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A Generative Approach to Light Placement for Street Lighting
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Abstract
The design of plausible and effective street lighting configurations for arbitrary urban sites should attain predetermined illu-
minance levels and adhere to specific layout intentions and functional requirements. This task can be time consuming, even for
automated solutions, since there exists an one-to-many mapping between illumination goals and lighting options. In this work,
we propose a generative approach for this task, based on an adversarial optimisation scheme. Our proposed method effectively
overcomes these task-specific limitations by providing a range of viable solutions that adhere to the input constraints and can
be generated within an interactive design life cycle.

CCS Concepts
• Computing methodologies → Graphics systems and interfaces; Artificial intelligence;

1. Introduction

Adequate and appropriate illumination of any closed or open envi-
ronment is a core concept in civil engineering. It defines and con-
trols the way a person navigates, experiences and functions in a
particular space. In an urban environment, proper nighttime illu-
mination, via street lighting, is essential for enhancing its safety,
security and aesthetic appearance. Street lighting planning is a par-
ticularly difficult task because of the scale that one has to operate
in.

Several methods have been proposed over the years for auto-
matic generation of urban lighting configurations. Schwarz and
Wonka [SW14] proposed a procedural model based on constrained
optimisation with application to architectural lighting. However,
their method requires the placement of user-defined illumination
goals on the actual geometry and does not scale well with respect
to the number of light sources to be applicable in city-scale street
lighting. Zou and Li [ZL10] proposed a genetic algorithm that opti-
mises the luminous intensity distribution of a fixed arrangement of
road lights, in a single road segment. Our approach is designed to
work on a large scale and more importantly, without requiring com-
plex constraint definition other than the target illumination goals
themselves. We adopt a generative approach to street lighting de-
sign in order to estimate multiple valid alternative lighting config-
urations fast, while learning layout aesthetics and practices by ex-
ample, instead of trying to impose hard rules.

2. Method

In this work we propose a goal-driven method for the generative
placement of street lights based on conditional Generative Adver-
sarial Networks (GAN) theory. We use a combination of supervised

and unsupervised learning in order to extract meaningful informa-
tion for both layout characteristics of street lighting configurations
(supervised) and illumination level targets (unsupervised).

Generative Adversarial Networks [GPAM∗14] have demon-
strated their exceptional expressive power to model complex dis-
tributions even in the conditional setting [MO14]. Their applicabil-
ity spans diverse fields, such as image synthesis, image-to-image
translation, style transfer and many others. Here, we shift our focus
on the class of adversarial games subject to conditional input and
optimised using an alternate gradient descent scheme. Briefly, the
objective function is defined as:

L(G,D) = E(x,y) [log(D(x,y))]+E(z,y) [log(1−D(G(z,y),y))]
(1)

where (G,D) are distinct neural networks, (x,y) is a tuple of an el-
ement sampled from the real distribution with its associated condi-
tion. Likewise, tuple (z,y) encapsulates a sample seed drawn from
a predefined distribution along with a condition variable. The gen-
erator network G is trained in order to learn a mapping (z,y) 7→ x′

through minimisation of Equation 1, consequently generating sam-
ples that closely resemble the source distribution subject to the
same conditional variable. On the contrary, the discriminator net-
work D is trained to distinguish between real and generated samples
(x,x′), subject to condition y, thereby maximising Equation 1.

Dataset. Our case study is Washington DC. The District De-
partment of Transportation (DDOT) maintains a publicly avail-
able source containing information on street light positions and
their corresponding wattage [Cit23]. Additionally, we leveraged the
Open Street Map (OSM) [Ope17] public API to obtain correspond-
ing building and street geometry data.

To integrate the combined source data, we partitioned the city
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landscape into overlapping tiles of size 128m2. These city tiles
were rendered using ray-traced direct illumination and purely dif-
fuse materials. We used a top-down orthographic view of the same
resolution (1 pixel per m2), since we were only interested in street-
level illuminance. We observed that a full global illumination pass
with varying materials for building and street geometry contributed
very little to the resulting illuminance, especially when compared
to real aerial photographs. This choice also greatly simplified the
evaluation during training (see next). The luminaries in the scene
were represented as hemispherical point light sources, pointing to-
wards the ground with a vertical offset of 4 meters. To summarise,
our dataset consists of about 71K luminaries ranging from 10000lm
to 40000lm (LED elements with an efficacy of 100), distributed and
rendered into 33K residential tiles.

For each rendered tile, a segmentation mask is also computed,
which classifies individual pixels according to function (building,
street or general background). Additionally, for the street regions,
further sub-classification is carried out based on the tags reported
by OSM [Ope17]. For each road section, we determine the illu-
mination goal for a given tile as the average illuminance (lm/m2)
registered in segment’s pixel during the lighting simulation. We
also assume that non-street pixels have a zero target illuminance.
Overall, a single sample from the processed dataset consists of the
rendered image Xr, the segmentation mask S, and the target illumi-
nation objective Y, all being images of 1282 resolution.

Network architecture. Contrary to the majority of existing ad-
versarial models targeting image synthesis, our approach does not
predict individual pixel values. Instead, we are interested in sam-
pling from the marginal distribution of valid light configurations
under specific illumination constraints. Consequently, the genera-
tor model, in addition to the standard random noise input, is con-
ditioned on the input illumination goal Y. The output is a regular
grid representing candidate light positions and corresponding light
intensities. Typically, the grid size is smaller than the resolution
of the image. In this work, we set the grid size to 242, effectively
providing candidate light positions with a spacing of 5 meters.

Candidate light intensities are inferred from a trainable linear
output. To constrain the output predictions, we apply two filtering
operators on the inferred light grid. First, we linearly suppress in-
tensities of lights that are placed far away from the road segments.
For this, we define the distance of a luminary from a road segment
as the frequency of pixels categorised as streets in a 112 region
centred at the candidate light position.Then, define the decay fac-
tor of p = 1 (no suppression) if frequency is ≥ 1/3, which linearly
decays to zero and effectively disables lights in regions with no
road segments. Second, we set a minimum threshold to the lumi-
nous intensity of each light to better match the real world dataset
and avoid degenerate lighting configurations containing many faint
lights. This is achieved by using a shifted-ReLU activation func-
tion. This parameter is a constant for all our experiments and set to
100. To account for the zero gradients due to clipping in the back-
ward pass, we approximate the shifted-ReLU activation using the
Softplus function with the elasticity hyperparameter set to b = 20.

For every generated light grid, the resulting illumination must
be computed, in order to compare the illumination with respect to
the given goal Y. Since we only employ diffuse direct illumination

with punctual light sources, the illuminance estimation can be re-
duced to a vectorised operation between precomputed illuminance
transfer tensors, which are estimated on the GPU during initialisa-
tion, using image (tile) space ray marching. Since there is a fixed
number of light positions on each tile, we can precompute a two-
dimensional illuminance transfer matrix Tn×ℓ, where n = H ×W ,
H,W are the tile dimensions and ℓ is the number of lights. Each ma-
trix element is the product of the geometric, albedo and visibility
terms combined. To compute the final illuminance, a matrix mul-
tiplication with a light grid in column vector G(z,Y) = L of size
ℓ× 1 must be performed. This final operation is the output of the
generator network which yields a directly illuminated image X f .

The discriminator network is given a tuple of real and fake sam-
ples along with the conditional goal {Xr/ f ,Y} and is trained to
predict the per-pixel source distribution and conformance to the il-
lumination goal. It operates directly on rendered results rather than
some raw sequence of lights. This allows to learn the actual impact
of each light relative to the goal Y on a per pixel basis. Predictions
are restricted to tile pixels (i, j) categorised as streets in S. The dis-
criminator must evaluate two criteria simultaneously: the per-pixel
deviation from the input luminance levels Y and the light placement
style (distribution), always prioritising the first. We define mi j = 1
iff |xi j −yi j|/yi j ≤α and 0 otherwise. The error tolerance α is set to
0.2 for all our experiments. We use this factor to guide the training
to respect the illumination goal for pixels in the receptive field that
this is attained. This is a necessary modification in order to capture
the light position "style" in the training set, without being affected
by the achieved illumination in the input images, which might de-
viate from the objective goal. The first term in Eq. 1 becomes:

E(X,Y)

[
∑

(i, j)∈R
mi j log(Di j(X,Y))+(1−mi j) log(1−Di j(X,Y))

]
(2)

where, R = {(i, j)|si j = street,si j ∈ S}. The second term in Eq. 1,
related to the generator update term remains unchanged, treating all
pixels belonging to the street category as fake.

An overview of our network architecture is summarised in Fig-
ure 2. The generator network is modelled as a style-based de-
coder through a series of spatially adaptive normalisation lay-
ers [PLWZ19], followed by our light placement regression, filtering
and direct illumination calculation module. The discriminator part
of the network is conditioned on the input sample Xr/ f through
a channel-wise concatenation following the principles established
in [MO14]. Its architecture bears resemblance to the U-Net ap-
proach originally introduced in [SSK20]. Given that we operate in
High Dynamic Range images, and as per established literature, it
is customary to rescale the discriminator’s input values to lie close
to the unit interval. This rescaling is achieved by dividing the in-
puts including the goals Y, with a constant factor set to s = 20.
The scaling factor is approximately equivalent to the illuminance
received at a shading point located at the center of a 3×3 light grid
with maximum lumen output, a spacing of 1 meter, and a height of
4 meters. We also train our GAN model using the non-saturating
loss variant. Finally, the generator outputs the light placement in
candela units where during the training phase we use a unit effi-
cacy, while during the inference stage we convert and scale values
to proper lumen units.
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Figure 1: Our proposed network architecture for the generative inference of street light configurations. We train a conditional generator
network [PLWZ19] (green) to transform a sample seed followed by a regression head (orange) to output a fixed size (242) light grid of
intensity values. These are subsequently filtered to suppress unimportant lights and rendered to produce the final illuminated block (see
Section 2). During training (top-right), we employ a per-pixel discriminator [SSK20] (blue). In the inference phase (bottom-right), we post-
process the predicted light intensities and positions, yielding the final configuration in lumen units.

Post processing. We incorporate a series of essential post-
processing steps on the generator’s output light grid, to further
refine the proposed light placement with respect to road segment
boundaries. Here we assume that lights have a coverage radius of 5
meters in real units or equivalently, 5 pixel units. Based on empir-
ical observations from the real dataset distribution, we anticipate
that, in the general case, overlapping coverage among individual
light sources is rarely needed. For our grid resolution, this implies
that light source contributions should not overlap within their im-
mediate 1-neighbourhood. To impose the observed pattern, we im-
plement a clustering scheme, where only the most dominant source
in a 3× 3 neighbourhood centred at each grid sample remains ac-
tive. The other light sources are deactivated. Furthermore, our ap-
proach takes into account the fact that lights tend to be aligned with
road segment boundaries (e.g. sidewalks). Consequently, we snap
the luminary positions to the closest road edge, based on the image
spatial gradient extracted from S. The aforementioned operations
may introduce an error relative to the goal. To account for this, we
apply a limited number of gradient descent steps in order to opti-
mise the luminous intensity of the updated light configuration in
terms of the target goal. For this step, we utilise the direct illumina-
tion module discussed in the previous section and apply the mean
square error loss function relative to the actual image goal. It is
worth noting that these gradient descent steps, are employed to ad-
just the luminous intensity of existing light sources and therefore
do not activate or deactivate any light source.

3. Evaluation

We implemented our method in PyTorch and trained the genera-
tor and discriminator networks with the Adam optimiser. We used
a learning rate of 1.e − 4 and 2.e − 4 respectively, with β1 = 0
and β2 = 0.999. Additionally, we used multi-level noise injec-
tion [LHK19] sampled from a zero mean Gaussian distribution. For

the training process, we used 31K rendered blocks, from which we
pick 1K samples at random for each epoch and augment them using
flipping and rotational transformations as proposed by [ZLL∗20].
We evaluated the quality of inference on a separate test set which
consists of 2K blocks. All our experiments were run on an NVIDIA
RTX 3080Ti with 12GB of VRAM.

We quantify the quality of light placement configurations on 16
distinct seeds of each input residential block. First we use the light-
ing uniformity formula, defined as the average ratio of minimum
over the average illuminance value for each road section present
in the block. According to established design rules used for resi-
dential blocks, the uniformity value should usually be greater than
0.2 [dl10]. In our test subset this value is on average 0.33 for
each block, and including the post-processing step is 0.34, which is
about 5% better than the measurements on the reference subjects,
indicating that every road section is well and evenly lit. Addition-
ally and for the same setup, we also measure the average per pixel
absolute error (MAE) between the predicted illuminance and the
conditional goal on the corresponding road pixels. This evaluates
to 17.76lx and 16.06lx for the generated and post-processed blocks
respectively. The actual target values for road sections, range from
100lx to 1500lx in our dataset. In Figure 2 we demonstrate some
indicative test cases.

Finally, our generator network consists of roughly 13M train-
able parameters, while the discriminator network has about 4M.
In terms of inference performance, our model can generate condi-
tional light placement configurations in roughly 9ms per input ran-
dom seed, while the whole post-processing phase requires an addi-
tional 30ms, on average. Since the generator network is trained to
infer well-separated and aligned light placement settings, our clus-
tering phase is employed for an average of 2 to 3 rounds and the
local optimisation step is also terminated after about 15 iterations.
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Figure 2: Goal-driven street lighting results for different city tiles. From left to right, illuminance from the original lights (baseline), the
illumination goal for each road section (in the interval of 100lx to 1000lx), illuminance from the light configurations generated by the GAN,
illuminance after post-processing, measured uniformity for the baseline and our results (larger values are better). Yellow values in the top
right corner indicate per pixel MAE (deviation from the goal).

4. Conclusions and future work

In this work, we have introduced an interactive generative approach
aiming to address the task of goal-driven optimisation in the con-
text of street lighting within urban environments. Our methodology
achieves this objective by sampling from a distribution of feasible
light placement configurations, while ensuring that these configura-
tions faithfully adhere to the specific conditional lighting goals. We
have leveraged the conditional adversarial theory and adapted the
adversarial loss function to better suit the unique requirements for
this task. An interesting future task is the integration of our method
into a general system, that is capable of simultaneously tackling
larger-scale inputs that encompasses multiple strides of residen-
tial blocks, ultimately yielding a neighbourhood-scale lighting so-
lution.

Data Availability. Our code and dataset is publicly available at
https://github.com/cgaueb/streetGAN.
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