse brick set (SBS) data structures, where we
added the method from Section 2 to the former and the method
from Section 3 to the latter. In the SVS data structure, an AABB
is computed around each voxel and a BVH is built around all such

AABBs. This BVH is then ray traced using the GPU. In contrast,
the SBS data structure stores only one AABB around each brick
of voxels. In our case, a brick is 73 voxels, which is the same as
the SBS method by Hansson Söderlund et al. [HEAM22]. A BVH
is then built around all the brick AABBs and ray traced using the
GPU.

We have gathered results on both an NVIDIA RTX 3090 and
RTX 4090. Before measuring, rendering was done at full speed
for 180 seconds to warm up the GPU to avoid temporary high
frequency clocking. The camera was animated and measurements
done over 4,500 frames at 1920× 1080 pixels. All times are re-
ported in milliseconds and include path tracing, accumulation of
samples, and tone mapping.

The scenes that we used for evaluation are shown in Figure 5
where the grid resolution was 5123 for each object. Our perfor-
mance evaluation was done using only the root solver by Marmitt
et al. [MKWF04] and using only the interpolated continuous nor-
mals and fast shadow ray testing [HEAM22]. The other results from
Hansson Söderlund et al.’s work are expected to preserve the same
relations, and hence omitted. The main timing results are summa-
rized in Table 1.

On the RTX 3090, total frame time reductions were 20–31% for
SVS and 20–28% for the RTX 4090. For SBS, the reductions were
20–29% for the RTX 3090 and 20-27% for the RTX 4090. For such
a small modification, the performance improvement is rather sub-
stantial, in our opinion. The main results above for SBS were using
the method with the smallest AABBs that we could compute, i.e.,
using the method depicted with a blue dashed line in Figure 4. We
do not report full results for the method with the green box in Fig-
ure 4, and instead only note that it was about 3% slower than the
proposed method using the smallest AABBs.

5. Conclusions and Future Work

We have presented techniques to compute tight bounding boxes
for the surface inside a voxel defined by trilinear interpolation of

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

55

H. Hansson-Söderlund and T. Akenine-Möller / Tight Bounding Boxes for Voxels and Bricks in a Signed Distance Field Ray Tracer

RTX 3090 / RTX 4090 Goblin Heads Ladies
SVS [HEAM22] 12.7 / 5.8 25.0 / 9.5 23.0 / 8.9
SVS (ours) 10.1 / 4.6 17.2 / 6.8 16.2 / 6.5
Reduction 20.3% / 19.7% 31.2% / 28.0% 29.8% / 26.6%
SBS [HEAM22] 21.7 / 10.0 37.3 / 16.4 35.4 / 16.2
SBS (ours) 17.4 / 8.0 26.7 / 11.9 26.2 / 11.9
Reduction 19.9% / 20.0% 28.5% / 27.3% 26.0% / 26.2%

Table 1: Total frame times for the three scenes in Figure 5 rendered at 1920×1080 pixels. Times are reported in milliseconds. As can be seen,
our SVS variant with tighter bounding boxes reduces total frame time by 20–31% compared to the previous method, and our SBS variant
with tighter boxes reduces total frame time by 20-29%. Measurements were done on NVIDIA RTX 3090 / 4090. Note that the percentages
were computed using full precision and so do not always match if the percentage is computed directly from the numbers from the table.

signed distances at the voxel corners. In addition, a similar tech-
nique was presented for bricks, i.e., small blocks of voxels. When
averaging over two GPUs and three scenes, our SVS method gave
26% total frame time reduction. For SBS, the number was 25%.

For future work, adding an occupancy map [MDKH01] to SBS
might provide additional decrease in rendering time. An occupancy
map stores one bit indicating whether there is a surface in the cor-
responding voxel. This map is accessed first and additional voxel
data is read only if the occupancy map bit was one.

Acknowledgments Thanks to Brian Karis for tipping us off about the first
part of brick box computation.

References
[Aal18] AALTONEN S.: GPU-based Clay Simulation and Ray Tracing

Tech in Claybook. In Game Developers Conference (2018). 1

[BBB∗97] BLOOMENTHAL J., BAJAJ C., BLINN J., WYVILL B., CANI
M.-P., ROCKWOOD A., WYVILL G.: Introduction to Implicit Surfaces.
1997. 1

[Eva15] EVANS A.: Learning from Failure: a Survey of Promising, Un-
conventional and Mostly Abandoned Renderers for Dreams PS4, a Geo-
metrically Dense, Painterly UGC Game. In Advances in Real-Time Ren-
dering in Games, SIGGRAPH Courses (2015). 1

[HEAM22] HANSSON SÖDERLUND H., EVANS A., AKENINE-
MÖLLER T.: Ray Tracing of Signed Distance Function Grids. Journal of
Computer Graphics Techniques 11, 3 (September 2022), 94–113. URL:
http://jcgt.org/published/0011/03/06/. 1, 2, 3, 4

[KCK∗21] KALLWEIT S., CLARBERG P., KOLB C., YAO K.-H., FOLEY
T., WU L., CHEN L., AKENINE-MÖLLER T., WYMAN C., CRASSIN
C., BENTY N.: The Falcor Rendering Framework, August 2021. URL:
https://github.com/NVIDIAGameWorks/Falcor. 3

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for Ray Tracing
using Space Subdivision. The Visual Computer 6, 3 (1990), 153–166. 1

[MDKH01] MEISSNER M., DOGGETT M., KAMUS U., HIRCHE J.:
Accelerating Volume Rendering using an On-chip SRAM Occupancy
Map. In IEEE International Symposium on Circuits and Systems (2001),
pp. 757–760. 4

[MKWF04] MARMITT G., KLEER A., WALD I., FRIEDRICH H.: Fast
and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray
Tracing. In Vision, Modeling, and Visualization (2004), pp. 429–435.
3

[MOB∗21] MEISTER D., OGAKI S., BENTHIN C., DOYLE M. J.,
GUTHE M., BITTNER J.: A Survey on Bounding Volume Hierarchies
for Ray Tracing. Computer Graphics Forum 40, 2 (2021), 683–712. 2

G
ob

lin
L

ad
ie

s
H

ea
ds

Figure 5: The test scenes used for performance evaluation. The
performance measurements were done using path tracing at one
sample per pixel with three bounces and one square light source.
However, the images here have converged by accumulating samples
for each pixel over consecutive frames.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

56

http://jcgt.org/published/0011/03/06/
https://github.com/NVIDIAGameWorks/Falcor

