
EUROGRAPHICS 2024/ P. Charalambous and R. Hu Short Paper

FACTS: Facial Animation Creation using the Transfer of Styles

J. R. Saunders & V. P. Namboodiri

Univeristy of Bath, UK

Abstract
The ability to accurately capture and express emotions is a critical aspect of creating believable characters in video games and
other forms of entertainment. Traditionally, this animation has been achieved with artistic effort or performance capture, both
requiring costs in time and labor. More recently, audio-driven models have seen success, however, these often lack expressiveness
in areas not correlated to the audio signal. In this paper, we present a novel approach to facial animation by taking existing
animations and allowing for the modification of style characteristics. We maintain the lip-sync of the animations with this method
thanks to the use of a novel viseme-preserving loss. We perform quantitative and qualitative experiments to demonstrate the
effectiveness of our work.

CCS Concepts
• Computing methodologies → Animation; Machine learning;

1. Introduction

Digital humans are a crucial component of the entertainment in-
dustry, and there is an increasing demand for high-quality facial
animations to drive them. Traditional methods of facial animation
are time-consuming and require significant artistic skill. As a result,
new approaches are needed to generate large quantities of high-
quality facial animations at scale. A popular alternative is the use
of performance capture. This allows for large volumes of animation
but is still a time-consuming process. While some attempts have
been made to democratize this process by allowing for performance
capture with consumer-grade devices, these methods still have limi-
tations. Another approach to facial animation is the generation of
animations from audio, which requires only speech as input and pro-
duces animations. As such methods are in their infancy, they often
lack quality due to suppressing motion not directly correlated with
audio. We propose an alternative solution for generating animations.
Our solution, FACTS, involves taking existing animations and alter-
ing stylistic characteristics to create new animations. The result is an
order-of-magnitude reduction in the amount of animation that needs
to be captured. We define two types of style: emotional and idiosyn-
cratic. Emotional style refers to the changes in a character’s facial
expressions and movements that correspond to different emotional
states, while idiosyncratic style refers to the unique mannerisms of
a character. While our approach considers only these two forms of
style, it is expected to generalize to arbitrary styles, as long as there
is sufficient and diverse data available for that particular style.

Our proposed method is a many-to-many style transfer method
using a modified StarGAN. [CCK∗18]. We employ cycle consis-
tency [ZPIE17] to learn style mappings without paired data, result-
ing in a more efficient and flexible approach to animation production.

This is particularly important, as it would be impossible to obtain
perfectly synchronized paired data in different styles. Additionally,
we ensure the temporal consistency of our animations by treating
rig controls as a time series and incorporating temporal information
using a recurrent layer.

Related works have attempted to perform style transfer for fa-
cial animation, in particular using cycleGAN on a per-frame basis
[MD19]. However, without any temporal modelling this leads to in-
stability. More recent work addresses this with an LSTM [KEZ∗19].
Nonetheless, such attempts to edit style led to a distinct loss in
lip-sync quality. In particular, lip contact during /m/, /b/ and /p/
phonemes is not preserved. Our work, by contrast, introduces a
novel viseme preservation loss, improving lip-sync. This enables
us to produce high-quality animations that are synchronized with
audio. In summary, the contributions of this work are:

(1) A methodology for producing new animations by altering style
characteristics. (2) An adaptation of the StarGAN that works for
animation data and can alter multiple styles with a single network.
(3) A novel viseme preserving loss that enables lip-sync without
constraining the expressiveness of the mouth.

2. Method

Given an animation x, represented as a sequence of MetaHuman rig
controls, our proposed method aims to generate a new animation
x′ with the desired style s′ while preserving the content of x. We
adopt the StarGAN framework [CCK∗18] as the basis of our method,
which consists of a generator network G and a discriminator network
D. The generator network takes both the input animation x and the
target style label s′ as input, and outputs the new animation x′ =
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Figure 1: Overview of the FACTS pipeline, including the losses used in training this model. We take an input animation sequence and target
style label and produce novel animations in that style using the generator G. We then recover the original animation by passing the novel
animation and original style label to G giving the cycle consistency loss Lcc. The discriminator D gives adversarial LD and classification
losses Lcls, while the retained viseme classifier V gives the loss LV which helps preserve lip-sync.

G(x,s′). The discriminator network has two parts: a critic part Dcrt
that distinguishes between real and fake data, and a classification
part Dcls that predicts the style label of the input data. Specifically,
the critic part outputs a scalar value ŷ =Dcrt(x) that measures the
realism of the input data, while the classification part outputs a
probability distribution ŝ = Dcls(x) over all possible style labels.
We represent our data as a time series by concatenating the per-frame
vectors of animation controls over a temporal window of length T .
This results in sequential data of the form x ∈ RT×N , where N is
the dimensionality of the per-frame vector. Our method maintains
temporal consistency with the use of a recurrent layer, and lip-sync
through our novel viseme preserving loss 2.2.1.

2.1. Network Architecture

The generator and discriminator share similar high-level architec-
tures. Each consists of an encoder that maps per-frame rig con-
trols to a higher-dimensional latent space, a recurrent, GRU layer
[CvMBB14] to incorporate temporal information, and a decoder to
map from the latent space to the desired domain. The encoders and
decoders both make use of residual layers and dropout.

The generator takes as input a sequence of rig controls x ∈ T×N
and a categorical style code s′ ∈ {0,1}C, where any present styles
are represented as a 1, and outputs a new sequence. This is done by
first repeating the style code over the time axis and concatenating it
to the sequence (see Figure 1). This concatenated sequence is then
fed through the encoder, recurrent and decoder layers. We include a
skip connection for better convergence. The discriminator is similar
but it does not take a style code and has no skip connection.

2.2. Losses

Cycle Consistency: With facial animations, it is nearly impossible
to get paired data, as this would require a frame-to-frame correspon-

dence between animations of different styles. The cycle consistency
loss, first introduced for the CycleGAN [ZPIE17] enables us to
overcome this barrier by using unpaired data. We can apply a new
style s′ to an animation x to obtain x′ and then reapply the original
style code s to form a cycle. The cycle consistency loss is then the
difference between x and the cycle. This loss encourages the genera-
tor to only change attributes associated with style, and to preserve
the content as much as possible. In contrast to the original work,
we compute this loss using an ℓ2 norm rather than ℓ1 as it is better
suited in this domain.

Classification Loss: Given an animation sequence x and style
label s′ we want the generator to produce a new animation x′ that
has the style characteristics of s′. We are able to do this using the
classification branch of D. This classifier should be capable of cor-
rectly identifying the style code s′. Simultaneously, the generator
should be encouraged to produce sequences that the classifier iden-
tifies as having the desired style. This means we must decompose
the classification loss Lcls into two components. The first of these
components is used to train Dcls to correctly label the styles of the
real training data. The second component of this loss is for training
G to produce sequences that are labeled correctly. Both losses are
computed using cross entropy.

Adversarial Loss: In addition to creating animations with a
desired style, the generator needs to produce animations that appear
realistic. This is achieved through an adversarial loss. We do not
use the adversarial loss first defined for GANs, but a Wasserstein
loss with gradient penalty [ACB17, GAA∗17]. Such a loss has been
shown to improve the stability of the GAN during training.

2.2.1. Preserving Lip-Sync

Any animation style transfer method must preserve the motion of
the lips in such a way that they remain synchronised to audio. This is
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a challenging task as even small errors can lead to the lips appearing
out of sync. Previous work has [KEZ∗19] addressed this by using a
cosine mouth loss to preserve the general shape of the mouth. How-
ever, such a method will not work in our case as we require the shape
of the mouth to vary with style. For example, applying a happy style
should be expected to pull the corners of the mouth into a smile.
Ideally, we would use the audio to encourage lip sync. However, we
do not alter the style of the audio, so any naive attempt to match ani-
mation to audio would work against the style transfer. Specifically,
consider an expert discriminator trained with contrastive learning,
as is common in the 2D domain [PMNJ20]. If we were to train
such a model using stylised data, all in-sync pairs would have the
same style. Such a discriminator would then only recognise data as
in-sync if it had the same style. Say, for example, we then wanted
to convert happy to sad and used this expert discriminator, the ex-
pert loss would encourage the model to output happy animation to
maintain its notion of sync. To overcome this limitation, we need a
style-independent representation of speech. For this we use visemes,
the visual counterpart to phonemes. The goal is to produce a net-
work that predicts visemes from animation which can be used as an
additional loss for the generator. To do this, we first use a pre-trained
phoneme classifier [GNZ∗21] to predict phonemes from audio. This
model is based on Wav2Vec2 [BZMA20] and finetuned to predict
phonemes. This classifier takes as input raw waveforms and outputs
unnormalised log probability for 392 phoneme tokens over temporal
windows of 0.02s. We then resample the outputs to 60Hz using
linear interpolation. This gives us phoneme probabilities for each
frame in our animations. Multiple phonemes are expressed with the
same mouth shape, so we use a phoneme-to-viseme map [Pho] to
obtain per-frame predictions of 16 visemes from audio.

Next we train a neural network classifier V : RT×N → RT×16 to
predict the visemes from the animation curves alone. Such a network
has a few advantages. The classifier takes in only animation data
and does not require audio, therefore it can be applied to animations
created by the generator which do not have corresponding audio. It
also predicts visemes independent of speaker identity and emotion,
giving a fixed measure of lip shape that can be preserved by the gen-
erator. The network has a similar architecture to the discriminator
network, with an encoder, GRU layer, and decoder. The only dif-
ference is that the final linear layer has different output dimensions
to match the number of visemes. We can then use this network to
derive the viseme-preserving loss, which is simply the cross-entropy
between the viseme classifications of the real sequences x and the
viseme classifications of the generated sequences G(x,s′). The loss
encourages the generator to produce sequences with the same mouth
shapes as the input sequence, without constraining the style.

3. Results

3.1. Data

Our dataset consists of a total of 30 minutes of animations across
MetaHuman rigs. The animations are obtained using head-mounted
cameras with a custom solver designed by Cubic Motion [Ree22].
Each actor is asked to record a series of seven phonetic pangrams,
covering all phonemes. These consist of spoken sentences in the
desired emotion. Three emotions are chosen: happy, neutral, and
sad. For each of these, we record ≈ 5 minutes of animation per actor.

Figure 2: The presence of the Viseme Loss in our work significantly
improves the lip sync when compared to both our method without
this loss, and the work of [KEZ∗19]

Method LSE-D ↓ LSE-C ↑ Emo-P ↑
Ours w/o Viseme Loss 9.501 1.781 0.421

Cosine Mouth Loss [KEZ∗19] 8.699 2.667 0.417
Ours Full 7.33 4.667 0.443

Captured Data 7.617 4.502 0.385

Table 1: A table comparing our work with and without the Viseme
Loss to that of Neural Style Preserving Visual Dubbing [KEZ∗19]
across metrics for lip sync (LSE-C and LSE-D) and for emotional
clarity (EMO-P).

To ensure we have captured a wide enough range of facial motion,
we make use of seven phonetic pangrams. This gives us a total of 6
different forms of style, which is sufficient to demonstrate that our
method can indeed perform many-to-many style transfer.

3.2. Implementation Details

For all networks, we use a hidden dimension of 256. Dropout is
applied after each layer, except the GRU, with probability 0.4. We
use a batch size of 32 and using the Adam optimiser with learning
rate of 10−4. During training, the sequence length is fixed to 30
frames. During inference, the sequence length can be arbitrary. We
train for 100 epochs taking approximately 12 hours on an P6000.

3.3. Metrics

To justify the improvement made by our work, we quantitatively and
qualitatively evaluate the results. For lip sync, a focus of our work,
quantitative metrics exist. We use a pre-trained syncnet [CZ16] to
measure lip sync by passing renderings of the animations together
with the corresponding audio. We report the LSE-C and LSE-D met-
rics [PMNJ20]. The LSE-D metric quantifies the level of lip-sync,
while the LSE-C metric measures the confidence, where low scores
for LSE-C mean that the audio and video are only weakly corre-
lated. In our experiments, we perform two forms of style transfer.
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Statement Lip-sync (95% CI) Naturalness (95% CI) Emotion (95% CI)
Ours > Cosine Mouth Loss 66 (52-82) 66 (51-81) 73 (59-86)

Ours > No Mouth Loss 66 (52-81) 67 (51-81) 63 (50-79)

Table 2: The results of our user study (N = 20), showing the per-
centage of users that agree with the provided statement. We include
95% confidence intervals for each comparison in brackets. Where
the lower bound is > 50% (e.g. we are 95% confident our method is
indeed preferred) we show the result in bold.

For emotional style transfer, we can define a quantitative metric.
For this purpose, we use a pre-trained emoNet [TKB∗21]. This
network predicts the per-frame emotion of a given video without
considering the audio, outputting logits related to each emotion. We
restrict the output of this network to just the three emotions we are
considering: happy neutral, and sad, and take the softmax to give
pseudo-probabilities for each emotion. We propose using this as a
metric. We denote this metric as Emo-P.

3.4. Comparisons

Quantitative: To the best of our knowledge, the only work to at-
tempt style transfer for facial animation is the work of Neural Style-
Preserving Visual Dubbing (NSPVD) [KEZ∗19]. Our work varies
from theirs in two key ways. The first is that we use a starGAN
whereas they use a CycleGAN. These networks perform different
tasks and it is therefore difficult to compare the two. The second
is our use of the viseme preserving loss in place of a cosine mouth
loss. We compare the effects of this novel loss in Table 1. We also
perform a simple ablation study to demonstrate that the inclusion of
the viseme preserving loss does improve the lip-sync. These results
are also in Table 1. Our method outperforms the mouth cosine loss
from NSPVD [KEZ∗19] across all metrics, which in turn is an im-
provement over not using any additional mouth loss. Qualitative:
We are also able to show the effectiveness of our method qualita-
tively. Figure 2 shows example frames of animation. It can be seen
that our method produces the expected lip shapes for the highlighted
section of the given words better than NSPVD [KEZ∗19] and the
baseline method. For example, the start of the word “why" has more
clearly pursed lips. For further qualitative results, we refer to the
supplementary material. User Study: We also run a two-alternative
forced choice test to compare our method with the cosine mouth
loss [KEZ∗19] and with no mouth loss. To prevent bias, we display
the methods side-by-side (without labels) in random order and sim-
ply ask users to select their preferences. The results are shown in
Table 2 and show that our method is preferred across all metrics. Un-
der a binomial assumption, all results are significant to a confidence
of 95% except for comparing to no lip loss on emotion. Of particular
note is how emotion is much clearer in our method compared with
the cosine mouth loss, validating our hypothesis that the mouth is
over-constrained.

4. Conclusions and limitations

In this work, we proposed a novel method for style transfer in facial
animation using the StarGAN framework and a viseme preserving
loss. Our method is able to generate new facial animations with
a desired style label while preserving the content of the original

animation. We also demonstrated that the inclusion of the viseme
preserving loss improves lip-sync in the generated animations. Com-
pared to previous work on facial animation style transfer, our method
achieves superior results in terms of lip-sync accuracy and style
transfer quality. We believe that our method has potential applica-
tions in areas such as animation and film production. Our work does
have limitations, in particular, we have only tested a small range of
styles. Future work could focus on improving the generalization of
the method to different datasets and exploring the use of additional
losses to further improve the quality of the generated animations.
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