
EUROGRAPHICS 2023/ V. Babaei and M. Skouras Short Paper

Automatic Step Size Relaxation in Sphere Tracing

Róbert Bán and Gábor Valasek

Eötvös Loránd University, Hungary
{rob.ban, valasek}@inf.elte.hu

Figure 1: Comparison of average step counts until convergence (top row) and the number of fallbacks to sphere trace steps due to disjoint
unbounding spheres (bottom row) between enhanced sphere tracing with ω = 0.88 (left), relaxed sphere tracing using ω = 1.5 (center), and
our proposed auto-relaxed sphere tracing with β = 0.3 (right). Green is better, red denotes a high number of occurances.

Abstract
We propose a robust auto-relaxed sphere tracing method that automatically scales its step sizes based on data from previous
iterations. It possesses a scalar hyperparemeter that is used similarly to the learning rate of gradient descent methods. We
show empirically that this scalar degree of freedom has a smaller effect on performance than the step-scale hyperparameters
of concurrent sphere tracing variants. Additionally, we compare the performance of our algorithm to these both on procedural
and discrete signed distance input and show that it outperforms or performs up to par to the most efficient method, depending
on the limit on iteration counts. We also verify that our method takes significantly fewer robustness-preserving sphere trace
fallback steps, as it generates fewer invalid, over-relaxed step sizes.

CCS Concepts
• Computing methodologies → Ray tracing; Shape modeling;

1. Introduction

Signed distance functions (SDF) are versatile scene descriptions
used in a wide variety of applications, such as collision detec-
tion, physical simulation [MEM*20], auxiliary [Wri15] and pri-
mary shape representation [Aal18]. Our paper focuses on the ef-
ficient rendering of scenes defined by SDFs. The input SDF may
be continuous, e.g. procedural, or discrete, where the SDF values
are stored in a 3D texture.

We propose a method that uses automatic step size relaxation to
speed up sphere tracing in high performance rendering scenarios.
Our solution is inspired by gradient methods with momentum em-
ploying exponential decay. It offers a hyperparameter, however, its
effect on the performance of the method is smaller than the hyper-
parameters of other investigated rendering algorithms.

We provide a brief summary of the most efficient sphere tracing
methods in Section 2, focusing on algorithmic descriptions.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20231014 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8266-7444
https://orcid.org/0000-0002-0007-8647
https://doi.org/10.2312/egs.20231014

R. Bán, G. Valasek / Automatic Step Size Relaxation in Sphere Tracing

Section 3 describes our proposed auto-relaxation sphere tracing
algorithm. We compare it to three sphere tracing variants in Section
4 and summarize our findings in Section 5.

2. Background and Related Work

An f : R3 → R function is a distance function if

f (xxx) = d(xxx,{ f = 0}) = inf{|xxx− yyy| | f (yyy) = 0} , (1)

holds and f is a signed distance function if it is continuous and its
absolute value, | f |, is a distance function. We assume that the SDF
is negative for interior and positive for exterior points.

Let ppp0 ∈R3,vvv ∈R3 denote a ray starting point and direction. Let
us parametrize the ray as sss(t) = ppp0 + tvvv (t ≥ 0). Then the basic
ray-surface intersection problem is to find the smallest t ≥ 0 ray
parameter such that f (sss(t)) = 0.

The common input arguments for all discussed tracing algo-
rithms are the f : R3 → R SDF, the sss : R+→ R3 ray, and the ter-
mination parameters ε ∈ R+, tmax ∈ R+ and imax ∈ N+. Possible
stopping conditions: a) surface hit, b) miss, c) non-converged.

The SDF returns the signed distance to the closest boundary
point. Hart showed in [Har96] that this property facilitates effi-
cient and robust rendering of exact and lower bound SDF functions.
The key observation was that the interior of the sphere centered at
xxx ∈ R3 with radius | f (xxx)| may not contain boundary or interior
points of any volume in the scene if f (xxx) > 0. Thus, f (xxx) is a safe
stepping distance. We refer to these spheres as unbounding spheres.
Algorithm 1 summarizes the method.

Algorithm 1 Hart’s sphere trace algorithm

1: Input: f : R3 → R SDF; sss : R→ R3 ray; ε, tmax ∈ R+, imax ∈
N+ termination conditions

2: Output: t ≥ 0 ray parameter of intersection
3:
4: t := 0, r := 0, i := 0
5: repeat
6: r := f (sss(t))
7: t := t + r
8: i := i+1
9: until r ≤ ε ∨ t ≥ tmax ∨ i ≥ imax

Keinert et al. [KSK*14] proposed a step-size over-relaxation-
based method to speed up sphere tracing, shown in Algorithm 2.
They use an ω ∈ [1,2) constant step size multiplier during trace
and fall back to a traditional sphere trace step if the next guess pro-
duces an unbounding sphere that is disjoint from the previous one.

Bálint et al. [BV18] use data from the current and previous steps
to construct a linear approximation to the SDF function along the
ray and use it to infer the closest ray parameter where the unbound-
ing sphere is tangent to the current one. This is an optimal step
size if the approximated surface is planar. A basic sphere trace step
is taken if the unbounding sphere at the guess is disjoint from the
current one. This is summarized in Algorithm 3.

We refer to Hart’s algorithm as basic, Keinert et al.’s as relaxed,
and Bálint et al.’s as enhanced sphere tracing, similarly to [BV18].

Algorithm 2 Keinert’s relaxed sphere trace algorithm

1: Input: f : R3 → R SDF; sss : R→ R3 ray; ε, tmax ∈ R+, imax ∈
N+ termination conditions; ω ∈ [1,2) relaxation parameter

2: Output: t ≥ 0 ray parameter of intersection
3:
4: t := 0, r := 0, i := 0, z := 0
5: repeat
6: T := t + z, R := f (sss(T)) ▷ Try the calculated step
7: if z ≤ r+ |R| then ▷ Check if the step is correct
8: z := ω ·R ▷ Calculate next step
9: t := T, r := R ▷ Apply current step

10: else ▷ If the step is not correct,
11: z := r ▷ revert to basic ST step
12: end if
13: i := i+1
14: until r ≤ ε ∨ t + r ≥ tmax ∨ i ≥ imax

Algorithm 3 Bálint and Valasek’s enhanced sphere trace algorithm

1: Input: f : R3 → R SDF; sss : R→ R3 ray; ε, tmax ∈ R+, imax ∈
N+ termination conditions; ω ∈ (0,1] relaxation parameter

2: Output: t ≥ 0 ray parameter of intersection
3:
4: t := 0, r := f (sss(t)), i := 1, z := r
5: while r > ε ∧ t + r < tmax ∧ i < imax do
6: T := t + z, R := f (sss(T)) ▷ Try the calculated step
7: if z ≤ r+ |R| then ▷ Check if the step is correct
8: z := R+ω ·R T−t+R−r

T−t−(R−r) ▷ Calculate next step
9: t := T, r := R ▷ Apply current step

10: else ▷ If the step is not correct,
11: z := r ▷ revert to basic ST step
12: end if
13: i := i+1
14: end while

3. Automatic relaxation

Our proposed method uses a step calculation akin to [BV18]. The
idea is based on the observation that the optimal step size for planes
is characterized as follows. If we take a step and evaluate the SDF,
the unbounding sphere at the new position should overlap with the
previous one to ensure that the line segment between the two sphere
centers is disjoint from the volume. The largest such step is maxi-
mal when the two spheres are tangential, i.e. they touch. For planes,
the SDF along the ray is a linear function of the ray parameter:

F(t) := f (sss(t)) = m · t +b (2)

This function can be calculated from two evaluations of the SDF
along the ray. Let t0, t1 ∈ R+ denote ray parameters, t0 ̸= t1, and
r0 = F(t0),r1 = F(t1) distance values. Then

m =
r1 − r0
t1 − t0

and b =
r0t1 − r1t0

t1 − t0
. (3)

The optimal step would move to a t2 with r2 = F(t2) where t1 +
r1 = t2 − r2 holds. Solving for t2, we get t2 = t1 + 2r1

1−m .

This is the same step size as in line 8 of Algoritm 3 if ω = 1.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

58

R. Bán, G. Valasek / Automatic Step Size Relaxation in Sphere Tracing

Algorithm 4 Our proposed auto-relaxation sphere trace algorithm

1: Input: f : R3 → R SDF; sss : R→ R3 ray; ε, tmax ∈ R+, imax ∈
N+ termination conditions; β ∈ (0,1) exponential averaging
coefficient

2: Output: t ≥ 0 ray parameter of intersection
3:
4: t := 0, r := f (sss(t)), i := 1, z := r, m :=−1
5: while r > ε ∧ t + r < tmax ∧ i < imax do
6: T := t + z, R := f (sss(T)) ▷ Try the calculated step
7: if z ≤ r+ |R| then ▷ Check if the step is correct
8: M := R−r

T−t
9: m := (1−β)m+βM

10: t := T, r := R ▷ Apply current step
11: else ▷ If the step is not correct,
12: m :=−1 ▷ revert to basic ST step
13: end if
14: z := 2r

1−m ▷ Calculate next step
15: i := i+1
16: end while

Figure 2: The ratio of non-converged (active) pixels as a func-
tion of step counts, measured on the Temple Scene [TGM22].
Smaller numbers are better. Our auto-relaxed sphere tracing
method (green) performs up to par with enhanced sphere tracing
(ω = 0.88) and outperforms it on smaller step counts (12-30).

In general, this step is too large, e.g. if the input is not a plane or
not convex. In [BV18], this is solved by adding an ω < 1 constant
relaxation parameter. Instead, we propose to use a dynamic multi-
plier, inspired by how gradient methods with momentum accumu-
late gradients via exponential averaging. Our algorithm keeps track
of the approximate slope m, and we update the approximation us-
ing slope M, calculated from the last and the current step. The new
value of m is the linear interpolant of m and M with the exponential
averaging coefficient β ∈ (0,1):

m := (1−β)m+βM (4)

After updating m, we use it to calculate the optimal step as de-
scribed above. When we need to perform a basic sphere trace step
due to an incorrectly large step, we reset m to its initial value. A
value of −1 means that the step size will be exactly the SDF value.
The geometrical interpretation of m =−1 is that the ray is perpen-
dicular to the plane and we reach it in exactly one step.

Figure 3: The performance implications of using different trace
hyperparameters, relative to sphere tracing on the 10243 discrete
Temple SDF with and without shadows. Parameter ranges: β ∈
(0, 1

2] – auto-relaxed, ω ∈ [1
2 ,1) – enhanced, ω ∈ [1,2] – relaxed

sphere tracing.

4. Test Results

We implemented the sphere tracing algorithms in the Falcor
[KCK*22] framework, using its DX12 backend. Our code is
available on GitHub: https://github.com/Bundas102/
auto-relaxed-trace.

We did detailed performance measurements for our proposed
auto-relaxed sphere tracing (AR) method on two scenes from the
SDF dataset [TGM22], the Girl and Temple models, using the cam-
era positions shown on Figure 4. The tests were run on the origi-
nal procedural function SDFs and their discrete versions – sampled
into 10243 resolution 3D textures. We placed one point light source
in the scene for which we traced hard shadows. We compared our
method to basic (ST) [Har96], enhanced (ENH) [BV18], and re-
laxed (REL) [KSK*14] sphere tracing. The following table sum-
marizes our measurements. Average frame times (avg) are in mil-
liseconds, rel denotes the ratio of the given method of the row wrt.
enhanced sphere tracing. Timings were taken on an AMD Radeon
RX 5700. We set the iteration count cap at 1000 steps.

Temple Girl

Procedural Discrete 10243 Procedural Discrete 10243

avg rel avg rel avg rel avg rel

ST 39.39 125% 8.50 112% 15.66 109% 5.54 102%
ENH 31.57 100% 7.60 100% 14.31 100% 5.43 100%
REL 1.2 33.36 106% 7.21 95% 13.97 98% 5.18 95%
REL 1.5 31.06 98% 6.46 85% 14.24 100% 4.93 91%
AR 0.3 29.79 94% 6.19 81% 12.88 90% 4.71 87%
AR 0.2 29.79 94% 5.99 79% 12.98 91% 4.72 87%

Enhanced sphere tracing [BV18] used the ω = 0.88 relaxation
parameter. It was handicapped by the high iteration count, as a sin-
gle step of this method is more ALU intensive than a step of relaxed
sphere tracing. On 32 steps, it was consistently better than relaxed
sphere tracing and our method was only about 2-6% faster.

Relaxed sphere tracing [KSK*14] was sensitive to the relaxation
parameter ω∈ [1,2) but performed well after adjustments. We man-
ually searched for two values that performed consistently good over
scenes. Still, it can be seen on the Girl scene that while ω = 1.2 per-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

59

https://github.com/Bundas102/auto-relaxed-trace
https://github.com/Bundas102/auto-relaxed-trace

R. Bán, G. Valasek / Automatic Step Size Relaxation in Sphere Tracing

Figure 4: Test scenes used in our performance measurements from [TGM22].

Figure 5: Average magnitude of step size multipliers
computed by our auto-relaxation method with β = 0.3.
Black to white encodes step size multipliers from 1 to 2.

formed better on procedural input, ω = 1.5 was preferable on dis-
crete input and they were 10% apart on the discrete Temple scene.

On the other hand, the two best manually selected parameters
(β = 0.2 and 0.3) of our method stayed within 2% of each other
and it consistently outperformed the other sphere tracing variants.

Figure 1 shows the behavior of the compared methods in terms of
convergence speed and fallback counts. Fallbacks happen when the
step size was over-relaxed and the new and previous unbounding
spheres do not intersect. The larger the green areas on the heatmaps
are, the better the given method is in the sense of trace steps (top
row) and the number of times a fallback had to be taken (bottom
row). Figure 2 shows how the ratio of non-converged pixels is dis-
tributed over the number of iterations.

Figure 3 shows how the hyperparameters of the methods affect
the render performance on the Temple scene. Frame time measure-
ments are relative to basic sphere tracing with and without shadows.

5. Conclusions

We presented a sphere tracing variant that employs exponential de-
cay to automatically track the slope of the signed distance function
along the ray that is used to compute a step size multiplier. The al-
gorithm is made robust by taking a sphere tracing step whenever
over-relaxation results in disjoint unbounding spheres, as proposed
in Keinert et al.’s method [KSK*14].

We verified in various scenes that the exponential combination
yields significantly fewer sphere trace fallbacks compared to en-
hanced [BV18] and relaxed [KSK*14] sphere tracing and per-
formed detailed measurements on two scenes. These showed that
auto-relaxed sphere tracing performs 6-19% better than enhanced
and 4-5% faster than relaxed sphere tracing with 1000 iteration
caps. On smaller iteration limits, such as 32, it performs similarly
to enhanced sphere tracing, both outperforming relaxed sphere trac-
ing. This suggests that the increased arithmetic computational re-
quirements of our algorithm per iteration are masked by the less
frequent occurrences of fallbacks.

The tests also showed that our method is less sensitive to the co-
efficient of exponential averaging, while relaxed sphere tracing re-
quires manual adjustment of its step multiplier to individual scenes.

As such, our algorithm is applicable in both high and low itera-
tion count configurations, matching and slightly outperforming the
respective best method under the given circumstances. If manual
tweaking of relaxation parameters is not feasible, our method pro-
vides more convenient automatic high performance rendering with
a β = 0.3 parameter.

Acknowledgement

Supported by the ÚNKP-21-3 New National Excellence Program
of the Ministry for Innovation and Technology from the source of
the National Research, Development and Innovation Fund.

We would like to thank Visual Concepts for providing the AMD
GPU used in the tests.

References
[Aal18] AALTONEN, SEBASTIAN. “GPU-based clay simulation and ray-

tracing tech in Claybook, Game Developers Conference 2018”. Game
Developers Conference. San Francisco, CA, Mar. 2018 1.

[BV18] BÁLINT, CSABA and VALASEK, GÁBOR. “Accelerating Sphere
Tracing”. EG 2018 - Short Papers. Ed. by DIAMANTI, OLGA and VAX-
MAN, AMIR. The Eurographics Association, 2018 2–4.

[Har96] HART, JOHN C. “Sphere Tracing: A Geometric Method for the
Antialiased Ray Tracing of Implicit Surfaces”. The Visual Computer 12
(1996), 527–545 2, 3.

[KCK*22] KALLWEIT, SIMON, CLARBERG, PETRIK, KOLB, CRAIG, et
al. The Falcor Rendering Framework. https : / / github . com /
NVIDIAGameWorks/Falcor. Aug. 2022 3.

[KSK*14] KEINERT, BENJAMIN, SCHÄFER, HENRY, KORNDÖRFER, JO-
HANN, et al. “Enhanced Sphere Tracing”. Smart Tools and Apps for
Graphics - Eurographics Italian Chapter Conference. Ed. by GIA-
CHETTI, ANDREA. The Eurographics Association, 2014. ISBN: 978-3-
905674-72-9 2–4.

[MEM*20] MACKLIN, MILES, ERLEBEN, KENNY, MÜLLER,
MATTHIAS, et al. “Local Optimization for Robust Signed Dis-
tance Field Collision”. Proc. ACM Comput. Graph. Interact. Tech. 3.1
(May 2020) 1.

[TGM22] TAKIKAWA, TOWAKI, GLASSNER, ANDREW, and MCGUIRE,
MORGAN. “A Dataset and Explorer for 3D Signed Distance Functions”.
Journal of Computer Graphics Techniques (JCGT) 11.2 (Apr. 2022), 1–
29. ISSN: 2331-7418 3, 4.

[Wri15] WRIGHT, DANIEL. “Dynamic Occlusion with Signed Distance
Fields”. Advances in Real-Time Rendering in Games. Epic Games (Un-
real Engine). SIGGRAPH, 2015 1.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

60

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor

