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Figure 1: Reconstruction results by (a) a LAS-Diffusion [ZPW∗23] method from a sketch containing visible lines only and (b) our method
from visible lines and contextualized hidden lines from a single viewpoint; (c) the ground truth. By explicitly considering hidden lines, our
method can reconstruct the invisible structures of 3D objects from a single viewpoint, solving the inherent ambiguity of modelling occluded
surfaces from a single view sketch. Observe the penetrating hole reconstructed using our method, highlighted by a box with a solid contour.

Abstract
We present a method for sketch-based modelling of 3D man-made shapes that exploits not only the commonly considered
visible surface lines but also the hidden lines typical for technical drawings. Hidden lines are used by artists and designers to
communicate holistic shape structure. Given a single viewpoint sketch, leveraging such lines allows us to resolve the ambiguity
of the shape’s surfaces hidden from the observer. We assume that the separation into visible and hidden lines is given, and focus
solely on how to leverage this information. Our strategy is to mingle two distinct diffusion networks: one generates denoized
occupancy grid estimates from a visible line image, whilst the other generates occupancy grid estimates based on contextualized
hidden lines unveiling the occluded shape structure. We iteratively merge noisy estimates from both models in a reverse diffusion
process. Importantly, we demonstrate the importance of what we call a contextualized hidden lines image over just a hidden
lines image. Our contextualized hidden lines image contains hidden lines and silhouette lines. Such contextualization allows us
to achieve superior performance to a range of alternative configurations and reconstruct hidden holes and hidden surfaces.

CCS Concepts
• Computing methodologies → Artificial intelligence; • Computer graphics → Shape modeling;

1. Introduction

Sketching is often the first step in creating a 3D shape. This initial
sketching phase provides a visual framework for ideas, allowing de-
signers to explore and refine concepts rapidly. Subsequently, these
preliminary sketches are transformed into detailed 3D models. In

this work, we focus on how to leverage hidden lines typical to tech-
nical drawings for sketch-based 3D shape modelling. Hidden lines
are used to convey information about surfaces that are not observed
from the drawing viewpoint ( [LGJ18] Chapter 6). Many of the
existing sketch-based 3D shape modelling methods either leverage

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20241032 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-7532-3451
https://orcid.org/0000-0003-4201-3793
https://orcid.org/0000-0002-1951-6475
https://orcid.org/0000-0002-5495-6441
https://doi.org/10.2312/egs.20241032


2 of 4 short1004 / 3D Reconstruction from Sketch with Hidden Linesby Two-Branch Diffusion Model

only visible surface lines [ZPW∗23, PMKB23] or require multi-
view inputs [LGK∗17]. A few works [GHL∗20, LPBM22] process
sketches containing visible and hidden lines, but do not differenti-
ate between them and assume that sketches are provided in a vector
format with a known order of strokes. The raster sketch format re-
mains the most widely adopted, and stroke order is challenging to
infer for sketches drawn on paper. Therefore, we explore how to
leverage hidden lines in raster sketches. Notably, none of the previ-
ous methods explicitly take advantage of hidden lines. Therefore,
the first contribution of our work is to propose to explicitly utilize
the hidden lines to infer the occluded details of 3D shapes.

We build our method on one of the state-of-the-art diffu-
sion models for 3D shape generation from sketch inputs: LAS-
Diffusion [ZPW∗23]. We observe that LAS-Diffusion trained on
all-line drawings struggles with understanding hidden lines in the

Reconstruction	from
LAS-Diffusion	[ZPW∗23]

all-line drawing, creating uncertainty
on whether to establish a new surface
based on these lines or regard them as
part of the backside of an existing sur-
face, ultimately leading to erroneous
interpretations of the shape (see inset).
To this end, our second contribution is that we propose to process
visible and hidden lines separately, with two distinct branches that
exchange information during the reverse diffusion process. Prelim-
inary work on line type classification in bitmap sketches [HGB19]
shows promising results, achieving 65% line type classification ac-
curacy in their setting. Here we assume that classification is pro-
vided and leave automatic line classification for future work.

Finally, we propose the usage of contextualized hidden lines and
show the importance of contextualization. Namely, we show that
when hidden lines are treated in isolation the network struggles to
make a meaningful inference. However, when hidden lines are su-
perimposed with silhouette lines our model efficiently combines
information from visible and contextualized hidden lines.

Our results demonstrate that the incorporation of hidden lines en-
ables a more precise reconstruction of the hidden structures of 3D
objects (see Figures 1 and 3). We achieve the best Intersection over
Union (IoU) and Light Field Descriptor (LFD) scores against var-
ious network configurations, improving over a single-branch base-
line with a large margin.

2. Related Work

Works on sketch-based 3D shape modelling can be divided into
two categories based on the sketch input format: vector [GHL∗20,
LPBM22] and bitmap [LGK∗17, ZPW∗23, PMKB23]. Vector for-
mat embeds the stroke order, which enables methods to process
the strokes incrementally. Gryaditskaya et al. [GHL∗20] lift strokes
into 3D by computing their intended 3D intersections and depths.
Li et al. [LPBM22] sequentially converts the strokes into CAD
commands. However, stroke order is not accessible for sketches
drawn on paper. Sketch-based modelling from a single bitmap
sketch suffers from the inherent ambiguity of modelling occluded
surfaces. Recent machine learning methods address this problem by
either requiring multi-view inputs [LGK∗17] or learning 3D shape
class priors [ZPW∗23]. However, man-made 3D shapes, especially

those used in mechanical engineering, often contain complex geo-
metric configurations that pose a significant challenge in learning
meaningful 3D shape priors. We build our method around the ob-
servation that designers often sketch hidden lines in addition to vis-
ible lines to depict edges that are not visible from the view. This
motivates us to investigate the use of hidden lines to infer the oc-
cluded details of 3D shapes that are not apparent from the visible
lines alone.

3. Method

We build our model on the LAS-Diffusion model [ZPW∗23]. Our
method assumes that we know a separation into visible silhouette
lines, other visible lines, and hidden lines (creases), that are pro-
vided to us as bitmap images or bitmap image annotations. We do
not assume any information about individual strokes. Similarly to
the LAS diffusion model, we leverage the information about the
sketch viewpoint. However, it does not have to be precise and the
user only needs to provide a rough guess of view information. The
output is a 3D shape represented by a discrete signed distance field
(SDF). A discrete signed distance function g : z ∈ Z 7→R is defined
on a regular 3D grid Z, where g(z) represents the signed distance
from the centers of the grid cells to a closed manifold surface S.

3.1. LAS-Diffusion Premilinaries

LAS-Diffusion model [ZPW∗23] consists of two stages modelled
with two networks: occupancy-diffusion network UO, and SDF-
diffusion network US. In the first stage, the model focuses on gen-
erating a low-resolution occupancy grid to approximate the over-
all shape structure. In the second stage, the network synthesizes a
high-resolution signed distance field by refining occupied voxels
from the first stage. The sketch conditioning information is taken
into account only in the occupancy-diffusion network, UO. In this
work, our goal is to utilize hidden lines to infer the structural geom-
etry of the 3D shape. Therefore, we inject hidden line information
into the occupancy-diffusion network, which is the first stage of
LAS-Diffusion.

3.2. Two-branch LAS-Diffusion Model

Figure 2(b) illustrates our network structure: It consists of two dis-
tinct occupancy-diffusion model branches, which we dub as the vis-
ible branch (UV

O ) and the hidden branch (UH
O ). The visible branch,

UV
O , takes a sketch of visible lines as input and predicts the occu-

pancy grid of the 3D shape where only the information about the
visible surface from a given viewpoint can be reconstructed reli-
ably. The hidden branch, UH

O , takes a sketch of contextualized hid-
den lines (silhouette and crease lines) as input. Its task is to estimate
the geometry of surfaces complementary to the ones predicted with
the visible branch, including holes and hidden surfaces.

The occupancy-diffusion network UO in the LAS-Diffusion
model [ZPW∗23] for each time step t predicts a denoized re-
sult xt−1. To perform conditional denoizing on input sketch, the
occupancy-diffusion network is conditioned on view-projection
matrix P and sketch patch features f extracted with the ViT (Vi-
sion Transformer) [DBK∗21]: xt−1 =UO(xt , f , t,P).
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Figure 2: (a) We distinguish visible lines (creases and silhouettes) from hidden lines. We refer to the combination of hidden lines and
silhouette lines as contextualized hidden lines. (b) Our model includes two parallel occupancy diffusion networks taking visible lines and
contextualized hidden lines as input, respectively. A Noise Merger network (three Convolutional layers) merges the denoised predictions for
a given time step. The output of this network is passed to the next stage SDF-diffusion network.

In our two-branch architecture, each of the two branches for
each time step t predicts denoized results zV

t−1 and zH
t−1, respec-

tively. We then introduce a noise merger network, M, consisting of
three convolutional layers. It takes in zV

t−1 and zH
t−1, time step t, and

view-projection matrix P, and outputs a unified estimation xt−1. In
summary, one step of the reverse process of our two-branch LAS-
Diffusion model can be expressed as follows:

zV
t−1 =UV

O (xt , fV , t,P), (1)

zH
t−1 =UH

O (xt , f H , t,P), (2)

xt−1 = M(zV
t−1,z

H
t−1, t,P), (3)

where fV and f H are image patch features extracted with the
ViT [DBK∗21] for the visible and hidden branches sketch inputs,
respectively. Note that in the reverse process in Equations 1 and 2,
we start from the unified noise volume xt instead of zV

t and zH
t from

the distinct occupancy-diffusion branches.

4. Experiments

4.1. Dataset

Due to the lack of datasets of technical drawings, we generate
a dataset of synthetic line drawings using 3D shapes from the
ABC dataset [KMJ∗19], and NPR (Non-Photo Realistic) render-
ing. Since some of the models in the ABC dataset are extremely
complex, their NPR renderings can get very cluttered. We select 3D
models of limited complexity, by checking each shape against the
following three criteria: (a) the number of parts is equal to one, (b)
the number of surfaces is less than 10, and (c) the file size is smaller
than 10 MB. In total, we selected 1,000 models from the ABC
dataset [KMJ∗19] for training and 300 models for testing. Some
example shapes are shown in Figure 3. We render each shape from
50 different viewpoints, following Zheng et al. [ZPW∗23]. We ren-
der silhouettes and visible creases as visible lines, and occluded
creases as hidden lines (see Figure 2(a)) using Blender FreeStyle.

4.2. Implementation and Training Procedure

We use the same network configurations for the occupancy-
diffusion model, UO, and the SDF-diffusion model, US, following

Zheng et al. [ZPW∗23]. We refer the reader to their paper for more
details. The noise merger, M, takes as input the concatenation of
the two denoised occupancy grid results for a given time step from
the occupancy-diffusion part, a projection matrix, and a time step.
We implement M as three convolution layers with the number of
neurons (32-8-1) and a kernel size of 3. The occupancy and SDF
diffusion networks are initialized using the model pretrained on
ShapeNet [CFG∗15] dataset and the noise merger network is ini-
tialized using random weights. We trained the occupancy-diffusion
branches UV

O , UH
O and the noise merger network M jointly for 300

epochs. Then, we further trained the SDF-diffusion network, US,
for 300 epochs.

4.3. Comparisons

Alternative configurations We compare our method against the
following three different configurations:

(a) Single-branch occupancy-diffusion (UO), that takes in an NPR
rendering of visible lines only;

(b) Single-branch occupancy-diffusion (UO), that takes in an NPR
rendering of visible lines and hidden lines as one image;

(c) Two-branch occupancy-diffusion (UV
O and UH

O ), taking as input
an NPR rendering of visible lines and an NPR rendering of hid-
den lines (silhouette lines are not included), respectively.

The outputs of (a)-(c) and of our method (Ours) are then refined by
the SDF-Diffusion model, US, to get the discrete SDF values of the
3D shape, providing more details.

Quantitative comparison To measure the accuracy of the pre-
dicted 3D shapes, we use two quantitative evaluation met-
rics: Intersection-over-Union (IoU) and Light Field Distance
(LFD) [CTSO03]. In Table 1, we show the IoU and LFD scores
of the considered configurations. Our two-branch model using con-
textualized hidden lines (hidden + silhouette lines) outperforms all
other configurations in both IoU and LFD scores. The two-branch
architecture that takes in the second branch only hidden lines (c)
has better IoU scores than single-branch configurations, but worse
LFD scores. This shows the importance of contextualizing hidden
lines in the second branch.
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(a) (b) (c) (Ours)
IoU ↑ 0.607 0.613 0.651 0.675
LFD ↓ 3201 3237 3272 3123

Table 1: IoU and LFD scores of three alternative configurations
(Section 4.3) and our method.
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Figure 3: Generated 3D shapes using different network configu-
rations, described in Section 4.3. Red frames highlight the parts
(holes and intricate structures) that can be more accurately recon-
structed with our proposed method compared to other alternatives.

Qualitative comparison Figure 3 shows qualitative results ob-
tained with different configurations and demonstrates that our
method can reconstruct holes and intricate structures more accu-
rately than other configurations. Comparison of the results of (a)
and other configurations, highlights the role of hidden lines in pro-
viding important geometric information about the occluded parts
that visible lines cannot represent. However, as the results of (b)
show, processing visible and hidden lines in the same image naively
leads to erroneous reconstructions. Qualitative results further un-
derline the advantage of our two-branch model and the usage of the
proposed contextualized hidden lines.

4.4. Limitations and Future work

Our model is trained on synthetic data and might not gen-
eralize well to human-drawn sketches which usually contain

highly distorted or over-sketched strokes. The inset shows a con-
cept sketch example from [GSH∗19], in which our model can

Visible lines
Contextualized

hidden lines

capture the rough shape but fails to re-
construct the backside structure, pos-
sibly due to a large deviation in
sketching style from the one in the
training dataset. We plan to investi-
gate this problem by using stylized
sketches for training in the future. Lastly, our method can have
difficulties reconstructing complex shapes, limited by the capac-
ity of the diffusion model on sketch-based 3D shape generation
techniques. However, we note that our main contribution is a novel
solution for leveraging hidden lines to resolve the ambiguity of the
shape’s surfaces hidden from the observer. Further, as generation
techniques progress rapidly, we hope that our work will propel the
use of hidden lines in sketch-based modeling methods.
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