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Figure 1: Simulation of viscous fluid on an inclined plane with non-slip boundaries. (Top) The original MLS-MPM simulation had inaccurate
boundary conditions causing particle sinking. (bottom), we augmented the background grid by adding points on the boundary (blue) to
achieve more accurate boundary behavior without particle penetration.

Abstract
This paper introduces an accurate boundary-handling method for the moving least squares (MLS) material point method
(MPM), which is a popular scheme for robustly simulating deformable objects and fluids using a hybrid of particle and grid
representations coupled via MLS interpolation. Despite its versatility with different materials, traditional MPM suffers from
undesirable artifacts around wall boundaries, for example, particles pass through the walls and accumulate. To address these
issues, we present a technique inspired by a line handler for MLS-based image manipulation. Specifically, we augment the grid
by adding points along the wall boundary to numerically compute the integration of the MLS weight. These additional points
act as background grid points, improving the accuracy of the MLS interpolation around the boundary, albeit with a marginal
increase in computational cost. In particular, our technique makes the velocity perpendicular to the wall nearly zero, preventing
particles from passing through the wall. We compare the boundary behavior of 2D simulation against that of naïve approach.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

The material point method (MPM) [SZS95, SSC∗13] is widely
used for simulating various deformable objects such as water,
snow, and hyper-elastics. It robustly handles topological changes
by discretizing deformable body using both particles and a regular

grid. The particles and regular grids were coupled using alternat-
ing particle-to-grid and grid-to-particle interpolations. The moving
least-squares MPM (MLS-MPM) [HFG∗18] enhances traditional
MPM simulations by interpolating grid point velocities for each
particle using the least-squares method weighted by B-splines.
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However, typical MPM methods struggle with accurately defin-
ing boundary conditions related to rigid walls (e.g., full-slip or non-
slip) because these boundary conditions are usually set on the grid
points on the corner points in a regular grid. It is difficult to spec-
ify boundary conditions if the wall is misaligned with a regular
grid. Additionally, in contrast to the particle-in-cell (PIC) method,
MPM’s interpolation schemes have a broader range of support (e.g.,
a 3 × 3 window for the quadratic weight) that exceeds the size of
the grid cell. This leads to boundary influence being spread out, re-
sulting in artifacts in which particles are trapped inside the wall(see
Figure 1) or slide on the nonslip wall.

This study introduces a novel method for accurately handling
boundary conditions. Our method was inspired by an MLS-based
image-deformation technique using line handlers [SMW06]. While
this technique initially computes the line integral for MLS interpo-
lation weight determination, we replace the line integral with the
sum of the discrete points on the boundary (i.e., the boundary grid
points). In essence, we sample points along the boundaries at in-
tervals matching the grid size and incorporate them as additional
grid points(i.e., boundary grid points). Owing to the nature of the
MLS-MPM, we can flexibly formulate the interpolation from both
points in the regular grid (i.e., regular grid points) and boundary
grid points. Our method simulates various materials’ deformation
while avoiding the particles penetrating into walls.

2. Related Work

Particle-in-cell Similar to the MPM, the particle-in-cell (PIC)
method [ZB05] connects the background grid and particles to sim-
ulate the fluid accurately. In PIC methods, accurate boundary rep-
resentation is possible using a cut-cell mesh [TBBC∗22]. However,
applying a cut-cell approach to MPM is challenging due to MPM’s
interpolation extending beyond a single cell; that is, the influence
of interpolation extends to several adjacent cells.

Material point method The conceptual foundation of MPM is
commonly attributed to Sulsky et al. [SZS95] who extend the PIC
method. Stomakhin et al.’s groundbreaking work on snow simula-
tion [SSC∗13] introduced MPM to computer graphics. Since then,
various improvements have emerged, such as a temporally adaptive
scheme for multi-material scenes [FHHJ18] and the integration of
GPU acceleration [GWW∗18].

An innovative contribution from Hu et al. [HFG∗18] introduced
moving least-squares interpolation [SMW06] for MPM. This least-
squares interpolation is more flexible than the interpolation on a
regular grid, allowing us to augment the regular grid to increase the
resolution of the velocity field around the boundary.

Boundary handling for MPM Hu et al. [HFG∗18] extend MLS-
MPM by introducing compatible particle-in-cell (CPIC), designed
for material cutting and coupling with rigid bodies. This approach
incorporates a colored distance field (CDF) that encodes the mini-
mum distance from a grid point to the boundaries, the set of nearby
surfaces, and the side on which the grid point is located. Similar to
our method, the CPIC distributes points on the boundaries. How-
ever, CPIC treats these boundary points as a representation of rigid
body surfaces, while our method regards them as augmented grid

points. Additionally, CPIC applies penalty forces to prevent parti-
cle penetration of boundaries.

In pursuit of enhanced simulation accuracy, Gao et al. [GTJS17]
proposed a spatially adaptive-resolution MPM. This method strate-
gically refines the particles and background grid in the proximity
of the boundaries. While effective in achieving accurate boundary
handling, this approach incurs a significant computational cost.

3. Method

Traditional MPM methods utilize a regular background grid to de-
pict a continuous velocity field, from which velocity gradients are
derived. However, the interpolation of the MPM has wide support
(e.g., 2h× 2h for a quadratic weight function, where h is the grid
interval), and the influence of the grid points may extend inside the
wall (see Figure 2-right), leading to particle penetration.

fluid region

wall

Figure 2: Left: the linear velocity changes of laminar flow around
the non-slip boundary. Right: the typical interpolation of MPM
fails to achieve boundary condition as the value at xp interpolates
from values of the fluid region Ω around the boundary ∂Ω.

Desirable interpolation property One of our target materials is a
viscous fluid, which develops a laminar boundary layer on non-slip
walls. It is well known that the velocity linearly changes according
to the distance to the non-slip wall near the boundary (see Figure 2-
left). Prominent flow scenarios like Couette flows and laminar flows
down inclined planes display such linear behavior. Our objective is
to ensure that the interpolation satisfies the linearly changing ve-
locity around the wall.

MLS interpolation We first briefly explain the existing MLS in-
terpolation roughly following the notations used in [HFG∗18]. For
simplicity, we explain the method in the 2D case; however, the no-
tation can easily be generalized to 3D cases. The (Linear) MLS
interpolation approximates the scalar value u around location xp as
a linear field:

up(x) = cpP(x−xp), (1)

where P(x) = [1,x1,x2]
T is the bases of the polynomial and cp =

[up,∂up/∂x1,∂up/∂x2] is their coefficients corresponding to the es-
timation of value and its gradients at xp. The coefficients cp can be
obtained by minimizing the weighted squared errors between the
data points xi and the linear field up(x).

MLS interpolation from line Our goal here is to make up(x) (i.e.,
the linear approximation of u around the xp) take the given value
ū at the boundary ∂Ω. To this end, we penalized the errors on the
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boundary by introducing a penalty term in the MLS interpolation.
Inspired by image deformation using the line handler in [SMW06],
we integrate the weighted squared errors on the boundary assuming
that the data points xi are also distributed on the boundary

JBC(cp) =
∫

xi∈∂Ω

w(xi −xp)∥up(x)− ū(xi)∥2 dxi, (2)

where w(x) is a weight function. This error is added to the tra-
ditional interpolation errors of MLS and is jointly minimized by
optimizing the coefficient cp.

Weight function We adopt the same weight function for the
boundary integral (2) as in MPM. Whereas [SMW06] used a weight
function with infinitely wide support, the support of the MPM
weight function covers the range of several grid points. Since the
direct influence of boundary conditions on kinematic simulation is
confined to immediate neighbors, a smaller support is more suit-
able. In contrast to the bounded weight function of the MPM, the
weight function in [SMW06] is infinitely large at the point of in-
terpolation xp to exactly achieve the boundary conditions. How-
ever, this sharp weight function profile leads to abrupt changes in
interpolated values around the boundary, making it unsuitable for
achieving linear velocity changes.

We exclude grid points within the region near the boundary
where the distance to the wall is below a certain threshold δ, ex-
cluding those outside the fluid region. By ignoring the grid points
located inside and near the wall, the boundary integral in (2) acts
as a “hinge” allowing the interpolated field to change linearly while
satisfying the fixed velocity at the boundary. This also aids in re-
ducing the CFL condition by keeping the distance between grid
points above the threshold δ.

grid points to be ignored

grid points counted

grid points on the boundary

margin from the boundary

Figure 3: We interpolate value at the location xp from points inside
the region Ω with the distance from the wall greater than δ and the
points on the boundary.

Boundary discretization Theoretically, the boundary integral in
(2) could be computed analytically due to the simple polynomial
nature of the MPM weight function. However, the integration is
very complicated because the integration is on the line while the
integrand is defined on the rectangular domain. Instead, we opt to
integrate it numerically by replacing line integration with the sum-
mation of uniformly sampled points on the boundary IBC. We used
the grid interval h of the regular grid for the internal points on the
boundary. The resulting minimization target for computing coeffi-
cient cp becomes

J(cp) = ∑
i∈IIn∪IBC

w(xi −xp)∥up(x)− ū(xi)∥2 , (3)

where IIn is the set of grid points located inside region Ω where
the distance to the wall is longer than the threshold δ. In this study,
we set the threshold δ = 1/4h. This threshold is selected such that
the weight matrix is not singular in Ω.

Interpolation for MPM At particle point xp, MPM interpolates
the physical quantity u and estimates its gradient from grid point
xi. As discussed in [HFG∗18], MLS-based interpolation can be ex-
pressed as

cT
p =

[
up
∇up

]
= M−1

p ∑
i

P(xi −xp)w(xi −xp)ui, (4)

where Mp is a 3×3 coefficient matrix, written as

Mp = ∑
i

w(xi −xp)P(xi −xp)PT (xi −xp). (5)

The interpolated value u can be the density (for fluid simulation
in [MPM]) or each component of velocity and momentum.

The original MLS-MPM study [HFG∗18] formulated forces on
the vertices of a regular grid. We derive the force on the vertex of
the augmented grid, where the vertices can adopt arbitrary config-
urations

fi =−∑
p

Vpσp

[
m̄21 m̄22 m̄23
m̄31 m̄32 m̄33

]
P(xi −xp)w(xi −xp), (6)

where M−1
p = (m̄i j)1≤i≤3, j≤ j≤3, Vp is the particle volume and σ

is the 2× 2 Cauchy stress tensor at xp. Note that in the case of a
regular grid, m̄21 and m̄31 become zero, and (6) is the same as that
in [HFG∗18].

4. Results

Implementation detail We implemented demonstration codes in
Rust language based on Taichi [HLA∗19]’s 88-line MLS-MPM
code [Tai]. Following a web article [MPM], we developed an MPM
fluid solver by estimating particle density by scattering particle
masses onto grid points using MPM interpolation weights. Note
that this MPM interpolation weight must be computed on the origi-
nal regular grid, not on our augmented grid, as there is no boundary
condition for the density. Our code is publicly available †.

Interpolation test As detailed in Section 3, the accuracy of the
non-slip boundary condition depends on the representation capa-
bility of the linear field around the boundary. Figure 4 compares
the interpolated distance field from the distance at the grid points.
Utilizing the augmented grid points, our interpolation better repre-
sents the distance field compared to the naïve MPM interpolation.

2D Simulation comparison Figure 1 compares the naïve regu-
lar grid interpolation against our augmented grid interpolation for
fluid simulation with non-slip boundary conditions. Figure 5 show-
cases simulations with full-slip boundary conditions for various
material types, including viscous fluids (the Navier-Stokes model
based on [MPM]), hyperelastic material (the St. Venant-Kirchhoff

† https://github.com/nobuyuki83/accurate_bc_for_
mls_mpm

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/nobuyuki83/accurate_bc_for_mls_mpm
https://github.com/nobuyuki83/accurate_bc_for_mls_mpm


4 of 4 Riku Toyota & Nobuyuki Umetani / Accurate Boundary Condition for MLS-MPM

Naïve Ours Ground truth

Grid points counted
Grid points on the boundary
Grid points to be ignored

0 0.3h

Figure 4: Reconstructions of distance fields from the distances
computed at the grid points.

model), and plastic materials (the snow model in [SSC∗13]), where
the simulation settings (time steps, boundary shapes) are the same
as those in Figure 1. Note that all the simulations adopt explicit time
integration. The full-slip boundary condition was implemented by
zeroing the normal component of boundary grid point velocities. In
all cases, our method accurately handled the boundary conditions to
prevent undesirable particle penetration. For further insight, please
refer to the supplementary video of the animation and the compar-
ison with circular boundary geometry.

Performance The simulation in Figure 1 takes 23 seconds for
naïve interpolation and 38 seconds for our interpolation. There are
approximately 1.5k particles on an 80 × 80 regular background
grid. This timing was measured using a MacBook Pro (16-inch, late
2019 model). Both programs ran single-threaded on a CPU. The
longer computation time originates from neighboring grid point
search and the matrix inverse in (6). Currently, we are searching
for neighboring boundary grid points using a brute-force approach.
We anticipate potential acceleration for our interpolation by incor-
porating spatial hashing techniques (e.g., kd trees). We can also ac-
celerate the computation by switching to the analytic matrix inverse
when there are no boundary grid points around a particle.

5. Conclusion

We presented the accurate boundary handling technique for MLS-
MPM to prevent the particles from sinking into the solid wall. We
interpolate the velocity field on an augmented grid, where the ad-
ditional grid points are added to the boundary.

Limitation & future work Our method requires additional com-
putational overhead for searching boundary grid points around each
particle. This may cause difficulty in efficient GPU parallelization.
3D simulation might be possible by uniformly sampling the grid
points on the boundary but is left as a future work. We consider
coupled simulation with moving rigid bodies as one of the interest-
ing future directions.
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Figure 5: Simulation of various materials using our augmented
grid points with full slip boundary condition.
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