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Abstract
Direct Volume Rendering (DVR) is a crucial technique that enables interactive exploration of results from scientific comput-
ing or computer graphics. Its applications range from virtual prototyping for product design to computer-aided diagnosis in
medicine. Although there are many existing DVR optimizations, they do not provide a thorough analysis of memory-specific
hardware behavior. This paper introduces a profiling toolkit that enables the extraction of performance metrics, such as cache
hit rates and branching, from a compiled GPU-based DVR application. The metrics are visualized in the image domain to
facilitate spatial visual analysis. This paper presents a pipeline that automatically extracts memory traces using binary instru-
mentation, simulates the GPU memory subsystem, and models DVR-specific functionality within it. The profiler is demonstrated
using the Octree-Linear Bounding Volume Hierarchy (OLBVH), and the visualized profiling metrics are explained based on
the OLBVH implementation. Our discussion demonstrates that optimizing ray traversal for adaptive sampling, cache usage,
branching, and global memory access has the potential to improve performance.

CCS Concepts
• Software and its engineering → Massively parallel systems; • General and reference → Performance; • Human-centered
computing → Visualization toolkits;

1. Introduction

Many tasks in scientific computing or virtual prototyping include
numerical simulations. Due to its robustness, unstructured tetra-
hedral meshing is frequently used for simulations. The simula-
tion results are assigned to each tetrahedron or vertex, represent-
ing a scalar field. Post-processing uses DVR to enable exploration
of simulation results. For interactive exploration, a ray marching
(see fig. 1) implementation using the impressive aggregated paral-
lel processing power of a graphics processing unit (GPU) is nec-
essary. Many GPU-based DVR approaches emerged over the past
decades, steadily improving performance. Only little work has been
invested into DVR-specific profiling tools, which allow for the il-
lumination of bottlenecks. We present an efficient and easy to use
approach to facilitate profiling DVR using GPU binary instrumen-
tation [VSNK19] and a visual encoding of extracted metrics. In
summary, our contributions are:

• An extensible visual profiling system to visualize cache hit rates
and code branching in the spatial domain of the frame buffer.

• An analysis of several configurations of a state-of-the-art DVR
implementations using our proposed profiler.

1.1. Related Work

Typically, DVR methods use a spatial data structure to quickly
confine the potentially intersecting primitives [MOB*21]. As per-
formance benefits from GPU-parallel construction and traversal,
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Figure 1: In DVR, the camera emits view rays through the object.
The scalar field is sampled at sampling points (red) along the rays.

the linear BVH [LGS*09] (LBVH) uses a space-filling MORTON

curve. Many authors evolved the LBVH addressing other types
of spatial data structures [Kar12], better quality of bounding vol-
umes [DP15], and faster traversal [GMOR14]. As GPU-memory
is limited, sparse use of memory is another important property of
a BVH. Memory-efficient rendering of large unstructured volume
data is ongoing research [ZWMW23].

Performance improvements of unstructured DVR are achieved
by reducing samples using adaptive sampling and empty space
skipping [MUWP19]. To reduce memory consumption while still
providing random-access point sampling, the mesh and spatial data
structure can be compressed using HILBERT curves [WMZ22]. The
OLBVH [SMSF20] achieves memory-efficient DVR building upon
LBVH without using RTX-hardware and enables empty space skip-
ping and reduction of the hierarchical tree depth to reduce memory
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consumption. As no specification of RTX-accelerated rendering is
available, we use the OLBVH in this paper.

Performance visualization is an active research area with in-
dividual approaches [IGJ*14]. DVR applications render the vi-
sual output of simulation results as images, making them a natu-
ral choice for inter-domain mapping [SLB*11]. Our basis is that
we map performance data of the hardware domain to the 2D
grid [YBD01] structured frame buffer of the ray marcher, which
resides a software domain. While standard profiling applications
such as NVIDIA Nsight Compute can provide advanced insights
into computational behavior, they are limited by the scope of a ker-
nel call, which is too coarse to be used for application domain visu-
alization. To overcome this issue, dynamic binary instrumentation
can be used in order to capture hardware metrics for visualization
purposes [vBRGF22].

While there are many papers about improving DVR perfor-
mance, only little work deeply analyse performance on a fine-
grained level. In this paper, we present a technique to visually guide
efficient implementation of DVR approaches using profiling met-
rics mapped onto the domain of the framebuffer.

2. Visual Profiler for DVR

Our pipeline is based on a toolkit [BGF22] that provides a simula-
tor of a typical memory pipeline of an NVIDIA GPU. The simula-
tion is necessary to address the issue that cache hit rates are only
provided on a per-kernel basis when using standard profilers such
as NVIDIA Nsight Compute. The simulation automatically exracts
a list of memory requests during the running time of a kernel and
performs address coalescing resulting in a list of memory transac-
tions. The metrics described below use the resulting cache hit rate
annotations on a per memory transaction basis.

2.1. Cache Hit Rates

For cache hit rate visualization, we use this list of annotated mem-
ory transactions and group cache hit rates with respect to the grid
coordinates (x,y) and allocation in order to transform the flat list
of these annotations into the spatial domain of the output image.
For a more detailed overview into the program behavior, we do this
aggregation for each memory allocation seperately. Our toolkit au-
tomatically identifies and separates individual memory allocations
of the profiled program and assigns each memory access a con-
tinuous allocation identifier i resulting in multiple sets of memory
transactions a(x,y,i). This allows us to use a simple array of two-
dimensional hit rate counters to handle the desired accumulation.
The operator ⌈·⌉ denotes the number of hits in a set of memory
transactions. The hit rate is calculated for each pixel as follows:

p(x,y,i)(hit) =
⌈a(x,y,i)⌉
|a(x,y,i)|

. (1)

These values p(x,y,i)(hit) ∈ [0,1] are then transformed to color val-
ues using standard color mapping.

2.2. Branching and Number of Memory Accesses

The general idea of our branching metric in the image domain is
similar to the cache hit rate accounting. As GPUs mainly follow

(a) SimJEB122 (b) SimJEB514

Figure 2: Render images of the used SimJEB models.

the SIMD model [Fly66], branching is implemented by executing
each individual diverged control path in sequential passes. Each
of these sequentialized control paths must deactivate correspond-
ing diverged threads. Therefore, it is generally less efficient to have
a high factor of branching in a GPU program. In order to mea-
sure divergence or branching, we allocate a counter for each pixel
and increment whether a pixel mapped to a thread within a warp
was active within that warp or not. The binary instrumentation tool
NVBIT [VSNK19] allows extraction of this information using the
instruction predicate that uses a 32 bit integer in order to bit-wise
encode if each of the w = 32 threads within a warp was active or
not. As this paper focuses solely on memory instructions, we limit
visual profiling to memory operations, similar to the visualization
of cache hit rates. We denote the number of active threads within
a warp i as ni and the set of warp-wise memory requests per pixel
as r(x,y). We define the number of memory requests per pixel N(x,y)
and the branching rate b(x,y) ∈ [0,1] as follows:

b(x,y) =
N(x,y)

w · |r(x,y)|
, N(x,y) = ∑

i∈r(x,y)

ni. (2)

2.3. Visualization System Requirements

We target experienced software engineers in the computer graphics
and ray tracing domains, who try to optimize their ray tracing ap-
plication in terms of run-time performance. Standard profilers only
profile coarse metrics at the granularity of a kernel call. Our visual
profiler should enable further insight into performance data mapped
to the spatial domain of the ray marching result, which potentially
helps to find inefficiencies in spatial data structures. This leads us
to the following requirements for our visualization:

(R1) Visualization: The user should be able to see performance
data mapped onto the frame buffer of the DVR application for
inspecting the performance characteristics of the program.

(R2) Analysis: The user should be able to compare with visual-
izations of other programs or configurations to find potential
bottlenecks in one single visualization.

3. Discussion

We discuss general observations in section 3.1 and visualized
performance metrics in section 3.2, respectively. We demonstrate
the functionality of our profiling tool using meshes of the Sim-
Jeb dataset [WBM21] that includes optimized mechanical brackets
from an engineering design competition. The OLBVH construc-
tion subtracts a specified number α from the maximal hierarchi-
cal tree depth to reduce memory consumption compressing the
tree [SMSF20]. We choose the average edge length of a mesh as
the reference sampling rate. While we tested our toolkit on many
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Figure 3: Analysis for rendering the SimJeb514 model visualizing the branching rate b(x,y), numbers of requests N(x,y) normalized by 215,
and cache hit rates p(x,y,i) for individual allocations i.

models, we showcase the evaluation on the SimJEB514 with many
sharp features and the SimJEB122 with many rounded features (see
fig. 2). As the evaluation results of the two models mostly pro-
vide analog implications, the discussion focuses on the SimJEB514
model (see fig. 3), while the evaluation of the SimJEB122 model is
part of the supplemental material.

Our evaluation covers several compression levels α ∈ {0,1,2}
and factors the reference sampling rate by S ∈ {2,1,0.5}. We con-
sistently used regular sampling in our experiments. The evalua-
tion determines branching and counts global memory accesses de-
noted as Reqs. We determine the cache hit rates for particular array
buffers related to traversal, in order to provide an in-depth analy-
sis. For traversal, the most relevant arrays are the children offsets
CO referring to the children of a tree node, primitive offsets PO re-
ferring to the tetrahedra of a tree node, and the primitive indices P
referring to the individual tetrahedra. In addition, we also evaluate
the caching of the tetrahedra and vertices of the mesh.

3.1. General Observations

Our visualizations in fig. 3 show trends (R1) that we analyze (R2).
Each image shows the original structure of the model [SLB*11].
Another observation is that increasing the number of memory re-
quests to a location does not necessarily improve cache hit rates,
other than intuition might suggest. This is particularly evident ob-
serving the CO array in fig. 3c. As more frequent accesses to other
allocations affect the caching of these allocations, increasing global

memory accesses does not improve cache hit rates. The general
trend is that vertices receive the best cache hit rates, which we ex-
plain with the size of contiguous read transactions.

3.2. Performance Visualization

The visualization in fig. 3 enables performance analysis (R2) for
varying compression and sampling rates for rendering the Sim-
JEB514 model. Most branching occurs for the rays intersecting
only with the silhouette boundary of the model. Thus, these rays re-
duce the occupancy rate. Using compression or finer sampling rates
does not lead to significant differences in regards to branching be-
havior. On the contrary, the number of global accesses (fig. 3b) sig-
nificantly increases when increasing α or reducing S. Global access
numbers are especially large at the curved features of the model,
where a meshing tool typically uses a finer resolution to represent
the features with sufficient element quality for simulation.

Cache hit rates for the children offsets (CO) slightly increase for
a shallower tree and a finer sampling rate, because traversal more
often terminates in the same or memory-adjacent leaf nodes. How-
ever, hit rates for primitive offsets (PO) are equally distributed and
do not significantly change for altering α or S. A more varying
cache hit rate occurs for the primitive indices (P), while changing
α or S does not exhibit significant influence. The cache hit rate for
primitive indices is more governed by the scalar data and the struc-
ture of the model. As scalar values are low at the round holes, these
regions are rendered with high transparency leading the DVR to
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spend more sampling points on the corresponding rays. Due to the
round structure of the holes, the corresponding tree nodes contain
more empty space and are associated with fewer tetrahedra, which
leads to better cache hit rates.

One vertical line in the right parts of the images indicates a large
number of accesses. The mesh resolution is finer along this vertical
line leading to more memory accesses. Our visual representation
additionally shows that cache hit rates increase at these positions.
The distribution of cache hit rates for vertices is uniform for all
choices of α or S for rendering both models.

4. Conclusion

Performance evaluation is an important aspect for understanding
state-of-the-art DVR implementations and potential further im-
provements. We presented a visualization approach for GPU DVR
ray marchers to visualize performance metrics in the spatial domain
of the rendered image. We demonstrated our visualization using the
OLBVH and explained the metrics based on its memory layout.

Our discussion shows that potential for improving performance
lies in using adaptive sampling of the scalar field. In addition, vary-
ing the resolution in a mesh leads to an anisotropic distribution of
global accesses, which is not inherently compensated by cache us-
age. The surface features of a mesh typically account for peaks in
branching and memory accesses.

Future Work We plan to provide interactive profiling results of
arbitrary DVR applications. We intend to support non-NVIDIA
GPUs, which will require the use of other binary instrumentation
tools. Finally, the branching metric that is currently limited to mem-
ory instructions could be extended to include arbitrary instructions.

Source Code and Acknowledgements The source code is
available at https://github.com/maxvonbuelow/
insituprof. We thank Armin Pauli for his work on the imple-
mentation. Additionally, we thank the anonymous reviewers whose
comments helped us to improve our paper.
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